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Background. Recent research has established the existence of epigenetic modulation of the immune response. The possible
involvement of RNA-n6-methyladenosine (m6A) alteration in tumor microenvironment (TME) cell invasion, on the other
hand, is unknown. Methods. Based on 23 m6A regulators, we examined the alteration patterns of m6A in 629 LUAD tissues
and comprehensively connected these modification patterns with TME cell invasion characteristics. The m6A score was
calculated, and the m6A modification pattern of a single tumor was quantified using principal component analysis. Then, we
further verified the expression of m6A related enzymes and the role hub gene (NOL10) closely related to survival in lung
cancer cell lines. Results. Three separate m6A alteration modes have been discovered. TME cell invasion characteristics in the
three modes were very similar to the three immunological phenotypes of tumors: immunological rejection, immunological
inflammation, and immunological desert. We show that assessing the m6A modification pattern in a single tumor may help
predict tumor inflammatory stage, subtype, TME interstitial activity, and prognosis. TME phenotypic inflammation is indicated
by a high m6A score, which is characterized by elevated mutation load and immunological activation. The low m6A subtype
showed matrix activation and ineffective immune infiltration, indicating that the TME phenotype of noninflammation and
immunological rejection had a poor survival probability. Increased neoantigen burden was also linked to a high m6A score.
Patients with a higher m6A score saw substantial therapeutic and clinical improvements. And reducing hub gene NOL10
expression substantially inhibited lung cancer cell growth and migration. Conclusions. This research shows that m6A alteration
is critical in the creation of TME variety and complexity. The analysis of a single tumor’s m6A alteration pattern will aid in
improving our knowledge of TME invasion features and guiding more effective immunotherapy tactics.

1. Introduction

Lung cancer is the most frequent kind of cancer in the world,
with the greatest fatality rate [1, 2]. Over the past decades,
the incidence rate of lung adenocarcinoma, especially in
women, has increased faster than that of squamous cell car-
cinoma [3]. According to data, adenocarcinoma has been the
most prevalent kind of histology cancer in the globe since
2004 [4, 5]. But for the treatment of lung adenocarcinoma,
the traditional treatment for patients is still limited. In recent

years, immunotherapy appears and becomes popular because
of its outstanding curative effect. PD1/PDL1 immune check-
point inhibitors have been developed and used in the treat-
ment of lung adenocarcinoma [6, 7]. However, only about
20% of patients benefit from immune checkpoint inhibitors
[6]. A flurry of studies has revealed that themicroenvironment
in which cancer cells develop and survive is critical to tumor
progression and treatment [8]. The ability of the tumor micro-
environment (TME) to produce favorable and unfavorable
effects on tumor development is different. Infiltrating immune
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cells can play an antitumor role; On the contrary, cancer cells
can also culture stromal cells to promote cancer progression
and metastasis [9]. TME has a crucial role in inpatient treat-
ment response and prognosis, according to relevant tests con-
ducted in recent years [10, 11]. The change of immune
microenvironment may change the patients who did not
respond to immunotherapy into patients who responded to
immunotherapy [12]. How to screen these patients, or how
to change the immune microenvironment in response to
immunotherapy, is an important direction of immunotherapy
research to improve the efficiency of immunotherapy.

With the further study of epigenetics in recent years,
more than 100 kinds of RNA modifications have been
known [13, 14]. Internal mRNA modification is mostly uti-
lized to preserve mRNA stability [15]. The most common
internal modifications of mRNA include N6 adenylate
methylation (m6A), N1 adenylate methylation (m1A), and
cytosine hydroxylation (m5C) [16]. Among the three types,
the methylation of m6A is reversible, including the participa-
tion of methyltransferases (writers), demethylases (erasers),
and methylated reading proteins (readers) [17]. m6A is first
used to modify adenine (a) on RNA under the action of
methyltransferase, and then, the RNA modified by m6A is
demethylated under the action of demethylase during the
process of RNA methylation. Finally, m6A modified RNA
is recognized by methylated reading proteins and performs
a series of downstream functions, including miRNA process-
ing, mRNA translation, and splicing.

Methylation of m6A is involved in several biological
activities, including tumor development and immunother-
apy. However, current researches are limited to the impact
of a single m6A regulator on tumor prognosis and immuno-
therapy [18, 19]. As a result, a thorough study of the invasive
features of tumor microenvironment (TME) cells mediated
by numerous m6A regulatory variables, as well as their
implications for immunotherapy, would help us better
understand how TMEs regulate their immune systems.

2. Methods

2.1. Data Source and Preprocessing of Lung Adenocarcinoma.
Figure 1 depicts the course of our research. Public gene-
expression data and detailed clinical annotation were found
in the Gene Expression Omnibus (GEO) and Cancer Genome
Atlas (TCGA) databases. Patients who had no information
about their prognosis were eliminated from the study. In this
work, the LUAD cohorts (GSE26939) and TCGA-LUAD
(the Cancer Genome Atlas-lung adenocarcinoma) were cho-
sen for further investigation. GSE30219 and GSE37745 data-
sets were used for validation. The normalized matrix files
were immediately downloaded for microarray data from
the GEO database. For the TCGA datasets, RNA sequencing
data (FPKM value) was obtained from the Genomic Data
Commons (GDC, https://portal.gdc.cancer.gov/) [20]. The
R package “limma” was then used to convert FPKM data to
transcripts per kilobase million (TPM) numbers. The “Com-
Bat” method of the “sva” package was used to correct batch
effects caused by nonbiological technological biases. The
TCGA database provided information on somatic mutations.

