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KIF11 is one of the 45 family members of kinesin superfamily proteins that functions as a motor protein in mitosis. Emerging
evidence revealed that KIF11 plays pivotal roles in cancer initiation, development, and progression. However, the prognostic,
oncological, and immunological values of KIF11 have not been comprehensively explored in pan-cancer. In present study, we
comprehensively interrogated the role of KIF11 in tumor progression, tumor stemness, genomic heterogeneity, tumor immune
infiltration, immune evasion, therapy response, and prognosis of cohorts from various cancer types. In general, KIF11 was
significantly upregulated in tumors compared with paired normal tissues. KIF11 showed strong relationships with pathological
stage, prognosis, tumor stemness, genomic heterogeneity, neoantigens, ESTIMATE, immune checkpoint, and drug sensitivity.
The methylation level of KIF11 decreased in most cancers and was correlated with the survival probability in different human
cancers. The expression of KIF11 was diverse in different molecular and immune subtypes and remarkably correlated with
immune cell infiltration in the tumor microenvironment. Comparative study revealed that KIF11 was a powerful biomarker
and associated with immune, targeted, and chemotherapeutic outcomes in various cancers. In addition, KIF11 interaction and
coexpression networks mainly participated in the regulation of cell cycle, cell division, p53 signaling pathway, DNA repair and
recombination, chromatin organization, antigen processing and presentation, and drug resistance. Our pan-cancer analysis
provides a comprehensive understanding of the functions of KIF11 in oncogenesis, progression, and therapy in different
cancers. KIF11 may serve as a potential prognostic and immunological pan-cancer biomarker. Moreover, KIF11 could be a
novel target for tumor immunotherapy.

1. Introduction

Nowadays, cancer has become a leading cause of death
worldwide and forces a major health and economic burden
on society [1]. Human carcinogenesis is a dynamic process
that is regulated at multiple spatial and temporal scales [2].
The unique gene expression profile resulting from DNA
changes including deletion, amplification, mutation, and
translocation, and epigenetic alterations represents hall-
marks of cancer development and provides a new perspective
to understand the initiation and progression mechanism of

tumor [3]. Pan-cancer analysis provides a powerful method
to find common and distinctive characteristics of human
cancers and provides novel ideas for the clinical therapy of
tumors [4, 5].

Kinesin superfamily proteins (KIFs) are a group of pro-
teins with a highly conserved motor domain that provides
motors binding to microtubules [6, 7]. The motor ability of
KIFs plays a vital role in mitosis, meiosis, vesicle and organ-
elle trafficking, and the maintenance of cell polarity [8–10].
KIFs were first isolated from squid tissue and were ubiqui-
tous in all eukaryotes [11]. A total of 45 KIF genes with
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various functions have been defined in human [12]. The
KIFs are classified into 15 kinesin families termed kinesin-
1 to kinesin-14B based on the phylogenetic relationship.
These families can be broadly grouped into three types
according to the position of the motor domain in the mole-
cule: N kinesins have a motor domain in the amino terminal
region, M kinesins have a motor domain in the middle
region, and C kinesins have a motor domain in the carboxy
terminal region [13]. In general, N kinesins provide microtu-
bule-plus-end-directed motilities; M kinesins depolymerize
microtubules into tubulin molecules, and C kinesins provide
microtubule-minus-end-directed motilities [13–15]. The
energy released by ATP hydrolysis in the motor domain pro-
vides force production for directional movement of KIFs [16].
In the past few years, numerous studies have showed that
aberrant expression of KIFs is involved in the development
and progress of different kinds of human cancers [17–19].

KIF11 also known as EG5, the unique member of
kinesin-5 subfamily, is responsible for separating duplicated
poles and maintaining proper spindle bipolarity during
mitosis [20–22], secretory protein transport in nonmitotic
cells [23], and regulating axonal growth and branching in
developing neurons [24, 25]. KIF11 is a member of the N
kinesins that contain a motor domain in the amino terminal
region of the molecule. An intact KIF11 protein is composed
of a motor domain, a neck linker domain, and a tail domain
assembling as an antiparallel tetrameric structure, which
allows them to bundle and slide parallel and antiparallel
microtubules [20, 26, 27]. KIF11 generally moves slower
and is less processive than conventional transport kinesins
[20, 28]. In recent years, numerous studies have shown that
KIF11 participates in the growth and development of a vari-
ety of human cancers [29]. Due to its crucial mitotic func-
tion, KIF11 is a target for potential anticancer drugs,
emphasizing the importance of a more thorough under-
standing of its cellular functions.

Recent studies have revealed that KIF11 plays an impor-
tant role in cancer. However, the function of KIF11 in
tumorigenesis and tumor progression remains largely
unknown from the perspective across multiple cancers. In
the present study, we conducted a comprehensive analysis
of the KIF11 gene based on multiomics data to investigate
the roles of KIF11 in oncogenesis, progression, and therapy
from the perspective of pan-cancer. We analyzed KIF11
expression in pan-cancer, normal tissues, and various cell
lines and evaluated the prognostic value and biomarker rel-
evance of KIF11 in different human cancers. Furthermore,
the potential associations between KIF11 expression and
molecular subtypes, immune subtypes, neoantigen, ESTI-
MATE, immune checkpoint, and immune cell infiltration
in the tumor microenvironment were analyzed. In addition,
we explored the relationships between KIF11 and tumor
stemness, genomic heterogeneity, drug sensitivity, and ther-
apy response in human cancers. The interaction and coex-
pression networks of KIF11 were constructed to evaluate
KIF11 associated pathways. This study would provide
insights into the role of KIF11 in cancer initiation, progres-
sion, and tumor immunotherapy from the perspective of
pan-cancer, but some limitations still exist. First, although

we investigated the protein level of KIF11 via the IHC data
of HPA database, the IHC results of some cancer types are
missing in the HPA database. Second, we observed that
KIF11 was correlated with immune cell infiltration in the
tumor microenvironment. However, the molecular mecha-
nisms and roles of KIF11 in immune infiltration and escape
need to be explored in further studies. Third, most of the
analyses were performed based on multiomics data, the pre-
cise verification and high-quality evidence should be further
performed and provided by clinical trials and biological
experiments. The workflow of this study is shown in
Figure 1.

2. Materials and Methods

2.1. Gene Expression Analysis. The TIMER database (https://
cistrome.shinyapps.io/timer/), GEPIA database (http://
gepia2.cancer-pku.cn/#analysis), and UALCAN database
(http://ualcan.path.uab.edu/index.html) were used to com-
pare KIF11 expression between human tumors and normal
tissues. The HPA database (https://www.proteinatlas.org/),
SangerBox website (http://sangerbox.com/Tool), and Gene-
Cards database (https://www.genecards.org/) were used to
analyze the expression profiles of KIF11 in different normal
tissues and cell lines. The HPA database was explored to val-
idate the KIF11 protein expression in human cancers by
immunohistochemical staining with anti-KIF11 antibody
(Atlas Antibodies, Cat#HPA006916, RRID: AB_1848033).
The detailed information of cancer tissue material and clin-
icopathological data used in this study was listed in Supple-
mentary Table 2. The IHC staining protocol can be found at
https://www.proteinatlas.org/download/IHC_protocol.pdf.
The detailed information of the cell lines in the HPA
database can be found at https://www.proteinatlas.org/
learn/cellines. As for HPA database, mRNA sequencing
was performed with a read length of 2 × 100 bases,
producing an average of 18 million mappable read pairs
per sample. For GTEx database, RNA sequencing was
performed using a 76 base, paired-end Illumina TruSeq
RNA protocol, averaging ~50 million aligned reads per
sample. For TCGA database, RNA-seq data are of high
quality with a mean coverage of around 50 fold. For
TARGET database, approximately 21500 genes were
covered by at least one read, and about 12990 genes had
RPKM (Reads Per Kilobase per Million) mapped reads
with values ≥ 1. The methods description partly reproduces
the wording of the database.

