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HDAC4 Inhibitors as Antivascular Senescence Therapeutics
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Aging is an inevitable consequence of life, and during this process, the epigenetic landscape changes and reactive oxygen species
(ROS) accumulation increases. Inevitably, these changes are common in many age-related diseases, including neurodegeneration,
hypertension, and cardiovascular diseases. In the current research, histone deacetylation 4 (HDAC4) was studied as a potential
therapeutic target in vascular senescence. HDAC4 is a specific class II histone deacetylation protein that participates in
epigenetic modifications and deacetylation of heat shock proteins and various transcription factors. There is increasing
evidence to support that HDAC4 is a potential therapeutic target, and developments in the synthesis and testing of HDAC4
inhibitors are now gaining interest from academia and the pharmaceutical industry.

1. Introduction

Despite gains in average life expectancy, the aging process
poses many challenges in the management of age-related
diseases such as neurodegeneration and cardiovascular dis-
eases (CVDs). Neurodegenerative diseases have become the
most debilitating maladies in older people with risk increas-
ing with advancing age [1]. Neurodegeneration has both
hereditary and biochemical traits resulting in progressive
degeneration of neurons [2]. Similarly, CVDs are responsi-
ble for approximately 4 million deaths each year in China
and 17.9 million worldwide [3]. CVDs are caused by multi-
ple factors including epigenetic modification and reactive
oxygen species (ROS) [4–6]. Elevations in ROS are widely
associated with aging and diseases being produced by four
systems including NOX xanthine oxidases, myeloperoxidase,
and nitric oxide synthases (NOS) [7–10]. Among these,
NOX and NOS are associated with age-related diseases,
DNA damage, and mitochondrion dysfunction, therefore
influencing epigenetic change.

Genetic inheritance plays an important role in longevity
and in age-related diseases [1]. Oxidation or histone acetyla-
tion results in altered protein homeostasis, DNA damage,
and epigenetic changes, occurring in aged tissues [11].
Histone acetyltransferases (HATs) and histone deacetylases
(HDACs) are two classes of enzymes regulating histone acet-
ylation and deacetylation. Deacetylation of HDACs results
in positive charges in the condensation of chromatin and
thereby turns off gene transcription [12]. Among the HDAC
superfamilies, HDAC4 is of interest since this enzyme is
located both in the nucleus and cytoplasm and may act on
more than simply cellular histones. This factor alone sug-
gests that HDAC4 could have the potential in the treatment
of neurodegeneration or CVDs.

1.1. The Subcellular Location and Substrates of HDAC4. In
mammals, there are 18 types of HDACs recognized, and
these are divided into classes I, II, III, and IV based on struc-
ture and homology with yeast HDACs. Class I types consist
of HDACs 1, 2, 3, and 8, which are expressed and located in
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the nucleus [13]. Class III is composed of a family of sirtuins,
and their activation is dependent on NAD+. HDAC11 is the
only member of class IV and having structural similarities to
class I HDACs. Class II proteins can be further divided into
two subgroups: class IIa (HDACs 4, 5, 7, and 9) and class IIb
consisting of HDACs 6 and 10. Interestingly, only class II
HDACs exhibit tissue-specific patterns of expression. For
example, HDAC4, which will be mainly discussed in this
paper, is highly expressed in the brain, heart, and skeletal
muscle [14].

In contrast to class I HDACs, HDAC4 shuttles between
the nucleus and cytoplasm. The location of HDAC4 plays
an important function in dictating the physiology and path-
ological role of this protein within cells and tissues. HDAC4
has the tendency to be maintained in the cytoplasm in
neurons and in the nucleus of myoblasts. The key to the
subcellular location of HDAC4 is its phosphorylation status.
Phosphorylated HDAC4 binds to the chaperone protein
14-3-3, inducing nuclear export [15]. Phosphorylation of
HDAC4 can bemediated by a diverse array of kinases, namely,
calcium/calmodulin-dependent protein kinase (CaMK) [16],
extracellular signal-regulated kinases 1 and 2 (ERK1/2) [16],
protein kinase A (PKA), and glycogen synthase kinase 3
(GSK3) [17]. CaMK play a significant role in the maintenance
of neurons and in the export of HDAC4 driven by calcium
influx induced by synaptic activity in neurons [18]. Serine res-
idues at positions 210, 246, 350, 467, and 632 are key phosphor-
ylation sites in this protein [16, 19]. In addition, ROS can also
induce nuclear export. In this instance, NOX4 produces
H2O2 which directly oxidizes cysteine residues 274/276 in
DnaJb5 and cysteine-667/669 in HDAC4, to promote nuclear
targeting of HDAC4 export [20, 21]. Interestingly, proteolytic
cleavage can also influence the location of HDAC4 in cells.
Following cleavage by caspases, HDAC4 leaves the nuclear
localization signal containing fragments accumulated in the
nucleus [22, 23]. The fragments lose the C-terminal catalytic
domain but retain the combination with MEF2C. Moreover,
the fragments show an increased repressive effect on Runx2-
and SRF-dependent transcription (Figure 1) [24].