The R (version 3.6.1) and R Bioconductor programs were
used to examine the data.

2.2. Clustering of 23 m6A Regulators without Supervision.
Researchers found unique m6A modification patterns regu-
lated by m6A promoters by separating 23 regulators from
each dataset. Among the 23 m6A regulators, there were eight
writers (METTL3, METTL14, METTL16, WTAP, VIRMA,
ZC3H13, RBM15, and RBM15B), two erasers (ALKBH5
and FTO), and thirteen readers (METTL3, METTL14,
METTL16, WTAP, VIRMA, ZC3H13, RBM15, and
RBM15B), two erasers (ALKBH5, YTHDC1, YTHDC2,
YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC,
HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, and RBMX). The
expression of 23 m6A promoters was used to identify
patients for future investigation using an unsupervised clus-
tering approach. The grouping findings and their stability
were analyzed using the consensus clustering technique
[21]. The preceding stages were carried out using the Con-
sensuClusterPlus software, and 1000 times repeats were car-
ried out to ensure classification stability [22]. Then, we do
the survival analysis on the three clustering layers, using
the “survival” and “survminer” R packets. For validation,
we chose two more datasets (GSE31219 and GSE37745).
These two datasets were combined, and the data was nor-
malized. Three methylation-related patterns were discovered
by unsupervised clustering of the gene expression of 23 m6A
regulators in the sample. The three patterns’ m6A regulator
composition was nearly identical to that of the collected
cohort. There have been many studies on m6A regulatory
factors [18, 19, 23–26], so we selected three m6A regulatory
factors (LRPPRC, RBMX, and METTL16) for further exper-
imental verification.

2.3. Annotation of Functional Genes and Gene Set Variation
Analysis (GSVA). GSVA is an unsupervised, nonparametric
method for detecting variance in route and biological pro-
cess activity in expression dataset samples. To investigate
the changes in biological processes between m6A alteration
patterns, we utilized GSVA enrichment analysis and the
“GSVA” R tools. The gene sets “c2.cp.kegg. v7.4. symbols”
were obtained from MSigDB for GSVA analysis. A statisti-
cally significant P value was less than 0.05. The cluster pro-
file R package was used to perform functional annotation for
m6A-related genes, using a threshold value of 0.05.

2.4. TME Cell Infiltration Estimation. In the LUAD tumor
microenvironment (TME), the ssGSEA (single-sample gene
set enrichment analysis) methodology is employed to esti-
mate the relative abundance of each cell infiltrate. The gene
collection of immune cell types was obtained through previ-
ous related studies to mark each TME infiltration. The
enrichment score derived by ssGSEA analysis indicates the
relative abundance of each TME invading cell in each sam-
ple. Mariathasan et al. constructed a gene set to store genes
related to some biological processes. We examined the link
between the properties of m6A modification patterns and
various linked biological pathways to learn more about
them. Then, we used the ssGSEA method to assess the
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immunological features of each sample included in the
research using 29 immune gene sets, which comprised genes
linked to various immune cell types, functions, pathways,
and checkpoints.

2.5. Differentially Expressed Genes (DEG) between
Methylation-Related Patterns. To find m6A-related genes,
we divided patients into three groups depending on their
m6A modification patterns. Using the limma R package’s
empirical Bayesian technique, DEGs between different mod-
ification patterns were calculated [27]. The modified P value
of 0.001 was used as the significant criterion for identifying
DEGs.

2.6. Evaluation of the m6A Features and Generation of m6A
score. To analyze the m6A modification pattern of a single
lung adenocarcinoma patient—m6A gene features, which
we call m6A score—we developed a scoring method to quan-
tify the m6A modification pattern of a single tumor. The
procedure for establishing m6A gene characteristics is as
follows:

Before retrieving the overlap genes, the DEGs found in
various m6A clusters were standardized across all datasets.
For a subsequent study, the patients were divided into differ-
ent groups and an unsupervised clustering technique was
used to find overlap DEGs. The number of gene clusters
and their stability was determined using the consensus clus-
tering method. Then, using a multivariate Cox regression
model, we did a prognostic assessment for each gene in the
signature. For further investigation, the genes most related
to prognosis were extracted. The m6A related gene signature
was subsequently constructed using principal component
analysis (PCA). Signature scores were chosen for both main
component 1 and component 2. This technique had the

advantage of focusing the score on the set with the largest
block of highly correlated (or anticorrelated) genes, while
downweighting the benefits of genes that did not track with
other set components [28, 29]. Then, using a technique sim-
ilar to GGI, we define the m6A score. m6A score =∑ðPC1i
+ PC2iÞ, where i represents the expression of phenotypic-
related genes for the m6A phenotype. We use the R language
data package “limma,” “survival,” and “consensusclusterplu”
to complete the above process. We analyzed the protein-
protein interaction network (PPI) of 15 genes closely related
to survival selected from 68 DEGs and then selected the hub
gene with the most nodes for subsequent experimental
verification.