2.2. Prognostic Analysis. The SangerBox website, GEPIA
database, Kaplan-Meier’s plotter database (http://kmplot
.com/analysis/), and PrognoScan databases (http://dna00
.bio.kyutech.ac.jp/PrognoScan/index.html) were used to
exam the connection between KIF11 expression and the
prognosis of patients, including overall survival (OS), disease
free interval (DFI), disease specific survival (DSS), and pro-
gression free interval (PFI). Data of the SangerBox website
was collected from the TCGA and GTEx database. The log
rank test was used for statistical analysis. For GEPIA data-
base, the median KIF11 expression was used as a cutoff value
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to classify groups, and the hazards ratio was calculated based
on Cox PH Model. The Kaplan-Meier plotter database splits
patients by calculating an optimal cutoff value automatically.

2.3. Epigenetic Methylation Analysis. UALCAN database and
DiseaseMeth database (http://bio-bigdata.hrbmu.edu.cn/
diseasemeth/index.html) were used to compare the methyla-
tion status of KIF11 promoter between human tumors and
normal tissues. The EWAS database (https://ngdc.cncb.ac
.cn/ewas/datahub/exploration) and MethSurv database
(https://biit.cs.ut.ee/methsurv/) were used to compare the
methylation status of single CpG island in KIF11 promoter
between tumor and normal tissue and to study the correla-
tion between methylation status and survival probability in
different human cancers. The connection between KIF11
and the cancer stemness was investigated via the SangerBox
website using the data from UCSC database (https://
xenabrowser.net/).

2.4. Genetic Alternation Analysis. The cBio Cancer Geno-
mics Portal (c-BioPortal) (http://cbioportal.org) was applied
to explore KIF11 genomic alterations in different human
cancers. The connections between KIF11 expression and
genomic heterogeneity and the mutation map of KIF11 were
investigated via the SangerBox website using the data from
UCSC database (https://xenabrowser.net/) and GDC data-
base (https://portal.gdc.cancer.gov/), respectively.

2.5. Interaction Network, Gene Ontology (GO) Term, and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Enrichment Analyses. The GeneMANIA database
(http://www.genemania.org) was applied to construct the
gene-gene interaction network of KIF11. A total of 20 related
genes were shown. The STRING database (https://string-db
.org/) was used to construct the protein-protein interaction
network of KIF11. The main parameters were set as follows:
network type “full STRING network”, meaning of network
edges “evidence”, active interaction sources “Experiments,
Text mining, Databases”, and minimum required interaction
score “medium confidence (0.400)”. Fifty KIF11 binding
proteins were used for GO and KEGG analyses using the
DAVID Bioinformatics Resources (https://david.ncifcrf
.gov/). The top 10 enrichment pathways were displayed.

2.6. Immune and Molecular Subtypes Analysis. The TISIDB
database (http://cis.hku.hk/TISIDB/index.php), which inte-
grates multiple data types to assess tumor and immune sys-
tem interaction, was used to explore the correlations
between KIF11 expression and molecular or immune sub-
types in different human cancers.

2.7. Coexpression Network Analysis. The LinkedOmics data-
base (http://www.linkedomics.org/login.php) was used to
explore the KIF11 coexpression genes in HNSC using RNA-
seq dataset by Spearman’s correlation test. Top 50 positive

KIF11

Diferential expression

Cancer vs healthy
Cell lines
Diferent tissues
Tumor stages
Tumor metastasis

High vs low gene expression

Mutation profle
Association between mutation and survival
Genomic heterogeneity

Gene-gene interaction network
Protein-protein interaction network
KEGG pathways
Gene Ontologies

Immune and molecular subtypes
ESTIMATE score
Immune checkpoint genes
Immune cell infltration
Association between immune infltration and survival

Drug sensitivity
Biomarker relevance in ICB sub-cohorts
Association between gene expression and therapeutic responses

Co-expression genes in HNSC
KEGG pathways
Gene Ontologies

Methylation diference
Association between methylation and survival
Tumor stemness

Survival prognosis

Epigenetics

Genetics

Enrichment analysis

Tumor microenvironment

Terapy outcome

Co-expression network
in HNSC

Figure 1: The flow chart of the study.
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or negative coexpression genes were displayed via heat map
and volcano plot. Furthermore, gene ontology biological
process and KEGG pathways of KIF11 and the coexpres-
sion genes were explored and displayed via bar chart and
volcano plot.

2.8. Analysis of the Connections between KIF11 and
Neoantigen, ESTIMATE, and Immune Checkpoint Genes.
The connections between KIF11 expression and neoantigen,
ESTIMATE, and immune checkpoint genes were investi-
gated via the SangerBox website using Spearman’s method.
ESTIMATE is a common algorithm for predicting tumor
purity, consisting of stromal score, immune score, and esti-
mate score. Immune checkpoint genes including immune
stimulators and immune inhibitors were selected according
to the previous study [30].

2.9. Immune Cell Infiltration Analysis. The connections
between KIF11 expression and the infiltration level of T
cells, CD8+ T cells, cytotoxic lymphocytes, B lineage, natural
killer cells, monocytic lineage, myeloid dendritic cells, neu-
trophils, endothelial cells, and fibroblasts were investigated
via the SangerBox website by MCP-counter. The connec-
tions between KIF11 expression and the infiltration level of
immunosuppressive cells including myeloid-derived sup-
pressor cells (MDSCs), cancer-associated fibroblasts (CAFs),
and regulatory T cells (Tregs) were investigated via the
TIMER database through different methodologies, including
TIDE, EPIC, CIBERSORT, and MCP counter. The Kaplan-
Meier plotter database was used for prognosis analyses based
on the expression level of KIF11 in related immune cell
subgroups.

2.10. Drug Sensitivity and Therapeutic Response Analysis.
The RNAactDrug database (http://bio-bigdata.hrbmu.edu
.cn/RNAactDrug/), a comprehensive database of RNAs asso-
ciated with drug sensitivity from multiomics data, was used
to investigate the connections between drug sensitivity and
KIF11 at three molecular levels (expression, copy number
variation, and methylation). The TIDE server (http://tide
.dfci.harvard.edu/), a module that can perform the compar-
ison between the custom biomarker and other published
biomarkers based on their predictive power of response out-
come and overall survival, was used to compare the predic-
tive power of KIF11 with nine standardized biomarkers of
tumor immune response, including TIDE, MSI score,
TMB, CD274, CD8, IFNG, T. Clonality, B. Clonality, and
merck18. The ROC plotter server (https://www.rocplot.org/
site/index) was applied to explore the association between
KIF11 expression and therapeutic response in breast and
ovarian cancer patients.

2.11. Statistical Analysis. R software and the attached pack-
ages were utilized for statistical analysis. ANOVA, Wilcox-
on’s test, Kruskal-Wallis’ test, and t test were used in
GEPIA, TIMER, SangerBox, and UALCAN database for dif-
ferential expression analysis, respectively. Cox regression
analysis and the Kaplan-Meier curve were used to analyze
the association between KIF11 and patient survival. The P
value obtained from log-rank test was used to indicate statis-

tical significance. Spearman or Pearson’s correlation method
was used to calculate the correlation between two variables.
Mann–Whitney test and Receiver Operating Characteristic
test were used in ROC plotter server for cohorts compari-
son. Quantitative real-time PCR results are reported as
the mean ± SD. Statistical significance between samples
was determined by t test. Statistical significance was set at
P < 0:05.

