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Doxorubicin (DOX) is a class of effective chemotherapeutic agents widely used in clinical practice. However, its use has been
limited by cardiotoxicity. The mechanism of DOX-induced cardiotoxicity (DIC) is complex, involving oxidative stress, Ca2+

overload, inflammation, pyroptosis, ferroptosis, apoptosis, senescence, etc. Exosomes (EXOs), as extracellular vesicles (EVs),
play an important role in the material exchange and signal transmission between cells by carrying components such as
proteins and RNAs. More recently, there has been a growing number of publications focusing on the protective effect of EXOs
on DIC. Here, this review summarized the main mechanisms of DIC, discussed the mechanism of EXOs in the treatment of
DIC, and further explored the value of EXOs as diagnostic biomarkers and therapeutic strategies for DIC.

1. Introduction

The survival duration of cancer patients has increased as
medical technology has advanced, yet cardiovascular toxicity
has emerged as one of the most significant side effects of
cancer treatment [1]. Cancer survivors are eight times more
likely than the normal population to suffer cardiovascular
disease [2]. DOX is one of the most effective chemothera-
peutic agents used in clinical practice, with indications for
a wide range of cancers. Nevertheless, its usage has been lim-
ited due to the high risk of cardiotoxicity [3], which may be
acute, early, or late, including pericarditis, heart failure, and
arrhythmia. Studies have shown that the incidence of DOX-
induced left ventricular dysfunction ranges from 3% to 48%
in a dose-dependent manner [2, 4–6]. Therefore, fully
understanding the mechanism of DIC, conducting effective
monitoring at an early stage, and taking effective prevention
and intervention strategies are the key issues to improve the
quality of life of cancer patients.

However, the pathogenesis of DIC is complex, involving
oxidative stress, inflammation, Ca2+ dysregulation, senes-

cence, apoptosis, pyroptosis, ferroptosis, etc. [7–9] Besides,
there is currently a lack of biomarkers for early diagnosis
of DIC that are both specific and sensitive [10]. Although
dexrazoxane is the only cardioprotective agent recom-
mended by the FDA to reduce DIC, its application is only
for adults with advanced or metastatic breast cancer who
have received a cumulative dose of >300mg/m2 DOX [4,
11], and its protective effect has been questioned in some
studies [12].

EXOs are EVs with a diameter of 50nm to 150nm
formed by cells through a series of regulatory processes
(endocytosis, fusion, and excretion), which play an impor-
tant role in cell communication and tissue microenviron-
ment regulation [13]. Increasing evidence suggests that
some components in EXOs, such as miRNAs, lncRNAs,
and proteins, are transferred into cardiomyocytes and exert
cardioprotective effects through different signaling pathways
[14–16].

In this review, we outline the evidence on EXOs’ mech-
anisms for mitigating DIC. As well, we deliver an overview
regarding the diagnostic biomarkers and therapeutic effects
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of EXOs, hoping to provide a theoretical basis for the clinical
application of EXOs.

2. Introduction to EXOs and EVs

EVs are membrane-derived vesicles ranging from 50nm to
2,000 nm in diameter released by cells into the extracellular
space [17]. All different types of cells in mammals including
neuronal cells, endothelial cells (ECs), mesenchymal stem
cells (MSCs), and epithelial cells can release EVs, and EVs
are widely distributed in the body and can be detected in
urine, blood, saliva, and other body fluids [18]. EXOs are
EVs with a size range of ~40 to 160nm (average ~100nm)
in diameter with an endosomal origin. Depending on the cell
of origin, EVs, including EXOs, can contain many constitu-
ents of a cell, including DNA, RNA, lipids, metabolites, and
cytosolic and cell surface proteins [19].

Generally speaking, EXOs originate from the endosomal
pathway. First, the cytoplasmic membrane invaginates to
form early-sorting endosomes (ESEs) containing some
extracellular components and membrane surface proteins.
The contents of the ESEs are obtained by fusing with the
previously existing ESEs or exchanging substances with
other organelles. ESEs then develop further within the cell
into late-sorting endosomes (LSEs). LSEs can eventually
form multivesicular bodies (MVBs), which contain intralu-
minal vesicles (ILVs) that are formed by budding from the
inward depression of the multivesicular body membrane.
The fusion of MVBs and the cytoplasmic membrane leads
to the secretion of ILVs outside the cell, and these ILVs are
EXOs [20] (Figure 1).

EXOs have different sizes, contents, and origins, leading
to complex heterogeneity. EXOs are rich in proteins, lipids,
miRNAs, and other substances, and the contents enriched
in different EXOs are different [21]. Differences in EXO
composition, especially in cell surface proteins, can have dif-
ferent effects on recipient cells. EXOs can mediate intercellu-
lar communication under physiological and pathological
conditions [22]. Parental cells that released EXOs are
absorbed by receptor cells, through the exchange of sub-
stances or release of inclusions to achieve the exchange of
substances and signals, to play an important role in repro-
ductive development, immune response, disease occurrence,
and other biological processes [18, 19, 21, 23]. Studies have
shown that EXOs are closely related to cardiovascular dis-
eases, neurodegenerative diseases, tumor growth and metas-
tasis, and drug resistance [19, 24, 25].