2.7. Functional and Pathway Enrichment Study of Genes
Associated with the m6A Phenotype. The expression of 23
m6A regulatory factors was then used to separate patients
into three separate m6A modification types. The difference
genes between various models were statistically analyzed
using the “limma” package’s empirical Bayes approach.
The standard for determining the significance of the differ-
ential gene is the corrected P value < 0.001. We then per-
formed GO analysis and KEGG analysis of by R data
package. Using the R package “cluster profile” with a thresh-
old of P value 0.05 and an adjusted P value of 0.05, Gene
Ontology (GO) analysis was done to discover enriched GO
keywords. The “gseKEGG” function from the R package
“cluster profile” was used to determine the most connected
pathways of overlapping genes.

2.8. Compilation of Immune-Related and Clinical Data. At
https://tcia.at/patients, you may see the immune-related
characteristics and genes of TCGA LUAD patients. Clinical
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Figure 1: An overview of study design.
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information was gathered from the GEO dataset metadata
and the TCGA database.

2.9. Cell Culture and Transfection. BEAS-2B, a human nor-
mal lung epithelial cell, and two lung cancer cell lines
(H596 and A549) were grown at 37°C in a 5% CO2 incubator
in Dulbecco’s modified Eagle’s medium (DMEM) with 10%
foetal bovine serum (FBS). For subsequent experiments, the
cells in the logarithmic phase were chosen. NOL10 knock-
down was accomplished by utilizing Lipofectamine® 3000
transfection reagent (Invitrogen, USA) to transfect cells with
NOL10-siRNA, as indicated by the manufacturer. 5′-GCUG
CGGAGAAUAAUGUUUTT-3′ and 5′-UUUAAAUCGAU
CAUCGGUGAG-3′ were the target sequences for siNOL10-
1 and siNOL10-2.

2.10. RNA Extraction and Real-Time Quantitative PCR. Tri-
zol reagent (Invitrogen, America) was used to extract total
RNA from cell lines, and the HiScript Synthesis Kit was used
to create cDNAs (Vazyme, China). Then, using the StepO-
nePlus Real-Time PCR system (Applied Biosystems, CA,
USA) and the Fast SYBR Green Master Mix, a real-time
quantitative PCR (qRT-PCR) analysis was carried out
(Roche, America). The following are some of the primers:
NOL10: forward-5′-CTGATGCTGCGGAGAATAATGT-
3′, reverse-5′-ACTCTACCCTATGGTTCCTGT-3′.

2.11. Cell Counting Kit-8 (CCK-8) and Colony Formation.
The proliferative potential of the cells was assessed using
CCK-8 and plate colony formation tests. Cells were seeded
at 2000 cells per well in 96-well plates overnight for the
CCK-8 experiment, and cell growth was measured at various
time points using the CCK-8 (C0038, Beyotime, China)
according to the manufacturer’s procedure. Enzyme labeling
was used to measure the absorbance at 450nm (Thermo Sci-
entific Multiskan FC, USA). Each well of a six-well plate was
filled with 1,000 cells from different groups for the colony
formation experiment. When colonies could be seen, crystal
violet and 4% paraformaldehyde were used to stain and fix
the cells.

2.12. Transwell Invasion Assay. Invasion experiments were
carried out in 24-well transwell chambers (Corning, USA)
precoated with Matrigel (BD Biosciences, USA). In serum-
free DMEM media, 2104 cells were planted into the top
chambers of the transwell, and DMEM with 10% FBS was
introduced to the lower chamber. The penetrated cells were
preserved with 4 percent methanol and stained with 0.1 per-
cent crystal violet after a 24-hour incubation period. An
inverted microscope was used to picture and count each well
at random (Nikon, Japan).

2.13. Western Blotting Analysis. RIPA lysis buffer was used
to extract cell protein (P0013D, Beyotime, China). On 7.5
percent or 10% SDS-PAGE gels, equal quantities of protein
samples were separated, and then electrotransferred onto
nitrocellulose (NC) membranes (Pall Corporation, USA).
The membranes were blocked for 2 hours at room tempera-
ture with 5% nonfat milk, then incubated overnight at 4°C

with primary antibodies against RBMX (CST, 1 : 1,000),
LRPPRC (Proteintech, 1 : 1,000), and METTL16 (Protein-
tech, 1 : 1,000), followed by 2 hours with the corresponding
secondary antibody. Bands of conjugate proteins were
observed using a Tanon 5200 multigel system after being
washed three times more (Tanon Shanghai, China).

2.14. Statistical Analysis. The correlation coefficients
between TME invading immune cells and m6A regulator
expression were calculated using Spearman and distance
correlation analysis. To compare two normally distributed
groups, unpaired t-tests were utilized, while the Wilcoxon
rank-sum test was used to examine nonnormally distributed
data. One-way ANOVA and Kruskal-Wallis tests were used
to assess differences between three or more groups [30]. To
calculate the appropriate cutoff values for each cohort, the
“surv-cutpoint” function in the “survminer” package was
used. The Kaplan-Meier method was used to generate sur-
vival curves for the prognostic analysis, and log-rank tests
were employed to compare groups. The univariate Cox
regression model was used to compute the hazard ratios
(HRs) for m6A regulators and m6A phenotype-related genes.
P values were always two-sided, and P < 0:05 was considered
statistically significant. All statistical analyses were per-
formed using R 3.6.1 (https://www.r-project.org/).