3. Results

3.1. KIF11 Expression Analysis in Pan-Cancer. According to
the results from the TIMER database, KIF11 mRNA level
was significantly higher in most tumors versus adjacent nor-
mal tissues, such as BLCA, BRCA, CHOL, COAD, ESCA,
HNSC, KIRC, LIHC, LUAD, LUSC, PRAD, READ, STAD,
and UCEC (Figure 2(a)). The results from the GEPIA data-
base also showed that KIF11 expression was significantly
higher in most human cancers including ACC, BLCA,
BRCA, CESC, CHOL, COAD, DLBC, ESCA, GBM, LGG,
LUAD, LUSC, OV, PAAD, READ, SARC, SKCM, STAD,
THYM, UCEC, and UCS (Figure 2(b)). The results of the
UALCAN database showed that KIF11 expression was signif-
icantly higher among most cancer types, which was consistent
with the TIMER and GEPIA database results (Supplementary
Figure 1A). Moreover, immunohistochemical staining for
KIF11 was investigated via the HPA database. The
expressing level of KIF11 was higher in most tumors
compared with normal tissues (Figure 2(c)).

Additionally, we investigated the mRNA expression level
of KIF11 across different normal tissues and cancer cell lines
via the HPA database. KIF11 was lower expressed in most
normal tissues, and higher expression was found in thymus,
bone marrow, tonsil, and lymph node, all of which were
associated with immune responses (Figure 2(d)). In contrast,
KIF11 was high expressed in almost all cancer cell lines
(Figure 2(e)). The results from the GTEx and CCLE database
also proved that KIF11 mRNA expression level was low
among most normal tissues except bone marrow and testis
but high in almost all cancer cell lines (Supplementary
Figures 1B, 1C). Further comparison of the KIF11
protein expression according to the GeneCards database
demonstrated that KIF11 protein expressed at a low level
in most normal tissues but high expressed in ovary and
testis (Supplementary Figure 1D). In contrast, KIF11
protein expressed at a high level in almost all cancer cell
lines, which was consistent with the HPA, GTEx, and
CCLE database results (Supplementary Figure 1E). These
results together suggested that KIF11 expression was
abnormally upregulated in various cancers.

3.2. The Relationship between KIF11 Expression and
Different Clinical Characteristics. The KIF11 expression
among groups of patients according to different clinical
parameters was investigated by the UALCAN online tool.
KIF11 was differentially expressed in different cancer stages,
nodal metastasis status, and TP53 mutation status. Accord-
ing to pathological stages, KIF11 expression showed a trend
variation along with the disease progression in ACC, BLCA,
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Figure 2: Continued.
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Figure 2: The expression level of KIF11 across different cancers. (a) KIF11 expression level in different cancer types and normal tissues
analyzed by the TIMER database. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. (b) KIF11 expression level in different cancer types and normal
tissues analyzed by the GEPIA database. (c) Immunohistochemical analysis of KIF11 in different tumors and normal tissues. Each
sample is represented by 1mm tissue cores. (d) KIF11 expression level in different normal tissues analyzed by the HPA database. (e)
KIF11 expression level in different cell lines analyzed by the HPA database.
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LIHC, LUAD, SKCM, BRCA, KIRC, KIRP, LUSC, and
UCEC (Figure 3(a)). Regarding nodal metastasis status, a
gradient increase of KIF11 expression was observed along
with the progression of nodal metastasis in patients with
HNSC, KIRC, KIRP, LUSC, and PRAD (Figure 3(b)).
KIF11 expression was upregulated in both TP53 wild-type
and TP53-mutant cancer patients compared to normal con-
trols. In addition, KIF11 expression was higher in TP53-
mutant cancer than TP53 wild-type cancer in most cancer
types (Supplementary Figure 2). These results suggested
that KIF11 expression was closely correlated with tumor
progression and metastasis.

3.3. Prognostic Value of KIF11 in Pan-Cancer. To better
understand the prognostic value and potential mechanism
of KIF11 expression in pan-cancer, we comprehensively
analyzed the prognostic value of KIF11 in human cancers
by Cox proportional hazards model. Cox regression analyses
of the correlations between KIF11 and OS, DFI, DSS, and
PFI in different cancers were displayed in forest chart.
Highly expressed KIF11 correlated negatively with OS in
KIPAN, KIRP, ACC, LGG, KICH, LIHC, MESO, LUAD,
PAAD, LAML, KIRC, PCPG, and PRAD and positively with
OS in THYM (Figure 4(a)), negatively with DFI in KIRP,
KIPAN, THCA, PAAD, LIHC, and SARC (Figure 4(b)),
negatively with DSS in KIPAN, KIRP, GBMLGG, ACC,
KICH, LGG, LUAD, MESO, LIHC, PAAD, KIRC, PCPG,
PRAD, SKCM-P, and BLCA (Figure 4(c)), and negatively

with PFI in KIPAN, KIRP, GBMLGG, ACC, KICH, LIHC,
PAAD, UVM, LGG, KIRC, LUAD, THCA, BLCA, MESO,
PRAD, PCPG, SKCM-P, and SARC (Figure 4(d)).

For further identification of the prognostic significance
of KIF11 gene, the Kaplan-Meier survival curve of human
cancers with high or low KIF11 expression was analyzed
by the GEPIA database. Higher level of KIF11 mRNA indi-
cated worse OS or DFS in ACC, KICH, KIRP, LGG, LIHC,
LUAD, MESO, PAAD, SARC, and UVM, while opposite
result was observed in THYM (Figure 4(e)). In the
Kaplan-Meier plotter database, higher KIF11 expression
was associated with poorer OS in KIRP, LIHC, LUAD,
PAAD, PCPG, SARC, KIRC, UCES, and ESCA and DFS
in KIRP, LIHC, LUAD, PAAD, PCPG, SARC and THCA.
In contrast, higher KIF11 expression was related to better
OS for patients with STAD, CESC, THYM, and DFS for
patients with ESCA (Supplementary Figure 3). Furthermore,
the correlation between KIF11 expression and survival was
evaluated by PrognoScan database. Higher expression of
KIF11 showed worse survival in bladder, brain, breast, eye,
lung, ovarian, prostate, renal cell, skin, and soft tissue
cancers (Supplementary Table 3). All the results above
indicated that KIF11 expression was closely related to the
prognosis of various cancer types.

3.4. KIF11 Correlated with Cancer Stemness and Showed
Characteristic Epigenetic Modification in Pan-Cancer. Stem-
ness, defined as the potential to self-renew and differentiate
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Figure 3: The expression level of KIF11 in different clinical characteristics. (a) KIF11 expression level in different cancer stages. (b) KIF11
expression level in different nodal metastasis status.
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Figure 4: Continued.

9Oxidative Medicine and Cellular Longevity



KIPAN
KIRP

GBMLGG
ACC

KICH
LGG

LIHC
MESO
LUAD

PAAD
KIRC
PCPG
PRAD

SARC
UVM

THCA

BRCA

BLCA

CHOL

SKCM-P

GBM

SKCM-M
SKCM
ESCA

HNSC

THYM

READ

STAD
UCS

COADREAD

OV

STES

DLBC

COAD

LUSC

TGCT
UCEC

CESC

Hazard ratio (95%CI)

Disease specifc survival

1 3 5 7 9 11

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎

⁎⁎

⁎

⁎

⁎

(c)

Hazard ratio (95%CI)

Progression free interval

1 2 3 4

KIPAN
KIRP

GBMLGG
ACC

KICH

LGG

LIHC

MESO

LUAD

PAAD

KIRC

PCPG
PRAD

SARC

UVM

THCA

BRCA

BLCA

CHOL

SKCM-P

GBM

SKCM-M

SKCM

ESCA
HNSC

THYM

READ

STAD

UCS
COADREAD

OV

STES

DLBC

COAD

LUSC
TGCT

UCEC

CESC

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎

(d)

Figure 4: Continued.
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from a cell of origin, is a feature of precursor cells in the
developing embryo [31]. As previous studies reported,
gradual loss of the differentiated phenotype and gain of
progenitor and stem-cell-like characteristics were the main
reasons for driving tumor progression [32]. Analysis of
the correlation between KIF11 expression and stemness
indices, including mRNA expression-based stemness index
(mRNAsi), epigenetically regulated-mRNA expression-
based stemness index (EREG-mRNAsi), DNA methylation-
based stemness index (mDNAsi), differentially methylated
probes-based stemness index (DMPsi), enhancer elements/
DNAmethylation-based stemness index (ENHsi), and epige-
netically regulated DNA methylation-based stemness index
(EREG-METHsi), revealed that KIF11 expression correlated
positively with cancer stemness in almost all human cancer
types except THYM. KIF11 expression correlated positively
with mRNAsi in 29 cancer types and negatively with
mRNAsi in 2 cancer types, positively with EREG-mRNAsi
in 19 cancer types and negatively with EREG-mRNAsi in 2
cancer types, positively with DMPsi in 15 cancer types and
negatively with DMPsi in 2 cancer types, positively with
EREG-METHsi in 14 cancer types and negatively with
EREG-METHsi in 1 cancer type, positively with mDNAsi
in 13 cancer types and negatively with mDNAsi in 2 cancer
types, and positively with ENHsi in 10 cancer types and neg-
atively with ENHsi in 2 cancer types (Figure 5(a)).