Consistent with its cellular location, HDAC4 is involved
in removing acetyl groups from both histones and nonhis-
tone proteins with a zinc-containing catalytic domain.
Unlike class I HDACs, HDAC4 only gains deacetylase
activity only when interacting with HDAC3 and RbAp48
[15]. The catalytic domain tends to form a multiprotein
functional complex. Deacetylation of histone H3 and histone
H4 suppresses gene expression. In addition, heat shock
protein 70 (Hsp70) can be acetylated at lysine 77. Hsp70 is
acetylated by ARD1 in the early cellular stress response
and deacetylated by HDAC4 in the late. Deacetylated
Hsp70 contributes to protein degradation [25]. Transcrip-
tion factors are another kind of substrates deacetylated by
HDAC4. Runx-2 and HIF-1α are known transcription
factors being deacetylated by HDAC4. Acetylated Runx-2
inhibits Smurf1-mediated degradation, but deacetylated
HIF-1α shows increased stability (Figure 2) [26–29].

In addition to its catalytic function, HDAC4 can directly
interact with other cellular proteins. For example, HDAC4
directly binds to and represses MEF2-mediated expression

of GATA4 and Nkx2-5. As a result, HDAC4 prevents myo-
genesis. The repression of gene transcription by the MEF-2/
HDAC complexes is suppressed due to CaMK-induced
translocation of HDAC4 and HDAC5 to the cytoplasm.

2. HDAC4 Promotes Age-Related Diseases

Numerous studies show that HDAC4 has a broad interac-
tion with different kinds of proteins and is involved in
several physiological pathways such as myogenesis and oxi-
dative stress. This sensitive balance means that HDAC4
plays important roles in growth and development. However,
dysfunction of HDAC4, which often occurs during aging,
may precipitate conditions like hypertension, cardiovascular
diseases (CVDs), and neurodegeneration.