3. The Mechanism of DIC

The mechanism of DIC is complex, and there is no clear
mechanism to explain it. Multiple pathways may be
involved, including oxidative stress, apoptosis, autophagy,
pyroptosis, ferroptosis, and senescence, which are thought
to be interconnected and act together to cause myocardial
damage [26]. Herein, we have summarized molecular mech-
anisms which are involved in DIC briefly (Figure 2).

3.1. Oxidative Stress. The oxidative stress hypothesis involv-
ing the intramyocardial production of reactive oxygen spe-
cies (ROS) has gained the most widespread acceptance [27,
28]. Generally speaking, under the action of nitric oxide syn-
thase (NOS) and NADPH oxidase (NOX), DOX is reduced
to semiquinone DOX, which reduces oxygen to superoxide
anion; this radical is converted into hydrogen peroxide
under the action of superoxide dismutase (SOD). Hydrogen
peroxide can be cleaved into hydroxyl radicals [28–32]. The
above-mentioned ROS, especially hydroxyl radicals, are
active and highly toxic, which can cause lipid peroxidation,
thereby destroying the biofilm structure and causing myo-
cardial cell damage and death.

3.2. Apoptosis. The role of apoptosis in DIC is well-
established. Many studies have shown that DOX can activate
cardiomyocytes to undergo apoptosis. DOX upregulated the
expression of heat shock protein 25 (HSP25), which transac-
tivated p53, leading to the expression of Bax, therefore
inducing the apoptotic death of cardiomyocytes [33]. DOX
also activated caspase-3 [34, 35]. Besides, DOX can induce
cardiomyocyte apoptosis by activating the nuclear factor
kappa-B (NF-κB) signaling pathway and producing ROS
[36–38]. DOX significantly upregulated the expression of
death receptors (DRs) (TNFR1, Fas, DR4, and DR5) and
subsequently induced apoptosis in iPS-derived cardiomyo-
cytes, and the apoptosis could be accelerated by physiologi-
cally relevant death ligands including TNF-related
apoptosis inducing ligand (TRAIL) [39]. DOX also down-
regulated caspase recruitment domain ARC, leading to Bax
translocated from the cytosol to mitochondria, resulting in
loss of mitochondrial membrane potential, which led to
cytochrome C release, thus inducing apoptosis [40].

3.3. Inflammation. Inflammation also plays a role in DOX-
triggered cardiac injury. DOX can increase the levels of pro-
inflammatory cytokines such as interleukin- (IL-) 1β, IL-18,
IL-6, and tumor necrosis factor-alpha (TNF-α) [41, 42], and
their elevations are associated with the activation of the p38/
MAPK/NF-κB pathway [41, 43]. Besides, improving nuclear
factor erythroid2-related factor 2 (Nrf2) signaling protected
the heart from NF-κB-mediated inflammatory injury [43].
One study suggested that DOX could cause upregulation of
the proinflammatory toll-like receptor 4 (TLR4) in macro-
phages and endotoxin leaking from gut flora into the circu-
lation, which combined to cause a systemic inflammatory
response [44]. In addition, DOX can cause inflammation
by activating the sirtuin 1-NOD-like receptor protein 3
pathway [45].

3.4. Pyroptosis. Pyroptosis in DIC is evidenced by increased
cell death, upregulated expression levels of NLR family pyrin
domain containing 3 (NLRP3), caspase-3, IL-1β, IL-18, and
GMDSD-N, and morphological features [46–50]. Mechanis-
tically, DOX upregulated the lncRNA TINCR, which can
recruit IGF2BP1 to upregulate the expression of NLRP3 to
induce pyroptosis [46]. In addition, by upregulating BH3-
only protein Bcl-2/adenovirus E1B 19-kDa-interacting
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protein 3 (Bnip3), DOX induced the activation of caspase-3,
causing GSDME-dependent pyroptosis [48].