Epigenetic dysregulation of tumor cells frequently leads
to oncogenic dedifferentiation and acquisition of stemness
features [33, 34]. Compared with normal tissues, KIF11 pro-
moter is hypomethylated in BLCA, HNSC, KIRC, LIHC,
LUAD, TGCT, and UCEC and hypermethylated in LUSC
and PCPG (Figure 5(b)). The results from the DiseaseMeth
database further proved that KIF11 promoter is hypomethy-
lated in bladder cancer, germ cell cancer, BLCA, ESCC,
PAAD, HNSC, KICH, KIRC, LAML, LGG, OSC, OV,
UCS, PA, PRAD, READ, and COAD and hypermethylated
in gastric cancer, malignant pluripotent embryonal carci-
noma, CHOL, ESCA, MM, GBM, LUSC, PCPG, and UCEC
(Supplementary Figure 4). Furthermore, the methylation
status of single CpG island and the correlation between
methylation status and survival probability in different
human cancers were analyzed using the EWAS database.
The results indicated that the methylation status of single
CpG island was associated with survival probability.
Taking probe cg05302035 as an example, KIF11 was
hypomethylated in LUAD, PTCC, and melanoma compared
with normal tissue, and the hypomethylation status was
related to survival probability (Figure 5(c)). The results from
the MethSurv database indicated that the methylation status
of single CpG island in KIF11 promoter was correlated with
survival probability in different cancer types (Figure 5(d)).
Details are shown in Supplementary Table 4. Collectively,
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Figure 4: The prognostic value of KIF11 in human cancers. (a) Forest map shows the univariate cox regression results of KIF11 for OS. (b)
Forest map shows the univariate Cox regression results of KIF11 for DFI. (c) Forest map shows the univariate Cox regression results of
KIF11 for DSS. (d) Forest map shows the univariate Cox regression results of KIF11 for PFI. (e) The Kaplan-Meier survival curve of
human cancers with high and low KIF11 expression analyzed by the GEPIA database.
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Figure 5: The relationship between KIF11 and cancer stemness, and epigenetic modification of KIF11 in pan-cancer. (a) The correlation
between KIF11 expression and mRNAsi, EREG-mRNAsi, mDNAsi, DMPsi, ENHsi, and EREG-METHsi. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P <
0:001. (b) Boxplots show differential KIF11 promoter methylation level between tumors and paired normal tissues across TCGA
database. (c) The methylation level of CpG island detected by probe cg05302035 between tumor and paired normal tissue (left panel)
and the corresponding survival curves (right panel). The results were obtained from the EWAS database. (d) A forest plot shows the
correlation between the methylation status of CpG island in KIF11 promoter and survival of patients with different cancer types.
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these results indicated that KIF11 expression was strongly
related to cancer stemness, and epigenetic methylation of
KIF11 in patients was associated with prognosis across
various human cancers.

3.5. KIF11 Correlated with Genomic Heterogeneity and
Showed Characteristic Genetic Alteration in Pan-Cancer.
Heterogeneity contributes to drug resistance and relapse
after therapy, resulting in poor survival outcomes. Mutation
profile differences among patients probably contribute to
variability in response to chemotherapy and immunother-
apy as first-line treatments [35]. KIF11 expression had sig-
nificant associations with heterogeneity related factors,
such as homologous recombination deficiency (HRD), loss
of heterozygosity (LOH), tumor mutational burden (TMB),
microsatellite instability (MSI), mutant allele tumor hetero-
geneity (MATH), and ploidy. KIF11 expression correlated
positively with MATH in 8 cancer types and negatively with
MATH in 5 cancer types, positively with ploidy in 9 cancer
types and negatively with ploidy in 2 cancer types, positively
with HRD in 20 cancer types and negatively with HRD in 3
cancer types, positively with LOH in 17 cancer types and
negatively with LOH in 5 cancer types, positively with
TMB in 19 cancer types and negatively with TMB in 2 can-
cer types, and positively with MSI in 10 cancer types and
negatively with MSI in 5 cancer types (Figure 6(a)).

Genetic alterations induce changes in gene expression.
We explored genetic alterations of KIF11 using cBioPortal,
and the results indicated that genomic alteration of KIF11
occurred in 1.5% of patients across various cancer types.
Among the different types of genetic alterations, amplifica-
tion, deep deletion, truncating mutation, and missense
mutation were the common types (Figure 6(b)). Detailed
information about KIF11 mutations in different human can-
cer types indicated that the mutation sites of KIF11 distrib-
uted in the whole gene body including the KISc and
microtubule binding domains. The highest alteration fre-
quency of KIF11 was approximately 5.7% in patients with
UCEC, and the lowest alteration frequency of KIF11 was
approximately 0.2% in patients with THCA and LGG
(Figure 6(c)). In addition, the results from the cBioPortal
database indicated that UCEC patients had the highest
KIF11 alteration frequency; THCA and LGG patients had
lower KIF11 alteration frequency, and there is no KIF11
alteration in KICH, LAML, PCPG, ACC, UVM, TGCT,
THYM, CHOL, KIRP, and MESO (Figure 6(d)). The types
of KIF11 gene alterations were diverse, resulting in changes
in gene expression (Figure 6(e)). The potential relationship
between genetic alteration of KIF11 and the prognosis of
patients indicated that tumor patients with genetic alter-
ations in KIF11 showed better OS, DSS, and PFS than
patients without alterations (Figure 6(f)). All these results
indicated that KIF11 expression was strongly related to
genomic heterogeneity and genetic alternation of KIF11
indeed occurred in many cancers and might play essential
roles in cancer onset and progression.

3.6. Interaction Network and GO and KEGG Enrichment
Analyses of KIF11. To better understand the function of

KIF11 in cancer, we constructed the gene-gene interaction
network for KIF11 by using GeneMania. Functional analysis
suggested that the related genes were significantly associated
with the cell cycle and antigen processing and presentation
(Figure 7(a)). Next, a protein-protein interaction network
of KIF11 was generated using the STRING database
(Figure 7(b)). Fifty targeted binding proteins of KIF11 were
screened out for GO and KEGG enrichment analyses. The
result revealed that the molecular function was primarily
involved in protein binding, ATP binding, microtubule
binding, and microtubule motor activity (Figure 7(c)).
The biological process was mainly enriched in cell divi-
sion, cell cycle, antigen processing and presentation, and
anaphase-promoting complex dependent catabolic process
(Figure 7(d)). The KEGG pathway enrichment was mainly
related to cell cycle, oocyte meiosis, pathogen infection,
Huntington’s disease, amyotrophic lateral sclerosis, neuro-
degeneration multiple diseases, vasopressin-regulated water
reabsorption, and p53 signaling pathway (Figure 7(e)). Single-
cell RNA-sequencing data from Fluorescent Ubiquitination-
based Cell Cycle Indicator (FUCCI) U2OS cells revealed that
KIF11 RNA expressionwas in relation to cell cycle progression
(Figure 7(f)). Similarly, KIF11 protein expression level was
correlated with interphase progression through the G1, S,
and G2 phases (Figure 7(g)). The variation in protein and
transcript expression of KIF11 consists with its role in cell
cycle. Based on the above results, we hypothesized that
KIF11 played essential roles in cell cycle, cell division, immune
response, and p53 signaling pathway.