3. Results

3.1. LUAD m6A Regulating Factor Genetic Variant. In
LUAD, we looked at the frequency of copy number variation
and somatic mutations in 23 m6A regulatory components.
Among the 561 samples from the TCGA database, 115 sam-
ples had a mutation of the m6A regulator, with a frequency
of 20.5% (Figure 2(a)). According to the findings, ZC3H13
exhibited the greatest mutation frequency, followed by
FMR1, RBM15, YTHDC2, LRPPRC, and YTHDC1, while
VIRMA and METTL3 had no mutation in LUAD samples.
When it came to copying number variation (CNV), YTHDF1,
VIRMA, and FMR1 had a high rate of amplification, but
RMB15 and METTL16 were mostly copy number losses
(Figure 2(b)). We further mapped the position of the regula-
tory factors of m6A on the chromosome (Figure 2(c)). To
examine whether the aforementioned genetic variation altered
the expression of the m6A regulator in LUAD patients, we
looked at the mRNA expression levels of regulatory factors
in normal and LUAD samples. We discovered that CNV alter-
ation may be the key cause for m6A regulatory factor expres-
sion to be disrupted. In LUAD tissues, the expression of
m6A regulatory factors (such as IGFBP3 and HNRNPC) was
considerably higher than in normal lung tissues, and vice versa
(such as ZC3H13 and METTL16) (Figure 2(d)). We also
looked at the protein levels of RBMX, METTL16, and
LRPPRC in lung cancer cells and discovered that RBMX and
LRPPRC were upregulated, whereas METTL16 was downreg-
ulated in lung cancer cells relative to normal lung epithelial cell
BEAS-2B (Figure S1).

3.2. Methylation Patterns of m6A Mediated by 23 Regulators.
In LUAD patients, a univariate Cox regression model
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demonstrated the predictive importance of 23 m6A regula-
tors (Figure S2 and Table S1). We used the m6A network
of regulatory factors to describe the interaction between
regulatory factors, regulatory factor connections, and
their prognostic significance (Figure 3(a)). We found that
not only the expression of the same functional class of
m6A regulatory factors was significantly correlated but
also there was a significant correlation among the three
regulatory factors. Considering the relatively high mutation
frequency of writing genes ZC3H13, FMR1, and RBM15, we
analyzed the difference of gene expression between mutant
and wild type (Figures 3(b) and 3(c)). WTAP expression was
dramatically reduced in FMR1 mutant tumors compared
to wild-type tumors, whereas LRPPRC expression was
dramatically increased in RBM15 mutant tumors. It
shows the interaction between reader and writer, but the
interaction is different according to the different regulatory
factors. Because m6A methylation regulators may contribute

to LUAD heterogeneity and are linked to the tumor
microenvironment, unsupervised clustering was used to
identify novel possible m6A methylation regulator patterns
based on the expression of 23 m6A methylation regulators in
the LUAD cohort. The grouping effect of the three clusters is
the best, as illustrated in Figure S3. The 629 patients were
divided into m6A methylation type A (147 cases), B (195
cases), and C (288 cases) (Figure 3(d)). The prognosis
analysis of the three major subtypes of m6A showed that the
survival rate of the m6A cluster B subtype was particularly
high (Figure 3(e)). We chose the GSE30219 and GSE37745
datasets related to lung adenocarcinoma since they had the
most extensive survival information to further evaluate the
results of methylation patterns. Unsupervised clustering of
the gene expression of 23 m6A regulators in the sample
revealed three methylation-related trends (Figure S4A-D).
The three patterns’ m6A regulator composition was virtually
identical to that of the assembled cohort (Figure S4E).
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Figure 2: (a) The mutation frequency of 23 m6A regulators in 561 LUAD patients from the TCGA cohort. Each column represented
individual patients. The upper barplot showed TMB; the number on the right indicated the mutation frequency in each regulator. The
right barplot showed the proportion of each variant type. The stacked barplot below showed a fraction of conversions in each sample.
(b) The CNV variation frequency of m6A regulators. The height of the column represented the alteration frequency. The deletion
frequency, blue dot; the amplification frequency, red dot. (c) The location of CNV alteration of m6A regulators on 23 chromosomes. (d)
The expression of 23 m6A regulators between normal tissues and LUAD tissues. Tumor, red; normal, blue. The upper and lower ends of
the boxes represented the interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers.
The asterisks represented the statistical P value (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001).
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3.3. Infiltration Characteristics of TME Cells in Different
m6A Modified Models. To further understand the biological
activity of these diverse m6A mutation patterns, we
employed GSVA enrichment analysis (Figures 4(a) and
4(b)). From the results of GSVA analysis, we can see that
A modification mode is mainly related to the tumor path-
way, while C modification mode is strongly related to
immune activation. Subsequently, the analysis of TME cell
infiltration showed that m6A cluster C had abundant innate
immune cell infiltration, including natural killer cells, macro-
phages, eosinophils, mast cells, MDSC, and plasma-like den-
dritic cells (Figure 4(c)). Analysis of related biological
pathways showed that matrix activity in cluster C was signif-
icantly enhanced, such as transforming growth factor β
(TGFβ), epithelial-mesenchymal transition (EMT), and the
activation of angiogenesis pathway (Figure 4(d)). To compre-