3.5. Senescence. In recent years, many studies have demon-
strated that low doses of DOX (≤0.5μM) preferentially
induce cardiovascular cell senescence, rather than apoptosis
[51–53]. In general, the mechanism of DOX-induced cardio-
vascular cell senescence involves oxidative stress, telomere
damage, DNA damage, etc. In rat neonatal cardiomyocytes,
low levels of DOX can induce senescence through oxidative
stress [54]. It can also lead to telomere damage through p38-
mediated reduction of telomere binding factors 2 (TRF2)
and JNK/p53-mediated reduction of telomere binding fac-
tors 1 (TRF1), thereby inducing senescence [55]. 0.25, 0.5,
and 1μM DOX can induce human primary vascular smooth
muscle cell senescence [53, 56, 57]. Mechanistically, DOX
upregulated uPAR, which led to TRF2 ubiquitination and

proteasomal degradation, leading to senescence [56] and
DOX-mediated elevation of ROS also aggravated senescence
[57]. In addition, 0.25μM DOX activated MAPK-p38 to
induce p16 (INK4A) expression and cytoskeleton remodel-
ing, therefore inducing senescence [58]. In ECs, DOX
induced senescence by upregulating p53-dependent XIAP-
associating factor 1 expression [59]. In addition to the above
in vitro and in vivo models, studies have shown that human
cardiac progenitor cells also exhibited aging characteristics
in DIC patients [60].

3.6. Ferroptosis. Ferroptosis is a new form of cell death pro-
posed by Stockwell in 2012 [61]. Many scholars have found
that DOX can induce ferroptosis in cardiomyocytes [47, 62].
Preadministration of ferroptosis inhibitors largely prevents
DIC [62], whereas a high-iron diet can exacerbate DIC
[63]. In general, the mechanism of DOX-induced ferroptosis
can be divided into two aspects: induction of iron overload
in cardiomyocytes and lipid peroxidation. Specifically,
DOX can induce iron overload in cardiomyocytes by upreg-
ulating the level of transferrin receptor [64, 65] and heme
oxygenase 1-mediated heme degradation [62]. DOX can also
regulate iron metabolism-related genes by acting on iron-
responsive elements/iron-responsive proteins [66–68].
Besides, the quinine moiety of DOX accepted electrons from
NOX and NOS to become semiquinone, which was accom-
panied by the production of ROS [29], and DOX can inhibit
the activity of intracellular glutathione peroxidase 4 (GPX4),
reducing its antioxidant capacity [69, 70]. Free iron com-
plexes with DOX and through the Fenton reaction create
more ROS, thereby inducing ferroptosis. To go a step fur-
ther, some scholars have focused their attention on mito-
chondria. They suggested that mitochondria are the main
site of DOX-induced ferroptosis [71–73] and that targeting
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Figure 1: The biosynthesis of EXOs. ESE: early-sorting endosome; LSE: late-sorting endosome; MVB: multivesicular body; EXOs: exosomes;
ER: endoplasmic reticulum.
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Figure 2: The main mechanisms of DIC.
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mitochondrial antioxidants can inhibit DIC [62]. DOX can
cause mitochondrial iron overload by affecting mitochon-
drial ferritin [74], ABC protein-B8 [71, 75], frataxin [76],
etc. and mitochondrial GPX4 is more important in antifer-
roptosis than cytoplasmic GPX4 [77].

3.7. Ca2+ Dysregulation. DOX can also induce DIC by affect-
ing Ca2+ homeostasis in cardiomyocytes. DOX can increase
the Ca2+ intake by increasing the current of L-type calcium
channel, activate the RyR2 receptor to increase the Ca2+

release from sarcoplasmic reticulum (SR), inhibit SERCA2A
to reduce the Ca2+ reuptake of SR, and activate CaMKII to
cause SR Ca2+ leakage, which lead to the accumulation of
intracellular Ca2+, thereby inducing DIC [78–82]. One study
suggested that the degradation of titin caused by the accu-
mulation of intracellular Ca2+ through the activation of cal-
pain is an early event in DIC [83]. In addition, DOX-
induced Ca2+ disturbance is closely related to ROS and apo-
ptosis. Elevated ROS induced by DOX lead to intracellular
Ca2+ overload. Accumulated Ca2+ results in nuclear translo-
cation of NFAT by activating calcineurin, which activated
Fas/FasL-mediated apoptosis, while DOX-induced apoptosis
can be reversed by Ca2+ chelator and antioxidant [84].
Besides, increased Ca2+ also induced cardiomyocyte apopto-
sis by activating calcium-dependent CaMKII [85].

4. The Mechanism of EXOs against DIC

In recent years, it has been demonstrated that EXOs harbor
a variety of miRNAs, lncRNAs, and proteins which may be
transferred to cardiomyocytes through cell endocytosis or
membrane fusion and modulate their function [10, 15, 86].
Different components contained in EXOs from different
parent cells can inhibit DIC by acting on different signaling
pathways. The mechanisms of EXOs against DIC are as
follows:

4.1. Antiapoptosis. Several studies have shown that EVs can
alleviate DOX-induced cardiomyocyte apoptosis (Figure 3).
Current studies mostly focus on EXO-loaded miRNAs. Gen-
erally speaking, EXOs acted as miRNA carriers, delivering
miRNAs from parental cells to cardiomyocytes, altering the
expression of their target genes and thus exerting antiapop-
totic effects. EXOs derived from trophoblast stem cells (TSC-
EXOs) are abundant in let-7i, which could exert antiapopto-
sis and antifibrosis effects in DOX-induced dilated cardio-
myopathy (DCM) models both in vivo and in vitro by
inhibiting the yes associated protein (YAP) signaling path-
way. In let-7i mimic-treated cardiomyocytes group,
apoptosis-related biomarkers Annexin V and cleaved cas-
pase 3 were decreased, the expression of Bcl2 was increased,
and related biomarkers (YAP1, CTGF, and TEAD1) in the
YAP signaling pathway were inhibited, and myocardial
fibrosis in pathological staining is mitigated [87]. Ni et al.
demonstrated that TSC-EXOs protected the heart from
DOX-induced apoptosis through the miR-200b/zinc finger
E-box-binding protein 1 (Zeb-1) pathway. Specifically
speaking, TSC-EXOs downregulated the expression of
miR-200b in cardiomyocytes, thereby increasing the tran-

scription of Zeb1. However, the mechanism by which TSC-
EXOs downregulated miR-200b was still unclear, and they
thought that it might be related to the lncRNAs in EXOs
[88]. EVs, acting as miRNA carriers, can also carry miRNAs
to target cells [89, 90]. MicroRNAs encapsulated in EVs are
the important genetic material that drives cardiac repair.
There was a study that demonstrated treatment with EVs
derived from MSCs (MSC-EVs) before DOX treatment
enhanced H9C2 cell viability. Mechanistically, miR-199a-
3p in MSC-EVs upregulated p-Akt levels, thereby inhibiting
the activation of transcription factor P53 and promoting the
activation of Sp1, thus increasing the expression of antiapop-
totic factor survivin to alleviate DIC [91]. One study showed
that miR-100-5p in MSC-EVs exerted antiapoptotic effects
in AC16 cells by inhibiting the expression of its target gene
NOX4. This protective effect of MSC-EVs was reversed
when MSC-EVs were transfected with miR-100-5p inhibi-
tors or NOX4 was overexpressed [92].

4.2. Antisenescence. The mechanism by which EXOs alle-
viate DIC can be achieved by the antisenescence of car-
diomyocytes, which is characterized by more cells
escaping from the G0/G1 phase, the decreased expres-
sion of the cellular senescence-related genes p27, p53,
p21, and p16, a lower percentage of SA-β-gal-positive
cells, and the increase in telomere length and activity
[93–95]. There was a study showed that it involved the
EXOs/lncRNA–NEAT1/miR-221-3p/Sirt2 pathway. Abun-
dant lncRNA–NEAT1 in EXOs derived from MSCs pre-
treated with macrophage migration inhibitory factor
(MIF) (MSC-EXOsMIF) can improve the content of Sirt2
by targeting miR-221-3p, thus playing the antisenescence
role. Moreover, siRNA-lncRNA-NEAT1 and miR-221-3p
mimic transfection blocked the protective effect of
MSC-EXOsMIF [95]. Xia et al. suggested that EXOs
secreted by MSCs pretreated with hypoxia (MSC-EXO-
shypoxia) exerted antisenescence effects through the
lncRNA-MALAT1/miR-92a-3p/ATG4a axis. MSC-EXO-
shypoxia transferred lncRNA-MALAT1 to cardiomyocytes,
reducing the expression of targeted miR-92a-3p through
ceRNA mechanisms, upregulating the expression of the
ATG4a gene, thus exerting a rejuvenation effect. In addi-
tion, MSC-EXOshypoxia can also improve the mitochon-
drial metabolic disorder caused by DOX, which is
manifested as the decrease of Fabp3, Fabp4, and Mtfp1
and the increase of Cox4i2, HSPa1a, and Atp1b2. After
the lncRNA-MALAT1 knockdown, miR-92a-3p overex-
pression, or silencing of ATG4a, the above two protec-
tive mechanisms of MSC-EXOshypoxia were inhibited.
Notably, cardiomyocytes without hypoxic preconditioning
were slightly protective, and hypoxic preconditioning
enhanced the cardioprotective effect of MSC-EXOs [93].
Besides, Liu et al.’s research suggested that human serum
EVs exerted the antiaging effect in DIC H9C2 cells
models. It was achieved by suppressing the expression
of miR-34a and promoting the expression of its target
gene phosphatase 1 nuclear targeting subunit (PNUTS).
The miR-34a mimics and silence PNUTS can reverse
the antiaging effect of EVs [94]. (Figure 3).
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4.3. Antioxidative Stress. EXOs can combat DOX-induced
oxidative stress (Figure 3). This was related to the antioxi-
dant proteins and miRNAs contained in EXOs. Proteomics
analysis revealed that EXOs from human right cardiac atrial
appendage tissue contained more than 70 proteins involved
in redox processes, especially SOD2, thrombospondin 1, and
collagen 1A1 [96]. miR-96 in MSC-EXOs protected the
heart from oxidative stress both in vivo and in vitro, and this
effect was achieved through the inhibition of its target gene
Rac-1. Compared with the EXOs+miR-96 inhibitor group
and NC siRNA group, SOD and GSH-Px were increased,
and malondialdehyde was decreased [97]. In addition, it
was suggested that MSC-EVs inhibited DOX-induced oxida-
tive stress in AC16 cells through the downregulation of
NOX4 induced by miR-100-5p. When MSC-EVs were trans-

fected with miR-100-5p inhibitors or NOX4 was overex-
pressed, the antioxidant effect was rescued [92].