3.7. The Relationship between KIF11 and Molecular and
Immune Subtypes. Previous studies have proved that
tumor-infiltrating lymphocytes can affect patient survival.
Thus, the role of KIF11 in immune and molecular subtypes
among human cancers was investigated via the TISIDB data-
base. And the results indicated that KIF11 expressed differ-
ently in different immune and molecular subtypes of
various cancer types. For immune subtypes, KIF11 expressed
at highest abundance in the immune subtype of C1 (wound
healing) for KIRC, KIRP, LIHC, OV, UCEC, CHOL, GBM,
KICH, LUAD, SARC, and UCS, C2 (IFN-gamma dominant)
for BRCA, ESCA, LUSC, SKCM, STAD, BLCA, CESC,
COAD, PAAD, PRAD, READ and TGCT, C3 (inflamma-
tory) for HNSC, C4 (lymphocyte depleted) for ACC, LGG,
MESO and UVM, C5 (immunologically quiet) for PCPG,
and C6 (TGF-b dominant) for THCA (Figure 8(a) and
Supplementary Figure 5A).

For molecular subtypes, ESCA, READ, and STAD
expressed KIF11 at highest level in the molecular subtype
of HM-INDEL, PRAD expressed KIF11 at highest level in
the molecular subtype of 7-IDH1, HNSC expressed KIF11
at highest level in the molecular subtype of atypical, BRCA
expressed KIF11 at highest level in the molecular subtype
of basal, KIRP expressed KIF11 at highest level in the molec-
ular subtype of C2c-CIMP, ACC expressed KIF11 at highest
level in the molecular subtype of CIMP-HIGH, GBM and
LGG expressed KIF11 at highest level in the molecular sub-
type of G-CIMP-LOW, COAD expressed KIF11 at highest
level in the molecular subtype of HM-SNV, LIHC expressed
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Figure 6: The relationship between KIF11 and genomic heterogeneity, and genetic alternation of KIF11 in pan-cancer. (a) The correlation
between KIF11 expression and HRD, LOH, TMB, MSI, MATH, and ploidy. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. (b) Alteration landscape for
KIF11 across multiple cancer types. (c) The number and distribution of different KIF11 mutations in various human cancer types. (d) KIF11
gene alteration frequency of different alteration types in cancer cohort. (e) KIF11 expression across different human cancer types with
various gene alteration types. (f) The Kaplan-Meier curves of differences in overall survival, disease specific survival, and progression free
survival between KIF11 altered group and KIF11 unaltered group.
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Figure 7: Interaction network and enrichment analysis of KIF11. (a) The gene-gene interaction network of KIF11 constructed using
GeneMania database. (b) The protein-protein interaction network of KIF11 generated using STRING database. (c) GO analysis
(molecular function) of 50 targeted binding proteins of KIF11. (d) GO analysis (biological process) of 50 targeted binding proteins of
KIF11. (e) KEGG analysis of 50 targeted binding proteins of KIF11. (f) The correlation between KIF11 mRNA expression and cell cycle
progression. The results were obtained from the HPA database using the single-cell RNA-sequencing data of the FUCCI U2OS cell line.
(g) The correlation between KIF11 protein expression and cell cycle progression. The results were obtained from the HPA database using
the data of indirect immunofluorescence assay of FUCCI U2OS cell line.

21Oxidative Medicine and Cellular Longevity



KIF11 at highest level in the molecular subtype of iCluxter:1,
PCPG expressed KIF11 at highest level in the molecular sub-
type of kinase signaling, SKCM expressed KIF11 at highest
level in the molecular subtype of NF1-Any-Mutants, UCEC
expressed KIF11 at highest level in the molecular subtype of
pole, LUSC expressed KIF11 at highest level in the molecular
subtype of primitive, and OV expressed KIF11 at highest
level in the molecular subtype of proliferative (Figure 8(b)
and Supplementary Figure 5B). These results suggested
that KIF11 expression differed in molecular subtypes and
immune subtypes of various human cancers.

3.8. The Relationship between KIF11 Expression and
Neoantigens, ESTIMATE, and Immune Checkpoint Genes.
Tumor neoantigen is the repertoire of new unnatural pro-
teins encoded by mutated genes of tumor that displays on

the tumor cell surface, which could be specifically recognized
by neoantigen-specific T cell receptors, and plays critical
roles in T cell-mediated antitumor immune response and
cancer immunotherapy [36]. The KIF11 expression was pos-
itively related to neoantigens in LUAD, BRCA, UCEC,
SKCM, PRAD, LGG, and STAD (Figure 9(a)). To further
explore the role of KIF11 in the immune response, the cor-
relation between KIF11 expression and ESTIMATE was ana-
lyzed, and the results indicated that KIF11 expression
correlated positively with ESTIMATE in KIPAN, KIRC,
and THCA and negatively with ESTIMATE in ACC, WT,
GBM, NB, STES, STAD, TGCT, SKCM-P, LUSC, SARC,
UCEC, PCPG, ESCA, CESC, OV, PAAD, LUAD, and BRCA
(Figure 9(b)). Overall, these results showed that KIF11 might
participate in antitumor immunity by regulating the compo-
sition and immune mechanism in the TME.
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Figure 8: The relationship between KIF11 expression and immune/molecular subtypes in different human cancers. (a) The relationship
between KIF11 expression and immune subtypes in BRCA, ESCA, KIRC, KIRP, LIHC, LUSC, OV, SKCM, STAD, and UCEC. (b) The
correlation between KIF11 expression and molecular subtypes in ACC, GBM, HNSC, LGG, OV, BRCA, COAD, KIRP, LUSC, and STAD.
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Figure 9: Continued.
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Figure 9: The relationship between KIF11 expression and neoantigen (a), ESTIMATE score (b), and immune checkpoint genes (c, d) in
different human cancers. ESTIMATE: estimation of stromal and immune cells in malignant tumor tissues using expression data. ∗P <
0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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Immune checkpoints are immune regulators of both
stimulatory and inhibitory pathways and play an important
role in immune cell infiltration and immunotherapy [37].
Subsequently, the association between KIF11 expression
and immune checkpoint genes in human cancers was
explored. Strong relationships between KIF11 expression
and immune checkpoint genes were found in many human
cancer types, including KIPAN, UVM, LIHC, KIRC, THCA,
COAD, COADREAD, BLCA, BRCA, GBMLGG, LGG,
KIRP, HNSC, PRAD, NB, and THYM. In KIPAN, UVM,
LIHC, KIRC, THCA, COAD, COADREAD, BLCA, BRCA,
GBMLGG, LGG, KIRP, HNSC, and PRAD, KIF11 expres-
sion was positively related to most immune checkpoint
genes. In NB and THYM, KIF11 is negatively related with
most immune checkpoint genes. For single immune check-
point gene, the immune stimulator HMGB1 correlated pos-
itively with KIF11 in all human cancer types, and TNFSF4,
BTN3A1, BTN3A2, and ENTPD1 correlated positively with
KIF11 in most human cancer types. The immune inhibitor
CD276 and VEGFA correlated positively with KIF11 in most
human cancer types, but VEGFB correlated negatively with
KIF11 in most human cancer types (Figures 9(c) and 9(d)).
The above results suggested that KIF11 might coordinate
the function of these immune checkpoint genes in different
signal transduction pathways and potentially serve as an
ideal pan-cancer biomarker for predicting the immunother-
apy response.