Vascular calcification is the pathological accumulation of
calcium phosphate crystals in the medial and intimal layers
of vascular walls and is tightly linked with metabolic diseases
such as chronic kidney disease, diabetes, and vascular dis-
eases viz. atherosclerosis [30]. Pathologically, there are two
major forms of vascular calcification with both existing in
the same clinical condition. The first type is intimal calcifica-
tion associated with atherosclerosis-linked lipid and choles-
terol accumulation under the injured endothelium. The
second type is medial calcification, also known as Möncke-
berg’s sclerosis, which involves the deposition of minerals
within the vascular smooth muscle layers [31]. Ting and col-
leagues revealed novel findings on the involvement of
HDACs and their modifiers in the development of vascular
calcification. In human aortic smooth muscle cells, inhibi-
tion of HDAC mitigates the effect of Notch protein to
increase smooth muscle α-actin levels, indicating that
HDAC activity is required for Notch signaling during differ-
entiation [32]. HDAC4 and HDAC5 are regulated in a
CaMKII-dependent manner in vascular smooth muscle cells
[33, 34]. Inhibition of HDAC using butyrate abrogates the
activation of Akt. This results in differential effects on the
downstream targets of Akt, promoting signaling cross-talk
and resulting in vascular smooth muscle growth through
proliferation arrest [35]. RUNX2 is one of the downstream
targets of Akt signaling via hydrogen peroxide activation
and has an increased expression level in vascular calcifica-
tion [36]. HIF-1α promotes the calcification and osteogene-
sis of vascular smooth muscle cells to build extracellular
matrix calcification. HIF-1α is downregulated by ROS scav-
engers and HDAC4 inhibitors [27, 37, 38]. Also, HIF-1α is
reported to be a key transcription factor in mitochondrial
dysfunction in hypoxia response [39]. These results show
that ROS and HDAC4 have a synergistic effect on vascular
aging and calcification. Researchers at Yale University have
shown that HDAC activity is associated with hypertension
by increasing MEF2 activity in endothelial cells following
treatment with a class IIa histone deacetylase inhibitor
[34]. This innovation may be valuable as a treatment solu-
tion for pulmonary hypertension, by offering a means of
restoring MEF2 activity using class IIa histone deacetylase
inhibitors. Therefore, the critical function of HDACs in vas-
cular biology could be exploited to employ HDACs as a
molecular target for treating hypertension [40].
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CVD is highly prevalent and is the leading cause of mor-
tality and morbidity in developed countries. CVD refers to a
broad spectrum of diseases affecting the cardiovascular sys-
tem and includes the heart and blood vessels. One common
condition is atherosclerosis, a progressive disease in which
the inner layers of the artery walls become thick and irregu-
lar because of the deposition of fat, cholesterol, and other
substances. Interestingly, HDAC4 plays a vital role in
mediating cardiovascular diseases since (1) Ca2+/calmodu-
lin-dependent protein kinase- (CaMK-) II promotes hyper-
trophic growth via phosphorylation of HDAC4 in cultured
cardiomyocytes, (2) activation of HDAC4 promotes angio-
tensin II-induced vascular smooth muscle hypertrophy,
and (3) CaMKII-mediated cardiac hypertrophy can be
altered by interfering with the HDAC4-MEF-2 signaling
pathway [41]. This link is likely due to HDAC4’s ability to
promote reactive oxygen species- (ROS-) dependent vascu-
lar inflammation and the development of hypertension in
spontaneously hypertensive rats [33]. Similarly, in a mouse
model of vascular inflammation, Ang II-induced production
of proinflammatory mediators, such as IL-6, VCAM-1,
COX2, and iNOS, is attenuated by knockdown of HDAC4.
HDAC4 is activated by Ang II and deacetylates transcription
factor FoxO3a, inducing upregulation of LC3-II, Beclin 1,
and Atg5. In addition, to determine whether HDAC4

mediates the inflammatory response, Tasquinimod (Taq),
an inhibitor of HDAC4, was tested [42]. The levels of proin-
flammatory mediators decrease significantly in rat primary
endothelial cells cotreated with Ang II/Taq but increase in
Ang II-treated cells. Immunofluorescence further confirmed
that treatment with siRNA HDAC4 or Taq decreases the
expression of HDAC4 and VCAM-1 proteins. The Ang
II-induced inflammatory response is alleviated by the inhibi-
tion of HDAC4 (see Figure 3). In addition, ROS are critical
components of Ang II function [43]. Among the various
forms of ROS, superoxide anion (⋅O2-), hydrogen peroxide
(H2O2), nitric oxide (NO), and peroxynitrite (ONOO-) are
particularly important in the cardiovascular system [44]. In
the cardiovascular system, NOX is the main producer of
vascular ROS, and NOX4 is induced by Ang II [45].
Interestingly, NOX4-produced H2O2 also influences the
location of HDAC4.

Vascular inflammation is significantly correlated with
hypertension and CVD. Vascular injury or damage accumu-
lated in vascular senescence also results in vascular endothe-
lial cell proliferation and migration, causing hypertrophic
growth [46]. Vascular inflammation is observed in the two
situations [47]. In the first, Smyd3 (SET and MYND
domain-containing protein 3), a methyltransferase inducing
trimethylation of lysine 4 on histone 3 (H3K4me3),
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Figure 1: The scheme of HDAC4 partitioning between the nucleus and cytoplasm. (a) HDAC4 is phosphorylated by a kinase like CaMK
and then combines 14-3-3, inducing nucleus export. (b) Oxidation of Cys667/669 of HDAC4 also promotes nuclear export. (c) The
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participates in Ang II-induced vascular senescence.
Knockout of Smyd3 in mice can significantly alleviate Ang
II-induced vascular senescence. Proinflammatory mediators
such as VCAM-1 and iNOS are upregulated in Ang
II-induced WT mice but blocked in Smyd3-/- mice
[48, 49]. In a vascular injury model, JMJD3 (Jumonji
domain-containing protein 3), a histone demethylase induc-
ing demethylation of lysine 27 on histone 3 (H3K27), induces
increased expression of NOX4, Atg5, Beclin 1, and iNOS,
respectively. Changes in protein expression levels indicate
oxidative stress and vascular inflammation (Figure 3) [50, 51].