4.4. Anti-inflammation and Antipyroptosis. There have been
many studies showing that EXOs can improve the inflam-
matory microenvironment of cardiomyocytes and reduce
the production of proinflammatory mediators (such as
TNF-α, IL-1β, IL-1, and IL-6) [49, 87, 88, 96–99]. CPC-
EXOs derived from human cardiac atrial appendage speci-
mens were rich in miR-146a-5p and can enter cardiomyo-
cytes, thereby inhibiting the transcription of their target
genes Traf6 and Irak-1 and reducing the infiltration of
CD68+ inflammatory cells [96]. In DOX-induced DCMmice
models, after being injected with EVs derived from ECs
overexpressing Krüppel-like factor 2 (EC-EVsKLF2), the
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levels of proinflammatory cytokines (IL-1β and TNF-α)
were decreased, and the levels of anti-inflammatory cytokine
IL-10 were increased, due to its ability to inhibit C-C chemo-
kine receptor 2-mediated the migration of Ly6Chigh Mo/Mø
in bone marrow [99]. Besides, in the same mice models,
MSC-EXOs could also alleviate the inflammatory environ-
ment. Mechanistically, MSC-EXOs decreased proinflamma-
tory Ly6Chigh monocytes and increased anti-inflammatory
Ly6Clow macrophages by activating the transcription factor
JAK2 and its downstream STAT6 [98]. In addition, a study
showed that the anti-inflammatory effect of MSC-EXOs
was related to their loaded miR-96, which inhibited DOX-
induced activation of the Rac1 gene in cardiomyocytes,
thereby reducing TNF-α, IL-6, and IL-1β [97].

As an inflammatory programmed cell death, pyroptosis
is also involved in the occurrence and development of
DIC. Researches were suggesting that embryonic stem cell-
derived EXOs (ESC-EXOs) inhibited the activation of
TLR4 and inhibit the formation of NLRP3, thereby improv-
ing the inflammatory environment and protecting cardio-
myocytes from pyroptosis both in the DIC mice models
and H9C2 cells models [49, 100]. These protective effects
may be related to ESC-EXOs containing more anti-
inflammatory cytokines (IL-4, IL-9, and IL-13) and fewer
proinflammatory cytokines (TNF-α, TNFR1, IL-12, and
Fas ligand) [49]. Singla et al. believed that the inflammatory
microenvironment caused by DOX was related to the activa-
tion of the MAPK signaling pathway, and ESC-EXOs could
inhibit the activation of these signaling pathway proteins
(MyD88, p-P38, and p-JNK). In addition, the anti-
inflammatory effect of ESC-EXOs may also be related to
promoting the conversion of MI to M2 macrophages [100]
(Figure 4).

The mechanisms underlying DIC are complicated; in
addition to the above mechanism, autophagy, topoisomerase
2β inhibition, necroptosis, etc. are also involved [47, 101,
102]. However, unfortunately, there are no relevant studies
on the protective effects of EXOs or EVs from DIC by regu-
lating these mechanisms.

5. EXOs as Diagnostic Biomarkers for DIC

DIC can be divided into early-onset and late-onset. For
early-onset, it is mostly reversible. Early detection and active
intervention can prevent irreversible cardiac damage [4]. For
delayed cardiotoxicity, if DIC is detected and intervened
early, the patient is likely to have good functional recovery
[103]. Strategies for screening and detection of cardiotoxicity
include echocardiography, nuclear imaging, cardiac mag-
netic resonance, and biomarkers (troponin and natriuretic
peptides) [4, 10]. The Cardio-Oncology Study Group of the
Heart Failure Association and the Cardio-Oncology Council
of the European Society of Cardiology recommend high-
sensitivity troponin (hs-cTN) as a biomarker for early DIC
because it can sensitively identify early myocardial damage
caused by DOX and predict left ventricular dysfunction
[104]. However, the specificity of hs-cTN in the diagnosis
of DIC is not satisfactory, as it can also be elevated in other
cases, such as hypertensive emergencies and renal failure

[105, 106]. And the increase in troponin means that the car-
diomyocytes have been damaged. Therefore, biomarkers,
which are more sensitive and specific than troponin, need
to be explored.