hensively evaluate the immunological characteristics of the
methylation modification modes, we supplemented other
validation methods. We examined the three modes using the
ssGSEA method and 29 immune gene sets (Figure S5A).
The tumor microenvironment features of these three
subgroups were determined using the ESTIMATE findings.
We discovered that cluster C had higher EstimateScore
and StromalScore levels, while cluster A had lower levels
of these scores (Wilcoxon test, P < 0:001) (Figure S5B).
Cluster C also exhibited more HLA genes expressed,
suggesting greater immunogenicity (Figure S5C). The three
m6A alteration patterns displayed clear TME cell infiltration
features, according to our findings. Cluster A is an immune
desert phenotype characterized by immunosuppression,
while cluster B is an immune inflammation phenotype
characterized by moderate immune cell infiltration and
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Figure 3: (a) The interaction between m6A regulators in LUAD. The circle size represented the effect of each regulator on the prognosis, and
the range of values calculated by the log-rank test was P < 0:001, P < 0:01, P < 0:05, and P < 0:1, respectively. Purple dots, risk factors of
prognosis; green dots, protective factors of prognosis. The lines linking regulators showed their interactions, and thickness showed the
correlation strength between regulators. A negative correlation was marked with blue and a positive correlation with red. The regulator
of erasers, readers, and writers was marked with red, yellow, and gray, respectively. (b) Difference in the LRPPRC expression between
RBM15-mutant and RBM15 types. (c) Difference in the WTAP expression between FMR1-mutant and FMR1 types. (d) Consensus
matrices of the cohort for k = 3. (e) Survival analyses for the three m6A modification patterns based on 629 patients with LUAD from
two cohorts including 145 cases in m6A cluster A, 191 cases in m6A cluster B, and 283 cases in m6A cluster C. Kaplan-Meier curves with
log-rank P value 0.045 showed a significant survival difference among three m6A modification patterns. The m6A cluster B showed
significantly better overall survival than the other two m6A clusters.
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immune activation, and cluster C is an immune exclusion
phenotype characterized by innate immune cell infiltration
and matrix activation. The expression of 23 m6A methy-

lation moderators was studied using principal component
analysis (PCA) to separate the patterns of three m6A
methylation regulators (Figure 4(e)). The findings
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Figure 4: GSVA enrichment analysis showing the activation states of biological pathways in distinct m6A modification patterns. The
heat map was used to visualize these biological processes, and red represented activated pathways, and blue represented inhibited
pathways. (a) m6A cluster A vs. m6A cluster C; (b) m6A cluster B vs. m6A cluster C; (c) the abundance of each TME infiltrating
cell in three m6A modification patterns. The upper and lower ends of the boxes represented the interquartile range of values. The
lines in the boxes represented median value, and dots showed outliers. The asterisks represented the statistical P value (∗P < 0:05; ∗∗

P < 0:01; ∗∗∗P < 0:001). (d) Differences in stroma-activated pathways including EMT, TGF beta, and angiogenesis pathways among
three distinct m6A modification patterns. The statistical differences among the three modification patterns were tested by the one-
way ANOVA test. The asterisks represented the statistical P value (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001). (e) Principal component
analysis for the transcriptome profiles of three m6A modification patterns, showing a remarkable difference in transcriptome between
different modification patterns.
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demonstrated that the three groups were differentiated,
indicating that the transcription of 23 m6A methylation
factors could identify the three categories.

3.4. The Creation of an m6A Methylation Score, as well as the
Clinical and Transcriptome Aspects of m6A Methylation-
Related Gene Clusters. We studied the clinical data of 629
individuals to learn more about the characteristics of these
changed phenotypes in terms of distinct clinical aspects
and biological processes (Figure 5(a)). m6A clusters A, B,
and C show different characteristics. Cluster A is highly
expressed in most of the regulatory factors of m6A. How-
ever, in the regulatory factor IGFBP2, there are significant
differences among the three subtypes. Cluster B has much
greater levels of IGFBP2 expression than cluster A. Using
the limma program, we assessed 68 phenotype1-related
DEGs to better understand the probable biological activity
of each m6A modification pattern (Figure S6). For DEG
enrichment analysis, the clusterProfiler software suite was
employed. These genes demonstrated a high enrichment of
biological processes connected to m6A modification and
virus, confirming that m6A alteration may play a key role
in lung adenocarcinoma viral infection inflammation
(Figure 5(b)). We used multivariate Cox survival analysis
to select 15 genes closely related to survival from 68 m6A
phenotype-related genes for unsupervised cluster analysis
and divided the patients into different genomic subgroups
to further validate this regulation mechanism (Figure S7
and Table S2). The unsupervised clustering algorithm also
shows two different phenotypes of the m6A modified
genome, which are consistent with the clustering of the m6A
modified genome. The three groups were given the names
m6A gene clusters A, B, and C (Figure S6). Two distinct
gene clusters were discovered to have distinct distinctive
genes, according to the research. A better prognosis is linked
to cluster B (Figure 5(c)). The outlook for gene cluster A was
not great. The two m6A gene clusters showed significant
differential expression of m6A regulatory factors, which was
consistent with the methylation modification process of
m6A’s predicted effects (Figure 5(e)).