Ang II-induced vascular injury indicates a crucial role of
immune cells in disease progression. The activated macro-
phages and T cells regulate vascular inflammation driving
vascular injury. Macrophage colony-stimulating factor
(m-CSF) deficiency reduces the number of vascular macro-
phages in Ang II-induced endothelial dysfunction, vascular
inflammation, and hypertension [52]. The evaluated expres-
sion of SMYD3 promotes the activation of ALOX-15, which
acts as a marker of anti-inflammatory macrophages [53].
Meanwhile, JMJD3 is also involved in the profibrotic signa-
ture of macrophage-derived foam cells via RNA sequencing
[54]. In addition, γδ T cells mediate Ang II–induced vascular
injury. Comparison of TCRδ-/- betweenWTmice showed the
CD4+ CD69+ and CD4+ CD69+ T cells activated in WT mice

and blunting in TCRδ-/- mice [55]. Vascular inflammation is
also associated with many forms of neurodegenerations,
including Alzheimer’s disease, Parkinson’s disease, and
amyotrophic lateral sclerosis [56]. Alzheimer’s disease (AD)
is the most common form of dementia, a brain degenerative
disease affecting nearly 10% of the population over 65 years
of age [57, 58]. Amyloid-β (Aβ) is widely considered a key
contributor to the pathophysiology of AD and induces brain
inflammation. Inflammation in endothelial cells is character-
ized by the expression of VCAM-1 and ICAM-1. The
elevated expression level of NLRP3 has been observed in
human brain and model mice, activating the production of
proinflammatory cytokines like IL-1β, IL-18, and gasdermin
D [59, 60]. In addition, the elevated expression level of HDAC4
was confirmed in the brain of AD patients and in mouse
models. Indeed, the oral administration of Taq increases the
levels of Syn2 andHomer1, which are upregulated in widemice
compared to 3xTg-AD mice [61–64] (Figure 4).

In other neurodegenerative conditions like Parkinson’s
disease (PD), HDAC4 may also be important. PD is the sec-
ond most common neurodegenerative disorder affecting
approximately 0.2% of the global population and 1% of peo-
ple aged over 60 [65]. In a recent case-control study involv-
ing 33 patients and 27 healthy subjects, it was shown that
high expression levels of VCAM-1 and angiogenic
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microRNAs were linked to vascular inflammation [66]. The
A53T mutant α-synuclein induces nuclear accumulation of
HDAC4, promoting neuronal apoptosis through suppress-
ing the activity of MEF2 [67] (Figure 4). Though there is
no HDAC4 inhibitor for therapeutic purposes, the nuclear
accumulation of HDAC4 discloses avenues for possible
intervention using therapeutics.

In addition, other conditions like Friedreich’s ataxia
(FRDA), spinal muscular atrophy (SMA), and amyotrophic
lateral sclerosis (ALS) are also vascular inflammation-
associated neurodegenerations [68, 69]. HDAC inhibitors
increase FXN expression by ~15% in FRDA and ameliorate
the disease phenotype in animal models [70–73]. The severity
of SMA is inversely correlated with the relative amount of
SMN protein. Several inhibitors including butyrate, valproate,
phenyl-butyrate, and vorinostat, class I and II HDAC inhibi-
tors, are effective in upregulating the expression of SMN2 in
fibroblasts obtained from patients suffering from SMA, which
is associated with improved survival, weight loss, and motor
behavior [74–78]. In ALS research, two studies revealed that
the pan-HDAC inhibitor TSA or sodium phenylbutyrate ame-
liorates axonal degeneration leading to motoneuron-related
death and enhancing the motor functions in the SOD1G93A

mouse model [79, 80] (Figure 4).

3. The Research and Development of
HDAC4 Inhibitors

HDAC4 inhibitors have been proved effective for cancer,
CVDs, and neurodegeneration. The synthesis of HDAC4

inhibitors has been a subject of clinical research for several
decades. The specificity of inhibitors has also developed over
time from generic pan-HDAC inhibitors to the more refined
class-specific inhibitors.