In recent years, EXOs have attracted the attention of
many scholars as biomarkers for disease diagnosis. Firstly,
EXOs are existed almost in all biological fluids and can be
secreted by almost all cells, so it is theoretically possible to
isolate EXOs from a patient’s body fluids, such as serum or
urine, for the diagnosis of disease. Secondly, the molecular
characteristics of cargoes in EXOs reflect the phenotype of
the cells from which they originated. Thirdly, the biomarkers
in EXOs are more stable due to the encapsulation of the
plasma membrane [19, 23, 107].

Table 1 shows potential EXOs or EVs cargoes that could
be used as biomarkers for DIC. After DOX treatment, dam-
aged myocardial tissue released EVs containing brain/heart
glycogen phosphorylase (PYGB) into the blood. It can serve
as a potential early biomarker of DIC that is more sensitive
than cTnI, which could be detected in serum by proteomics.
Yarana et al. and Zhu and Gius demonstrated significant dif-
ferences in EVs-PYGB between saline and DOX-treated
mice as early as 24 hours after treatment, whereas differences
in cTnI were not detected until 72 hours after treatment in
DIC mice models [107, 108]. Besides, in the DIC dog
models, DOX caused changes in the expression profiles of
miRNAs in circulating EXOs, as shown by miR107 and
miR-146a which were significantly decreased, and the level
of miR-502 was increased. Notably, during a total of 5
DOX treatments, the elevation of miR-502 appeared before
the 3rd treatment, which was earlier than the changes in
cTnI and echocardiographic parameters. Therefore, miR-
502 in circulating EXOs can serve as a potential biomarker
for DIC [109]. In addition, Li et al. thought that exosomal
circ-SKA3 can be a candidate biomarker for DIC. After
being exposed to 5μM DOX, human cardiomyocyte-like
AC16 cells secrete EXOs enriched in circ-SKA3 internalized
by recipient AC16 cells by docking and fusing to the cyto-
membrane, which can enhance cardiotoxicity via the miR-
1303/TLR4 axis [110].

Components such as proteins, lipids, RNA, and miRNAs
in EXOs may serve as diagnostic and harbingers of DIC.
However, there are few related studies in this field at present,
and we have only found a few articles. Moreover, there is a
lack of relevant studies of serum EXOs in humans. In addi-
tion, it is unclear whether different tumor types and different
underlying cardiac function states of patients affect the
changes in the content of EXOs derived from cardiomyo-
cytes in serum.

6. Prevention and Treatment of EXOs for DIC

The strategies of EXOs to alleviate DIC can be summarized
into two major aspects: first, EXOs as nonimmunogenic
nanosized vesicles (EXOs-DOX) improve the delivery effi-
ciency of DOX and the uptake capacity of tumor cells to
DOX, enhancing the anticancer effect of DOX, thereby
reducing the dosage of DOX, indirectly reducing DIC; sec-
ond, some contents in EXOs can directly act on the heart,
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inhibit cardiac damage caused by DOX, and directly treat
DIC [10]. There are many studies on EXOs enhancing
DOX’s anticancer efficacy [24, 111–114], and the therapeutic
part of this article focuses on the direct effect of the EXOs
described above, as well as the direct evaluation of cardio-
toxicity in the article on the role of EXOs as DOX delivery
carriers (Table 2).

In acute DOX-induced DCM mice models, after being
injected with human cardiac stem cell-derived EXOs (CSC-
EXOs), the impaired heart function was improved, showing
that both shortening fraction (FS) and ejection fraction (EF)
were recovered. In addition, TUNEL staining showed that
CSC-EXOs could inhibit cardiomyocyte apoptosis, Masson’s

trichrome staining revealed that CSC-EXOs could inhibit
cardiomyocyte fibrosis, and H&E staining showed that
CSC-EXOs could inhibit cardiac immune response [115].

miR-21a-5p was considered to be a potent cardiac pro-
tective miRNA in multiple studies. EXOs loaded with miR-
21a-5p can be used to protect the heart from DOX damage
[116–118]. However, the liver and spleen preferentially
ingest EXOs and reduce their protective effects attributed
to the mononuclear phagocyte system [114, 119]. Wan
et al. demonstrated that clathrin played an important role
in endocytosis by macrophages. Based on this, they invented
a new two-step strategy to prevent DIC. Prior injection of
EXOsblocking (EXOs encapsulated with siClathrin) reduced
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CPC-EXO

EC-EV
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Pyroptosis
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Figure 4: The mechanisms of EXOs against DIC involved in anti-inflammation, and antipyroptosis. MSC: mesenchymal stem cell; MSC-
EXO: exosome derived from mesenchymal stem cell; CPC: cardiac progenitor cell; CPC-EXO: exosome derived from cardiac progenitor
cell; EC: endothelial cell; EC-EV: extracellular vesicle derived from endothelial cell; JAK2: janus kinase 2; STAT6: signal transducer and
activator of transcription 6; Rac1: ras-related C3 botulinum toxin substrate 1; TNF-α: tumor necrosis factor-alpha; IL-6: interleukin-6;
IL-1β: interleukin-1β; ESC: embryonic stem cell; ESC-EXO: exosome derived from embryonic stem cell; TLR4: toll-like receptor-4;
NLRP3: NLR family pyrin domain containing 3; KLF2: Krüppel-like factor 2.