3.5. Prognostic Value of m6A Related Phenotypes. Given the
variability and complexity of m6A alteration, we developed
the m6A score, a scoring system based on these phenotype-
related genes, to assess the m6A modification pattern of lung
cancer patients. The alluvial chart is used to display varia-
tions in the characteristics of specific patients (Figure 6(a)).
We also investigate the link between known signature and
m6A score to further show the properties of m6A signature
(Figure 6(b)). The Kruskal-Wallis test revealed that the
m6A scores of the m6A gene clusters differed significantly
(Figures 6(c) and 6(d)). The median score for gene cluster
A is the lowest, while the median score for gene cluster B
is the greatest. Similarly, compared with other clusters, the
m6A score of cluster A is significantly lower, while the score
of m6A cluster B is significantly higher. Following that, we
attempted to investigate the use of m6A score in predicting
patient prognosis. Patients were split into high and low
m6A score groups based on the appropriate cutoff value cal-

culated by the survminer software tool. The survival benefit
of patients with a higher m6A score was significant
(Figures 6(e) and 6(f)). Then, patients were separated into
alive or dead groups. The m6A score did not vary signifi-
cantly between the two groups (Figure 6(g)). In addition,
we also found that in young female patients, M0, stage I-II,
and T3-4 patients, higher m6A score showed more signifi-
cant survival advantage, which means that m6A score can
also be used to access various clinical features of patients,
such as age, gender, and clinical stage (Figure S8). The
clinical data and m6A score were used to construct the
m6A related nomogram, which confirmed that m6A score
can be used to predict the outcome of LUAD (Figure 6(h)).

3.6. Characteristics of m6A Modification in Tumor Somatic
Mutations. The link between the m6A score and tumor muta-
tion burden (TMB) was then investigated (Figures 7(a) and
7(b)). The results suggest that the mutation load is positively
correlated with the score of m6A, and the mutation load is
higher in the group with a higher score of m6A. In particular,
we investigated the effects of the characteristics of the
m6Ascore and mutation load on survival (Figure 7(c)). We
found that the survival advantage was more obvious in the
high mutation load group. Another study combined muta-
tion load and m6A score analysis showed that high mutation
load and high m6A score group showed better survival
advantage, while low mutation load and low m6A score
group showed lower survival rate (Figure 7(d)). The map
tools software program was used to examine the differences
in somatic mutation distribution between upper and lower
m6A score groups (Figures 7(e) and 7(f)). The group with a
high m6A score had a higher mutation load than the group
with a low m6A score. TMB was quantitatively analyzed,
and it was shown that tumors with a higher m6A score had
a higher TMB. In addition, m6A score and TMB had a
strong positive connection. Individuals with a high TMB
status showed a longer-lasting clinical response to anti-
PD-1/PD-L1 immunotherapy, according to accumulating
research. As a consequence, the foregoing findings imply that
tumor m6A alteration patterns vary, which might be a critical
role in determining clinical response to anti-PD-1/PD-L1
immunotherapy. Indirect evidence of m6A score’s use in
determining the outcome of immunotherapy has also been
discovered.

3.7. Patterns of m6A Alteration in the Context of Anti-PD-1/
L1 Immunotherapy. In the treatment of a variety of tumor
forms, immunotherapy has improved survival rates. It is
crucial to figure out which patients will benefit the most.
As a result, we investigated whether the m6A score might
predict the success of immunotherapy by inhibiting four
immunological checkpoints in the treatment group. The
patients with low m6A score were significantly high in PD-
L1, CTLA4, and PD1, which suggested that the patients
may have a better response to immunotherapy
(Figures 8(a)–8(c)). We further observed the response of
the m6A score group to immunotherapy and found that
the treatment effect of the low score group was better in
patients with PD1 positive (Figures 8(d)–8(g)).
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3.8. Inhibition of NOL10 Suppresses LC Cell Proliferation and
Migration. The expression of NOL10 in lung cancer (LC)
cell lines (H596 and A549), normal lung epithelial cells
(BEAS-2B), and LC was examined to further confirm the
function of NOL10. H596 and A549 cells have considerably
greater NOL10 expression than BEAS-2B cells (Figure 9(a)).