3.9. The Correlation between KIF11 and Immune Cell
Infiltration. The above results indicated that KIF11
expressed differently in different immune subtypes, and
KIF11 expression was strongly related to neoantigens,
ESTIMATE, and immune checkpoint genes. Next, the rela-
tionship between KIF11 expression and immune cell infiltra-
tion was analyzed, and the result revealed that KIF11
expression had a strong relationship with T cell infiltration
in 17 cancer types, CD8+ T cell infiltration in 15 cancer
types, cytotoxic lymphocyte infiltration in 18 cancer types,
B lineage cell infiltration in 16 cancer types, NK cell infiltra-
tion in 23 cancer types, monocytic lineage cell infiltration in
27 cancer types, myeloid dendritic cell infiltration in 24 can-
cer types, neutrophil infiltration in 35 cancer types, endothe-
lial cell infiltration in 22 cancer types, and fibroblast
infiltration in 22 cancer types (Figure 10(a)). The results
from the TIMER database also proved that KIF11 expression
had significant association with immune cell infiltration, and
the detailed information was shown in Supplementary
Table 5.

Furthermore, the correlation between KIF11 expression
and infiltration of immunosuppressive cells that were known
to promote T cell exclusion, such as MDSCs, CAFs, and
Tregs, was analyzed using the TIMER database. KIF11
expression was positively correlated with tumor infiltration
of MSDCs in most cancer types except CESC, DLBC, THCA,
KIRC, and HPV positive HNSC, positively correlated with
tumor infiltration of CAFs in ACC, KIRC, KIRP, LIHC,
LUAD, MESO, and THCA and negatively correlated with
tumor infiltration of CAFs in BRCA, HPV positive HNSC,
STAD, TGCT, and THYM, and positively correlated with

tumor infiltration of Tregs in HPV positive HNSC, KICH,
KIRC, KIRP, LIHC, PCPG, PRAD, THCA, and THYM
and negatively correlated with tumor infiltration of Tregs
in BLCA, BRCA-Her2, BRCA-LumB, COAD, DLBC, ESCA,
STAD, and UCEC (Figure 10(b)).

Since KIF11 expression was significantly correlated with
immune infiltration, whether KIF11 expression affects the
prognosis of patients because of immune infiltration was
analyzed based on the expression level of KIF11 in various
human cancers in related immune cell subgroups. The result
indicated that KIF11 expression affected the prognosis of
patients relying on various immune cell infiltrations. Taking
CD4+ memory T cells as an example, BLCA and ESCA
patients with high expression of KIF11 and enriched CD4+

memory T cells had a poor prognosis, while CESC patients
with high expression of KIF11 and enriched CD4+ memory
T cells had a better prognosis. SARC, HNSC, and PDAC
patients with high expression of KIF11 and decreased
CD4+ memory T cells had a poor prognosis, while LUSC
and STAD patients with high expression of KIF11 and
decreased CD4+ memory T cells had a better prognosis.
On the contrary, there was no significant correlation
between KIF11 expression and the prognosis of BLCA,
ESCA, and CESC patients in the group with decreased
CD4+ memory T cells and SARC, HNSC, PDAC, LUSC,
and STAD patients in the group with enriched CD4+ mem-
ory T cells (Figure 10(c)). The detailed information was
shown in Supplementary Table 6. These results indicated
that KIF11 might affect the prognosis of patients in part
due to immune infiltration.

3.10. The Association between KIF11 and Therapeutic
Response in Multiple Cancer Types. Considering the role of
KIF11 in tumor progression and immune cell infiltration,
we verified the relationship between KIF11 expression and
therapeutic response in different tumors. The results from
the RNAactDrug database showed that the expression,
methylation, and CNV of KIF11 were strongly related to
drug sensitivity (Figures 11(a)–11(c) and Supplementary
Table 7). The biomarker relevance of KIF11 was compared
with standardized biomarkers based on their predictive
power on overall survival and response outcome of
immune checkpoint blockade (ICB) subcohorts. KIF11 had
an area under the receiver operating characteristic curve
(AUC) of >0.5 in 12 of the 23 ICB subcohorts. KIF11 had
a higher predictive value than T. Clonality, B. Clonality,
and TMB, which had an area under the receiver operating
characteristic curve (AUC) of >0.5 in 9, 7, and 8 of the 23
ICB subcohorts, respectively but lower than MSI score
(AUC > 0:5 in 13 ICB subcohorts), CD8 (AUC > 0:5 in 18
ICB subcohorts), IFNG (AUC > 0:5 in 17 ICB subcohorts),
CD274 (AUC > 0:5 in 21 ICB subcohorts), Merck18
(AUC > 0:5 in 18 ICB subcohorts), and TIDE (AUC > 0:5
in 18 ICB subcohorts) (Figure 11(d)). Furthermore, lower
expression level of KIF11 was associated with clinical
benefits of programmed death receptor-1 (PD-1) ICB
therapy in patients with melanoma and glioblastoma
(Figures 11(e) and 11(f)). In addition, KIF11 expression
was correlated with therapeutic response in clinical cancer
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Figure 10: The relationship between KIF11 expression and immune infiltration. (a) The correlation between KIF11 expression and the
infiltration of ten immune cell types in various human cancer types. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. (b) The correlation between
KIF11 expression and the infiltration of three immunosuppressive cell types in various human cancer types. (c) The Kaplan-Meier
plotter shows the correlation between KIF11 expression and OS in different CD4+ memory T cell subgroups in patients with different
cancer types.
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Figure 11: The relationship between KIF11 expression and therapeutic response in multiple cancer types. (a–c) The correlation between
drug sensitivity and the CNV (a), methylation (b), expression (c) of KIF11 analyzed by the RNAactDrug database. (d) The biomarker
relevance of KIF11 compared to standardized biomarkers in immune checkpoint blockade (ICB) subcohorts. (e, f) The Kaplan-Meier
curves as a measure of the PD-1 ICB therapy response between cancer cohorts with high and those with low expression levels of KIF11,
melanoma (e), and glioblastoma (f). (g) The receiver operating characteristic (ROC) curve of the correlation between KIF11 expression
and response to endocrine therapy in breast cancer cohorts, chemotherapy in breast and ovarian cancer cohorts, targeted therapy in
ovarian cancer cohorts.
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cohorts. Breast cancer patients with higher KIF11 expression
were resistant to endocrine therapy and were resistant to
chemotherapy with lower KIF11 expression. Ovarian cancer
patients with higher KIF11 expression were resistant to
chemotherapy and targeted therapy (Figure 11(g)). Taken
together, those results indicated that KIF11 might serve as an
ideal biomarker for predicting the therapeutic response.

3.11. KIF11 Gene Coexpression Network. The above results
indicated that KIF11 was strongly correlated with the prog-
nosis, immunity, and therapeutic response. Next, KIF11
coexpression network in HNSC was identified using the Lin-
kedOmics database to verify the molecular mechanisms
affected by KIF11. In HNSC, 5975 genes (red dots) were pos-
itively related to KIF11, and 5568 genes (green dots) were
negatively related to KIF11 (P value < 0.05) (Figure 12(a)).
Heat maps displayed the top 50 genes positively and nega-
tively correlated with KIF11 (Figures 12(b) and 12(c)). The
detailed information was shown in Supplementary Table 8.
KIF20B, MKI67, and ASPM had the strongest association
with KIF11 (r = 0:84, 0.82, 0.80, and P = 8:11E − 139, 3:85E
− 125, 7:23E − 116, respectively). Furthermore, gene set
enrichment analysis (GSEA) was used to determine the
main GO terms of KIF11 coexpression genes. KIF11 and
the coexpression genes primarily participated in DNA
replication, chromosome segregation, DNA repair, DNA
recombination, cell division, cell cycle, and chromosome
organization (Figure 12(d)). Similarly, the KEGG pathway
analysis showed that KIF11 and the coexpression genes
were enriched in cell cycle, DNA replication, homologous
recombination, DNA repair, cell division, p53 signaling
pathway, platinum drug resistance, and microRNAs in
cancer (Figure 12(e)). These data furtherly demonstrated
that KIF11 might play an essential role in human cancers
by regulating cell division, cell cycle, chromosome
organization, DNA repair, p53 signaling pathway, and drug
resistance.