Table 1: Summary of studies using EXOs/EVs as biomarkers for DIC diagnosis.

EVs
type

Component
Parts of

EXOs/EVs
Study model DOX administration Distribution Ref

EXOs circ-SKA3 circRNA
Human cardiomyocyte-

like AC16 cells
5 μM for 24 h — [110]

EVs PYGB Protein Male C57BL/6J mice 20mg/kg, IP; a single dose Serum [107]

EXOs miR-502 miRNA
Dogs diagnosed with

sarcoma
30mg/m2 for dogs > 15 kg and 1mg/kg for dogs < 15 kg,

IV; 2 to 3 weeks for 5 injections
Serum [109]

EXOs: exosomes; EVs: extracellular vesicles; PYGB: brain/heart glycogen phosphorylase; IP: intraperitoneal injection; IV: intravenous injection.
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the localization of EXOs in the liver and spleen while
improved the cardiomyocyte localization, therefore
strengthening the beneficial effect of EXOstherapeutic (EXOs
encapsulated with miR-21a-5p) in DIC model (5mg/kg, IP;
every week for 4 injections) which was characterized by
higher EF and FS [120]. Martins-Marques et al. demon-
strated that the gap junction protein connexin43 (Cx43) in
EVs produced by HEK-293 cells was essential to reduce
DIC because it formed a channel that accelerated the release
of intravesical content into cardiomyocytes. Compared with
EVsCx43--DOX treatment, EVsCx43+-DOX increased the
transverse diameter of cardiomyocytes in HE staining,
decreased fibrosis in Sirius staining, and downregulated oxi-
dative stress indicators COX2 and HSP25 [121]. Wei et al.
believed that MSC-EXOs as DOX carriers enhanced cellular
uptake efficiency of DOX in osteosarcoma MG63 cells, while

its effect on H9C2 cardiomyocytes exhibited opposite effects
which were manifested by higher cell viability and IC50
[122]. One research has shown that DOX in EXOs origi-
nated from MDA-MB-231 and HCT-116 cell lines have a
lower ability to cross human myocardial ECs than free
DOX, which resulted in less DOX accumulation in the heart
significantly [123, 124].

To further enhance the anticancer effect of EXOs-DOX,
some medical technologies have been applied to EXOs. miR-
21 in EXOs alleviated DIC [120, 125]. Sun et al. isolated
EXOs from mouse plasma by centrifugation and then loaded
miR-21 into EXOs by electroporation to alleviate DIC. By
using ultrasound targeted microbubble destruction
(UTMD), the delivery efficiency of miR-21 in EXOs to the
heart was significantly enhanced, as manifested by the
increased EF and E/A ratio [126]. Li et al. demonstrated

Table 2: Summary of studies using EXOs/EVs for the treatment of DIC.

Parent cell
EVs
type

Cargo
Cargo

formulation
Study model Antitumor parameters Cardiotoxicity parameters Ref

CSCs EXOs — EXOs
In vivo (mice);

in vitro
(NRCMs)

NA
EF↑, FS↑, apoptosis↓, fibrosis↓,

immune response↓
[115]

MSCs EXOs DOX EXOs-DOX
In vivo

(MG63 cells,
H9C2 cells)

MG63 cells: cell uptake
rate↑, cell viability↓

H9C2 cells: cell viability↑ [122]

MDA-MB-231,
STOSE, MDAMB-
231 CD63-GFP and
STOSE CD63-GFP
cell lines

EXOs DOX EXOs-DOX

In vivo (mice);
in vitro
(human

myocardial
endothelia

cells)

Maximum tolerated dose
of DOX↑, tumor volume↓

The ability to cross a
reconstructed myocardial
endothelial monolayer↓,
vacuoles↓, and myofibril
disorganization↓ in H&E

staining

[124]

MDA-MB-231 and
HCT-116 cell lines

EXOs DOX EXOs-DOX

In vivo (mice);
in vitro

(MDA-MB-
231 cells)

Cell viability↓, tumor
volume↓

Distribution of DOX in the
heart↓, no cardiac damage in

H&E staining
[123]

HEK-293 cells EXOs
miR-
21a

EXOssiClathrin,
followed by
EXOsmiR-21a

In vivo (mice) NA
miR-21a-5p expression in

heart↑, EF↑, FS↑
[120]

HEK-293 cells EVs
Cx43,
DOX

EVsCx43+-
DOX

In vivo (mice);
in vitro

(4T1luc2 cells)