Then, using si-NOL10 transfection, we were able to effec-
tively knock down NOL10 expression in A549 cells
(Figure 9(b)). Lower expression of NOL10 substantially
decreased the capacity of A549 cells to proliferate, according
to the findings of CCK-8 and colony formation assays
(Figures 9(c) and 9(d)). The transwell experiment revealed
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Figure 5: (a) Unsupervised clustering of 23 m6A regulators in the LUAD cohort. The m6A cluster, M, T, gender, age, stage, and survival
status were used as patient annotations. Red represented a high expression of regulators, and blue represented low expression. (b)
Functional annotation for m6A-related genes using GO enrichment analysis. The color depth of the barplots represented the number of
genes enriched. (c) Kaplan-Meier curves indicated m6A modification genomic phenotypes were markedly related to the overall survival
of patients in the LUAD cohort (P < 0:001, log-rank test). (d) Unsupervised clustering of 23 m6A regulators in the LUAD cohort. The
gene cluster, m6A cluster, M, T, gender, age, stage, and survival status were used as patient annotations. Red represented a high
expression of regulators, and blue represented low expression. (e) The expression of 23 m6A regulators in two gene clusters. The upper
and lower ends of the boxes represented an interquartile range of values. The lines in the boxes represented median value, and black
dots showed outliers. The asterisks represented the statistical P value (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001).
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that suppressing NOL10 expression with siRNA reduced the
number of invading cells significantly (Figure 9(e)). These
findings suggest that knocking down NOL10 inhibits LC cell
growth and migration.

4. Discussion

Due to the interplay of several m6A regulatory variables,
m6A alteration may have a significant role in the occurrence,
progression, and treatment of a range of illnesses [26].
Because most current research focuses on a single TME cell
type or a single regulatory factor, the overall profile of TME
infiltration mediated by several m6A regulatory elements has

not been adequately addressed. Clarifying the role of differ-
ent m6A modification patterns in TME cell invasion will
help us better understand the antitumor immune response
of TME and contribute to the development of more efficient
immunotherapy medicines in the clinic.

According to 23 regulatory factors of m6A, this study
showed three different methylation patterns of m6A. These
three patterns have different characteristics of TME cell infil-
tration. Immunosuppression characterizes group A, adaptive
immune activation characterizes group B, corresponding to
the immunological inflammatory phenotype, and innate
immunity andmatrix activation characterize group C, indicat-
ing immunological exclusion, relating to the immunological
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Figure 6: Construction of m6A signatures. (a) Alluvial diagram showing the changes of m6A clusters, gene cluster, m6A score, and survival
status. (b) Correlations between m6A score and the known gene signatures in LUAD cohort using Spearman analysis. A negative correlation
was marked with blue and a positive correlation with red. (c) Differences in m6A score among three m6A modification patterns in LUAD
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desert phenotype. Noninflammatory cancers include immune
exclusion and immunological depletion characteristics [31,
32]. Despite the presence of a large number of immune cells,
the immune exclusion phenotype kept immune cells in the
stroma around the tumor cell nest instead of allowing them
to penetrate the parenchyma. Stroma may either stay inside
the tumor capsule or invade the tumor and create immune
cells that seem to be within the tumor. Immune cells are pres-

ent in tumors with an immune exclusion phenotype, but they
stay in the stroma surrounding the tumor cell nest instead of
reaching the tumor parenchyma, according to a previous
study [33, 34]. Immunological tolerance, immunological igno-
rance, and a shortage of activation and activated T cells are all
linked to the immune desert phenotype [35]. It validated the
accuracy of our immunophenotypic categorization of various
m6A alteration patterns when combined with the invasion
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Figure 7: (a) Difference in tumor burden mutation between two m6A score groups in the LUAD cohort. The Wilcoxon rank-sum test was
used to compare the statistical difference between two gene clusters (P = 0:044). (b) Correlations between m6A score and tumor burden
mutation using Spearman analysis (R = 0:13, P = 0:0028). (c) Survival analysis of the high (N = 116) and low (N = 378) TMB groups in
the LUAD cohort. (d) Survival analysis of distinct groups stratified by both TMB and m6A score (P < 0:022). (e, f) The waterfall plot of
tumor somatic mutation established by those with high m6A score (e) and low m6A score (f). Each column represented individual
patients. The upper barplot showed TMB; the number on the right indicated the mutation frequency in each gene. The right barplot
showed the proportion of each variant type.
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characteristics of TME cells in each cluster. It is not unex-
pected, however, that group C had active immunity but a
bad prognosis, based on the features of TME cell infiltration
generated by various m6A alteration modalities. Group C is
the so-called “hot tumor” [36]. There are many immune cells
in this kind of tumor, but they do not play a role. The effect of
immune checkpoint inhibition therapy for this kind of tumor
will be better [37].

In this study, it has been confirmed that the differences
of mRNA transcriptome between different m6A modifica-
tion patterns are significantly related to biological pathways.
We believe that these differentially expressed genes are char-
acteristic genes related to m6A. According to the characteris-
tic genes of m6A, we determined the optimal classification
method and divided the characteristic genome into two sub-
types. The two subtypes are also mainly related to viruses
and immunity. This also confirmed that the modification
of m6A is of great significance for TME. As a result, a thor-
ough examination of the m6A alteration pattern will help us
better comprehend the invasion properties of TME cells.

Given the individual variability of m6A alteration, quantify-
ing the alteration pattern of a particular tumor is critical. We
created the m6A gene signature scoring method to assess the
pattern of m6A change in LUAD patients. Immunological
exclusion phenotype m6A modification models scored
lower, whereas immune-inflammatory phenotype m6A
modification models scored better. m6A score was discov-
ered to be an independent biomarker for the prediction of
LUAD after a thorough investigation. This demonstrates
that the m6A score may be used to look at a single tumor’s
m6A modification pattern to predict the TME or tumor
immunophenotype invasion pattern.