4. Discussion

KIF11 is a motor protein that plays critical roles in bipolar
spindle establishing during mitosis. Consisting with its role
in cell division, numerous studies showed that KIF11 was
implicated in human tumor [38]. However, the oncological
role of KIF11 has not been comprehensively explored in
pan-cancer. In this study, we comprehensively interrogated
the role of KIF11 in human cancers.

In the first step of our study, we carefully analyzed the
expression level of KIF11 in different tumors and normal tis-
sues using the TIMER database, GEPIA2 database, UAL-
CAN database, HPA database, SangerBox website, and
GeneCards database. The results indicated that KIF11
expression was significantly higher in most tumors com-
pared with normal tissues. The immunohistochemical stain-
ing results furtherly confirmed the above results. Comparing
the expression level of KIF11 across different normal tissues
showed that KIF11 expressed at low level in most tissues but
high in immune related tissues, such as thymus, bone mar-
row, tonsil, and lymph node. On the contrary, KIF11

expressed at high level in cancer cell lines generally. The
immunohistochemical staining results furtherly confirmed
that lymph node showed higher KIF11 expression level in
both normal and tumor tissues. Previous studies showed
that KIF11 played a precise role in lymphatic vascular devel-
opment and function. Heterozygous mutations in KIF11
lead to abnormal lymphedema in microcephaly, lymph-
edema, and chorioretinal dysplasia (MLCRD) [39]. An
important aspect of lymphedema is the disruption to lym-
phatic fluid transport function and immune cell trafficking
that ultimately results in impaired immunity [39, 40]. Those
results suggested that KIF11 indeed promoted oncogenesis
and tumor progression. Furthermore, the function of
KIF11 in lymph system implied the possibility that KIF11
might influence tumor progression through immunity
indirectly.

Next, the relevance between KIF11 expression and prog-
nosis was analyzed. High KIF11 expression was associated
with poorer prognosis in most human cancer types except
THYM. Similarly, KIF11 expression was previously reported
to be associated with shorter survival time in patients with
LUAD and PAAD [41, 42]. Those results indicated that
KIF11 was a potential pan-cancer prognostic biomarker.
Stemness was defined as the potential to self-renew and dif-
ferentiate from the cell of origin [31]. Subpopulations of can-
cer cells, which were termed as cancer stem cells or stem-like
cancer cells, have been isolated from various cancer patients
and found to have high stemness properties [43, 44]. Previ-
ous studies reported that gradual loss of the differentiated
phenotype and gain of progenitor and stem-cell-like charac-
teristics were the main reasons for driving tumor progres-
sion [31, 32]. Our results indicated that KIF11 expression
correlated positively with cancer stemness in almost all
human cancer types except THYM. KIF11 expression corre-
lated negatively with DMPsi, EREG-METHsi, mDNAsi, and
ENHsi in THYM. This result might provide a possible rea-
son for the above puzzle that why THYM patients with high
KIF11expression showed an opposed survival probability
compared with other cancer patients with high KIF11ex-
pression. Epigenetic dysregulation of tumor cells frequently
leads to oncogenic dedifferentiation and acquisition of stem-
ness features [33, 34]. DNA methylation is a major form of
epigenetic modification that generally suppresses the gene
expression [45]. Our results indicated that KIF11 promoter
was hypomethylated in BLCA, HNSC, KIRC, LIHC, LUAD,
UCEC, PAAD, LGG, OV, UCS, PRAD, READ, and COAD,
which was consistent with the upregulation of the KIF11
expression. Undifferentiated primary tumors are more likely
to result in the spread of cancer cells to distant organs, caus-
ing disease progression and poor prognosis [34, 46, 47]. As
we can see in Figure 3, a roughly gradient increase of
KIF11 expression along with the progression of pathological
stages and nodal metastasis was observed in many patients
with different tumors. Those results suggested a strong rela-
tionship between epigenetic modification, gene expression,
cancer stemness, disease progression, and prognosis.

Cancer is a multistage process that has been character-
ized by a series of chromosomal changes. Some cancers
accumulated many chromosomal rearrangements and most
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Figure 12: The KIF11 coexpression genes in HNSC. (a) Highly correlated genes of KIF11 in HNSC cohort tested by Spearman’s correlation.
(b) Heat map shows the top 50 genes positively correlated with KIF11 in HNSC. (c) Heat map shows the top 50 genes negatively correlated
with KIF11 in HNSC cohort. (d) Bar chart of KIF11 GO analysis (biological process) in HNSC cohort. (e) Volcano plot of KIF11 KEGG
pathways in HNSC cohort.
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likely an even greater number of changes in the tumor DNA
sequence [48]. Our results indicated that genomic alteration
of KIF11 occurred in 1.5% of patients with various cancer
types. The mutation points of KIF11 distributed in the whole
gene body including the KISc and microtubule binding
domains. The results analyzed by the SangerBox website
and cBioPortal database indicated that UCEC patients had
the highest KIF11 alteration frequency; THCA and LGG
patients had lower KIF11 alteration frequency, and there is
no KIF11 alteration in KICH, LANL, PCPG, ACC, UVM,
TGCT, THYM, CHOL, KIRP, and MESO. Cancer is a highly
heterogeneous disease with unique phenotypic and genomic
features that differ among individual patients and even
among individual tumor regions [49]. Heterogeneity
resulting from clonal expansion of variability of gene
expression, genomic alteration, and individual mutation
among tumors forms the basis of the complexity of cancer
[35]. We analyzed the relationship between KIF11 expres-
sion and genomic heterogeneity. The results indicated that
KIF11 expression correlated positively with genomic het-
erogeneity in ACC, STES, STAD, LUSC, GBM, SARC,
LUAD, BRCA, BLCA, PAAD, LIHC, UVM, MESO, KICH,
LGG, and KIRC but negatively with genomic heterogeneity
in THYM. The results consisted with the relationship
between KIF11 expression and prognosis in THYM, which
could bring us a hint to understand the function of KIF11
in THYM.

Tumors comprise a complex, diverse, and integrated
ecosystem of relatively differentiated cancer cells, stem-like
cancer cells, infiltrating immune cells, endothelial cells,
cancer-associated fibroblastic cells, endothelial cells, peri-
cytes, and so on [3, 34]. The multifaceted functions of the
noncancerous cells in the tumor regulate the growth of can-
cer cells. In addition, the proteins or metabolites that pre-
sented by these cells may influence the tumor progression.
The cancer microenvironment may serve as the ecology in
which cancer cells were selected for proliferation and sur-
vival [3, 50]. Our study found that KIF11 correlated nega-
tively with immune, stromal, and ESTIMATE scores of the
TME in most human cancer types but correlated positively
with immune, stromal, and ESTIMATE scores of the TME
in KIPAN, KIRC, and THCA. These results indicated that
KIF11 played a different regulatory role in tumor purity
across various tumors. The tumor microenvironment pro-
vides numerous opportunities for cell-cell signals to modu-
late tumor progression [34, 51]. It is necessary to
understand the regulatory mechanism of the interaction
between heterogeneous cancer cells within the cancer popu-
lation as well as their interaction with the noncancerous cells
present within or adjacent to the cancer cells [3]. Neoantigen
and immune checkpoint molecular are main regulators of
the interaction between different cells in tumor. Our results
showed that KIF11 correlated positively with neoantigen in
LUAD, BRCA, UCEC, STAD, SKCM, PRAD, LGG, and
immune checkpoint genes in most human tumors but nega-
tively with most immune checkpoint genes in NB and
THYM. The above results also proved that KIF11 was closely
related with the TME in human tumors and played different
regulation roles in various tumors.