Cell viability↓, cell
proliferation↓, cell
motility↓, colony
formation↓, tumor
growth↓, apoptosis↑

Fibrosis↓, histopathological
changes↓, COX-2↓, HSP25↓

[121]

NA EXOs
miR-
21

UTMD
+EXOsmiR-21 In vivo (mice) NA

miR-21 delivery efficiency↑,
EF↑, E/A value↑

[126]

LIM1215 cells EXOs DOX
A33Ab-US-
EXOs-DOX

In vivo (mice);
in vitro

(LIM1215
cells)

Cell uptake rate↑, cell
viability↓, half-maximal

inhibitory concentrations↓,
necrosis↑, apoptosis↑,

tumor volume↓

Apoptosis↓, cardiac damage↓ [127]

Mouse immature
dendritic cells

EXOs DOX
iRGD-EXOs-

DOX

In vitro
(MDA-MB-
231 cells);

in vivo (mice)

DOX delivery efficiency↑,
cell viability↓, tumor

volume↓

CK-MB↓, AST↓, no cardiac
damage in H&E staining

[129]

CSCs: cardiac stem cells; EXOs: exosomes; NRCMs: neonatal rat cardiomyocytes; MSCs: mesenchymal stem cells; Cx43: the gap junction protein connexin43;
UTMD: ultrasound-targeted microbubble destruction; FS: shortening fraction; EF: ejection fraction; COX-2: cyclooxygenas-2; HSP25: heat shock protein 25;
CK-MB: creatine kinase-MB; AST: aspartate transaminase; A33Ab-US-EXOs-DOX: DOX loaded in exosomes coated surface-carboxyl superparamagnetic
iron oxide nanoparticles with A33 antibodies.
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EXOs coated with surface-carboxyl superparamagnetic iron
oxide nanoparticles (US) with A33 antibodies (A33Ab-US),
also known as A33Ab-US-EXOs-DOX, enhanced the target-
ing ability of DOX to A33-positive colorectal cancer cells.
Compared with free DOX and EXOs-DOX, A33Ab-US-
EXOs-DOX was more effective against cancer both in vivo
and in vitro, manifested by higher cell uptake rates, lower
cell viability, lower half-maximal inhibitory concentrations,
more necrosis and apoptosis of cancer cells, and smaller
tumor volumes. More importantly, H&E staining showed
no significant cardiotoxicity [127]. Quah and O’Neill trans-
fected immature dendritic cells which lacked immunostimu-
latory markers on their surface (such as CD40, CD86, MHC-
I, and MHC-II) [128] via iRGD-lamp2b to obtain EXOs
containing lamp2b, which loaded DOX (iRGD-EXOs-
DOX) targeted metastatic breast cancer tissues, achieving
more precise and effective anticancer effects both in vivo
and in vitro. Besides, iRGD-EXOs-DOX had fewer cardiac
side effects than free DOX and empty EXOs loaded with
DOX, manifesting as lower levels of CK-MB and AST, and
H&E staining showed no significant pathological dam-
age [129].

As nanoscale biofilm structures, therapeutic EXOs can
be produced by patients themselves without immune
responses. In addition, the special structure of EXOs enables
them to be engineered to be loaded with therapeutic miR-
NAs, proteins, or DOX, making them an ideal drug carrier
for the prevention and treatment of DIC. In addition, despite
the great promise of EXOs for the treatment of DIC, there
are some challenges. Different cell-derived EXOs have differ-
ent characteristics and functions, and the relationship
between EXOs’ subsets and DIC efficacy needs to be further
explored. In addition, the efficient isolation of EXOs, the
standardization of EXO preparations, and the determination
of the effective dose of therapeutic EXOs are also key issues
that need to be solved urgently in the process of clinical
transformation of EXOs [10, 18, 19].

7. Conclusions and Perspectives

In conclusion, this review highlights and summarizes cur-
rent studies regarding the role of EXOs in DIC, with a focus
on cardioprotection. Different cell-derived EXOs can inhibit
DOX-induced oxidative stress, inflammation, senescence,
apoptosis, and pyroptosis. Besides, some components in
EXOs play an important role in the occurrence and develop-
ment of DIC. By detecting these components, DIC can be
diagnosed sensitively and specifically; that is, EXOs have
the potential to serve as DIC biomarkers. As a natural low-
immunogenic DOX delivery carrier, EXOs can improve the
loading rate of DOX, increase the uptake rate of DOX by
tumor cells, exert a stronger antitumor effect, and reduce
the dosage of DOX, thus indirectly reducing DIC. In addi-
tion, EXOs-DOX can reduce the uptake of DOX by cardio-
myocytes and the distribution of DOX in cardiomyocytes,
thereby directly reducing cardiotoxicity. It is conceivable
that EXOs hold the excellent prospect for diagnosis and
treatment soon with further research.
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