The findings also reveal that there is a substantial positive
association between the m6A score and the burden of tumor
mutation. Patients with higher somatic cell TMB are related
to improved response, long-term survival, and long-term ther-
apeutic advantages when undergoing immune checkpoint
blocking medication, according to clinical trials and preclini-
cal investigations [6, 38]. Individually changed genes may reg-
ulate resistance or susceptibility to immunotherapy [39–41].
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Figure 8: m6A modification patterns in the role of immunotherapy. (a) Differences in PD-L1 expression between low and high m6A score
groups (P < 0:0001, Wilcoxon test). (b) Differences in CTLA4 expression between low and high m6A score groups (P = 0:015, Wilcoxon
test). (c) Differences in PD1 expression between low and high m6A score groups (P = 0:048, Wilcoxon test). (d–g) Differences in
immunotherapy effects between low and high m6A score groups (P < 0:05, Wilcoxon test).
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For clearly altered genes in LUAD, such as TTN and USH2A,
the mutant’s m6A score was much lower than that of the wild
type; however, there was no discernible difference between
wild type and mutant in MUC16 and USH2A. These findings
will open up new areas of research into the mechanism ofm6A
methylation in tumor somatic mutation, the development of
TME characteristics, and the impact of immune checkpoint
inhibitors.

Finally, the m6A score may be used to analyze the meth-
ylation patterns of m6A thoroughly. The corresponding
score further defines the microenvironment, and immune
characteristics of individual patients determine the immune
phenotype of the tumor and guide more effective treatment
management. We also discovered that the m6A score may
be utilized to assess patients’ clinical features, such as tumor
inflammation stage and tumor mutation load. Similarly,
m6A score may be utilized as a stand-alone prognostic bio-
marker to predict patient survival. Furthermore, we verified
the expression of m6A related enzymes and the role hub
gene closely related to survival in LC cell lines. We discov-
ered that suppressing the expression of the hub gene
NOL10 greatly slowed lung cancer cell growth and migra-
tion. Our findings suggest new ways to improve patient’s
clinical responses to immunotherapy, such as identifying
diverse tumor immunophenotypes and advocating for per-
sonalized tumor immunotherapy in the future.
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Figure 9: Inhibition of NOL10 suppresses LC cell proliferation and migration of lung cancer cells in vitro. (a) Relative expression of NOL10
in three cell lines. (b) qRT-PCR to detect the relative silencing levels of NOL10 in the A549 cell line. (c) The CCK-8 assay was applied to
detect the efficiency of NOL10 knockdown on the proliferation of the A549 cell line. (d) Images of the colony formation assay after
knockdown of NOL10 in A549 cell line. (e) Images of the transwell assay results after knockdown of NOL10 in A549 cell line.
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Supplementary Materials

Supplementary 1. Figure S1 The protein levels of RBMX,
METTL16, and LRPPRC in lung cancer cells and normal
lung epithelial cell BEAS-2B. ∗ P<0.05, ∗∗ P<0.01, and ∗
∗∗ P<0.001.
Supplementary 2. Figure S2 (A) The prognostic analyses for
23 m6A regulators in the LUAC cohorts using a univariate
Cox regression model. Hazard ratio>1 represented risk fac-
tors for survival, and hazard ratio<1 represented protective
factors for survival. (B) The prognostic analyses for DEGs
using a univariate Cox regression model. Hazard ratio>1
represented risk factors for survival, and hazard ratio<1 rep-
resented protective factors for survival.

Supplementary 3. Figure S3 Consensus matrices of the
LUAC cohort for k = 2, 4, 5.
Supplementary 4. Figure S4 (A-D) Consensus matrices of the
LUAD cohort of GSE30219 and GSE37745 datasets for k = 3.
(E) Survival analyses for the three m6A modification pat-
terns in LUAD cohort using Kaplan-Meier curves including
167 cases in m6A cluster A, 137 cases in m6A cluster B, and
181 cases in m6A cluster C. The m6A cluster B showed sig-
nificantly better overall survival than the other two m6A
cluster (P = 0:022, log-rank test).

Supplementary 5. Figure S5 Immunophenotype of LUAD
patients with three m6A stratification: (A) comprehensive
evaluation of immunological characteristics by the ssGSEA
algorithm; (B) comparison of EstimateScore and Stromal-
Score among the three modes; (C) comparison of HLA gene
expression level among the three modes. ∗ P<0.05, ∗∗
P<0.01, and ∗∗∗ P<0.001.
Supplementary 6. Figure S6 (A) 68 m6A phenotype-related
genes shown in Venn diagram. (B) Consensus matrices of
the LUAC cohort.

Supplementary 7. Figure S7 15 survival-related DEGs were
included in the PPI network. The nodes indicated proteins.
The edges represented proteins’ interaction.

Supplementary 8. Figure S8 Survival analyses for patients
with m6A score groups in the age, gender, M, stage, and T.

Supplementary 9. Table S1 The prognostic analyses for 23
m6A regulators in the LUAC cohorts using a univariate
Cox regression model.

Supplementary 10. Table S2 The prognostic analyses for
DEGs using a univariate Cox regression model.
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