Trichostatin A (TSA) is an archetypal classical HDAC
inhibitor, which has been used widely by researchers. TSA
is a pan-HDAC inhibitor, which inhibits both class I and
class II HDACs. TSA was originally reported as a fungistatic
antibiotic obtained from culture broths of Streptomyces pla-
tensis. Other inhibitors have also been reported and include
vorinostat. This compound is also known as suberoylanilide
hydroxamic acid (SAHA) and was designed and optimized
based on similarity to the structure of TSA. Vorinostat has
been widely used to treat cutaneous T cell lymphoma. As
summarized, the synthesis of SAHA indicates that natural
products could be a possible source for the identification
and development of highly selective HDAC4 inhibitors.

Other compounds of interest include LMK235 (N-((6-
(hydroxyamino)-6-oxohexyl)oxy)-3,5-dimethylbenzamide),
a potent hydroxamate-based HDAC inhibitor. LMK235
specifically inhibits HDAC4 and shows equipotent efficacy
to HDAC4 as pan-HDAC inhibitors like SAHA [81]. More-
over, two class IIa HDAC inhibitors, TMP195 and TMP269,
which both contain a common metal-binding group, have
increased specificity [82].

Looking to the future, multifold HDAC4 inhibitors are cur-
rently in various development (R&D) pipelines. Of the avail-
able research, these molecules are showing promise in the
treatment of different types of cancer, autoimmune diseases,
peripheral pain, psychiatric disorders, and inflammation.
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BMN-290, an HDAC4i inhibitor developed by Scripps
Research Institute and BioMarin Pharmaceutical Inc., has been
assessed for the treatment of neurodegenerative diseases The
compound reverses FXN silencing and is in the preclinical
stage. Two other HDAC4 inhibitors, mocetinostat dihydrobro-
mide and a class IIa HDAC inhibitor, both developed by
MethylGene Inc., are undergoing extensive clinical trials for
the treatment of multiple cancers including advanced solid
tumor and metastatic non-small-cell lung cancer. The former
compound was designed to target HDACs 4, 5, and 7, while
the latter was designed as HDAC 1, 2, 3, 4, 7, and 11 inhib-
itors. In addition, the novel HDAC4 selective inhibitor,
CHDI-00381817, is being investigated by the Cure Hunting-
ton’s Disease Initiative (CHDI) foundation for its potential
use in treating Huntington’s disease (HD) (Table 1). These
four HDAC4 inhibitors are more selective than TSA and
SAHA, but some of these drugs could be further developed
to enhance selectivity.

Another four HDAC4 inhibitors are under preclinical
stage evaluation. SIK3 is a checkpoint inhibitor, is developed
by iOmx Therapeutics AG, and is designed as a HDAC4
inhibitor. Similarly, KYAN-001, developed by Georgetown
University and Kyan Therapeutics Inc., is designed as a
HDAC4- and HDAC6-specific inhibitor. These two molecules
are both aimed at cancer therapy. KRA-1641 is developed by
Karus Therapeutics Ltd., and a histone deacetylase-4 inhibitor
(oral, neurodegenerative diseases/amyotrophic lateral sclero-

sis) is developed by Acetylon Pharmaceuticals Inc. The two
are HDAC4-specific inhibitors.

3.1. Our Work and Hypothesis. In a recent study, we
collected the chemical structures of several HDAC4
inhibitors from patent documents and tried to evaluate their
characteristics related to clinical use. Based on the
information, we attempted to design several novel selective
HDAC4 inhibitors. The structures of these HDAC4 inhibi-
tors can be divided into four groups: A, B, C, and D, as
shown in Figure 5 [79, 83]. Small molecules with structures
similar to HDAC4 were considered possible HDAC4
inhibitors. Different functional groups including OCH3,
OH, N(CH3)2, NO2, and small alkyl chains were added to
the compounds to increase their affinity for HDAC4. Ini-
tially, these molecules were screened using the molecular
operating environment software. The docking results
obtained from the software predicted that these small mole-
cules would inhibit HDAC4, which remains to be further
confirmed by in vitro and in vivo studies.

4. Discussion

Here, we report on the role of HDAC4 and its utility as a
potential therapeutic target in the treatment of age-related
diseases. Histone deacetylation, nonhistone deacetylation,
and protein complexes are induced by HDAC4 and

AC AC AC
AC AC AC

HDAC4

HDAC4

α-synuclein
A53T

HDAC4

FXN 

SMN2
Syn2, Homer1 AD

FRDA

SMA

HDAC4

MEF2
Apoptosis PD

Signal pathway

Transcription factor

AcetylationAc

Expression suppression

Downregulation
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Table 1: HDAC4 inhibitors in the research and development pipelines.