The composition and abundance of tumor-infiltrating
immune cells in the tumor microenvironment have been
proved to be an independent predictor of cancer patient
prognosis, immunotherapeutic response and efficacy [52].
The infiltration of tumors and their metastases by immune
cells can contribute both positively and negatively to disease
progression and clinical outcomes [53]. These different out-
comes are correlated with the diversity of lymphocytes infil-
trating neoplastic lesions [54]. Our study demonstrated that
KIF11 had a strong association with immune cell infiltration
in the TME. KIF11 showed a positive relationship with neu-
trophil infiltration in most human tumors. Previous studies
have reported that neutrophils make up a substantial pro-
portion of the immune infiltrate in a wide variety of cancer
types and are active players in the immune response to
malignancy [55]. The role of neutrophil in tumors is intri-
cate. Some studies suggested that tumor-associated neutro-
phil had various antitumor functions, such as direct
cytotoxicity towards cancer cells and inhibition of metastasis
[56, 57]. Conversely, numerous other studies indicated that
tumor-associated neutrophils were capable of supporting
tumor progression through stimulating tumor cell invasion,
migration and motility, promoting the angiogenic switch,
and modulating other immune cells [58, 59]. In the past
few years, researchers have recognized that cancer-related
neutrophil is able to retain functional plasticity and can
undergo functional remodeling when exposed to various
cues in the TME [60]. KIF11 may play multifaceted roles
in tumor by influencing the infiltration of neutrophil. Recent
studies have demonstrated that MDSCs also infiltrate
tumors, inhibit dendritic cell and T cell function and num-
ber, and facilitate tumor growth, metastasis, and angiogene-
sis [54]. In our study, we found that KIF11 correlated
positively with MDSCs in most human tumors. This result
indicated that KIF11 might support tumor progression by
promoting the infiltration of MDSCs. Since KIF11 expres-
sion was significantly correlated with immune infiltration,
we next explored whether KIF11 expression affected the
prognosis of patients because of immune infiltration based
on the expression level of KIF11 in various human cancers
in related immune cell subgroups. The result indicated that
KIF11 indeed affected the prognosis of patients relying on
various immune cell infiltrations.

Because of the important role in mitosis, KIF11 has been
a target for development of potential anticancer drugs [61].
Our results indicated that KIF11 showed strong relationship
with drug sensitivity. For example, KIF11 expression corre-
lated positively with drug sensitivity for trametinib, refame-
tinib, and tanespimycin but negatively with drug sensitivity
for navitoclax, topotecan, and vorinostat. KIF11 methylation
correlated positively with drug sensitivity for selumetinib,
afatinib, and trametinib but negatively with drug sensitivity
for axitinib, talazoparib, and olaparib. KIF11 CNV corre-
lated positively with drug sensitivity for tivozanib, masitinib,
and quizartinib but negatively with drug sensitivity for tra-
metinib. The above results indicated that KIF11 was a valu-
able reference index for clinical anticancer drug selection.
Cancer immunotherapy has changed the treatment land-
scape for cancer patients. Immune checkpoint inhibitors
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that block the immunosuppressive receptors such as cyto-
toxic T-lymphocyte-associated antigen 4 (CTLA-4) and
PD-1 can reverse the dampened antitumor immune
response of T cells in the tumor microenvironment and trig-
ger anticancer properties of infiltrating T cells [62]. Our
results showed that KIF11 was a powerful cancer immune
evasion biomarker compared with standardized biomarkers
in immune checkpoint blockade subcohorts. Furthermore,
lower expression level of KIF11 was associated with clinical
benefits of PD-1 ICB therapy in melanoma and glioblas-
toma. In addition, KIF11 expression was correlated with
therapeutic response in clinical cancer cohorts. Those results
together indicated that KIF11 might serve as an ideal bio-
marker for predicting the therapeutic response and outcome.

In our analysis of KIF11 interaction and coexpression
networks, we found that KIF11 and its partners mainly took
part in regulating the cell division, cell cycle, p53 signaling
pathway, microRNAs in cancer, platinum drug resistance,
DNA repair and recombination, chromatin organization,
and antigen processing and presentation via MHC class II.
Consisting with previous studies, KIF11’s partners furtherly
confirmed that KIF11 was responsible for cell division.
KIF11 expression was related to cell cycle progression. In
addition, some of KIF11’s partners play roles in cell cycle.
Those results indicated that KIF11 might also take part in
interphase progression through the G1, S, and G2 phases.
There is no doubt that human cancers display many muta-
tions, and the genetic alternation can be obtained by factors
internal to cancer cells, including DNA repair deficiencies,
abnormal DNA recombination, and deficiencies in chroma-
tin organization. Our results showed that KIF11 expression
was correlated with genomic heterogeneity. The interaction
and coexpression networks of KIF11 furtherly confirmed
that KIF11 was an important influencing factor of genomic
heterogeneity in human tumors. The p53 signaling pathway
is a classic cancer-related signaling pathway. KIF11 expres-
sion showed a positive relationship with p53 mutation. In
addition, KIF11 partners were also documented to be
involved in p53 signaling pathway. Those results together
confirmed that KIF11 might also influence tumor initiation,
development, and progression by p53 signaling pathway.

Immune checkpoint inhibition and other types of immu-
notherapy have led to impressive gains in survival for many
tumor patients. Immune checkpoint inhibition efficacy
requires tumor antigens to be recognized by tumor-
infiltrating T cells which are mediated by T cell receptor
and MHC interaction. MHC-II molecules are primarily
expressed in professional antigen presenting cells such as
macrophages, dendritic cells, and B cells and predominantly
present exogenously-derived peptide antigens to CD4+ T
cells [63–65]. MHC-II and related pathway components
have been found to be expressed by cancer cells in various
human tumors including glioma, prostate cancer, breast
cancer, ovarian cancer, classic Hodgkin’s lymphoma, colo-
rectal cancer, melanoma, and non-small cell lung cancer
[65]. The MHC-II expression in tumors has been associated
with increased formation of tertiary lymphoid structures,
higher number of both CD4+ and CD8+ tumor-infiltrating
lymphocytes, upregulation of genes associated with IFNγ

pathway activation, absence of lymphovascular invasion,
higher levels of IFNG, IL2, and IL12 mRNA, and improved
survival including response to immune checkpoint inhibi-
tion, increased tumor-infiltrating lymphocytes, and proin-
flammatory IFN signaling in human tumors [63, 65]. Our
results confirmed that KIF11 and its partners might play
roles in antigen processing and presentation via MHC-II,
which suggested that KIF11 indeed closely related with
immune cell infiltration in human tumors.

5. Conclusions

In the present study, we conducted a comprehensive analysis
of the KIF11 gene based on multiomics data and investigated
the roles of KIF11 in oncogenesis, progression, tumor
immune infiltration, and therapy outcome from the perspec-
tive of pan-cancer. In conclusion, our study evaluated the
prognostic and immunological value of KIF11 in pan-
cancer. KIF11 expression was significantly upregulated in
tumors and showed strong relationships with pathological
stage and prognosis across different cancer types. The
expression of KIF11 was diverse in different immune sub-
types and remarkably correlated with ESTIMATE, immune
checkpoint, and immune cell infiltration in the tumor
microenvironment. Meanwhile, KIF11 was associated with
drug sensitivity and could serve as a powerful biomarker
for predicting immune, targeted, and chemotherapeutic out-
comes in different cancers. Taken together, our study
revealed that KIF11 might serve as a potential pan-cancer
biomarker for cancer detection, prognosis, therapy design,
and follow up. However, we also noticed that the results lack
validation of clinical specimens and biological experiments,
which is the limitation of this study. Further experiments
in vivo and in vitro should be performed in future studies
that may present a more convincing viewpoint according
to the results.
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