Drug ID Representative structure(s) IC50

LMK-235

O

O

O

OHN N
HH 11.9 and 4.2 nM against HDAC4 and HDAC5

TMP-195

O O O

NF
F

F N

N N
H

59, 60, 26, and 15 nM against HDACs 4, 5, 7,
and 9

TMP-269 O O

O

S

NF

F
F N

N

N

H

157, 97, 43, and 23 nM against HDACs 4, 5, 7,
and 9

BMN-290

O O

N

NH2

N
H H

NA

Mocetinostat
dihydrobromide (MG-0103)

N

N

N

N
N

NH2
H

H

H

O
Br

H Br

0.05, 0.2, 1, and 20 μM against HDACs 1, 2, 4, 6,
and 8, respectively

Class IIa HDAC inhibitors,
MethylGene

O

O

OH

H
N

0.25, 0.11, and 0.05 μM against HDACs 4, 5, and
7, respectively
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participate in aging and neurodegeneration. HDAC4 is regu-
lated by variable intercellular features including abundance,
posttranscriptional regulation, and location. ROS determines
HDAC4 location and accumulates in the nucleus/cytoplasm
in aging and neurodegeneration. ROS induces DNA damage,
apoptosis, and protein degradation, all of which cause DNA
structural variation. In addition, the level of ROS is influenced
by HDAC inhibitors. These mechanisms indicate associations
between ROS and HDAC4.

Hypertension, CVD, and neurodegenerations are reported
to be related to inflammation. Indeed, vascular inflammation
is largely driven via injury and aging processes. Vascular injury
induced by stroke is linked to vascular inflammation and

induced PD. However, the linkage between damage accumula-
tion along with aging and disease has not been fully explored.
What is known is that the epigenetic landscape and oxidative
stress are intimately linked and likely play a role in age-related
diseases. It is likely that HDAC4 is important in these pro-
cesses. Indeed, the activity and location of HDAC4 both act
on age-related diseases. The activity of HDAC4 relates tomus-
cle disease, and the location preferably relates to neurodegen-
eration. Hence, HDAC4 inhibitors may show promise as
potential therapeutics.

HDAC4 inhibitors have been recognized as a potential
therapeutic approach for several diseases. Small molecules
with similar structures to existing HDAC4 inhibitors could

Table 1: Continued.

Drug ID Representative structure(s) IC50

CHDI-00381817

O

O

OH

H
N

N

0.02μM against HDAC4

O
H

H

H
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B C

D

H
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N
N

H O–

O–

N+

His131
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Figure 5: The structures of HDAC are divided into groups A, B, C, and D for the attachment or binding of histone deacetylases (HDACs).
Group A inhibitors are soft, with nonbonding electron-pair donors that coordinate the zinc ion and H-bond acceptor to accept a hydrogen
bond from tyrosine –OH. An H-bond could be donated to the phenol oxygen atom of Tyr297. Group B links the zinc-chelating moiety to
the spacer and hence is at least trivalent. Group C includes H-bond donors to residue His132; consequently, they are trivalent or of higher
valency. Group D includes proton donors that protonate His131, subsequently accepting an ionic H-bond from it and forming a strong
interaction with the zinc ion.
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be considered possible new HDAC4 inhibitors. For example,
SAHA has a similar structure to TSA. Derivatives of hydro-
xamate and trifluoromethyl oxadiazole should also be
considered potential inhibitors. However, most HDAC4
inhibitor research and associated clinical trials largely focus
on cancer treatment. Therefore, in the future, it may be
timely to assess HDAC4 inhibitors in neurodegenerative
conditions. Since the therapeutic drug has already been
developed, potential use in neurodegenerations could be
evaluated [84]. Our group also designed and synthesized
novel HDAC4 inhibitors from natural products, and the
work will be published soon.

The dysfunction of HDAC4 causes diseases, but normal
HDAC4 plays a critical role in differentiation and develop-
ment. HDAC4 is required for learning, memory, and synap-
tic plasticity [85]. Although the research for HDAC4 has
proceeded for over 20 years, there are still lots of research
gaps remaining. The lack of HDAC4-specific inhibitors
and the abundant posttranscriptional regulation make the
verification a complicated work. Further studies will eluci-
date the mechanisms of HDAC4 and provide more feasible
drug design groups.
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