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Ferroptosis is a new programmed cell death characterized by the accumulation of lipid peroxidation mediated by iron and
inflammation. Since the transcentury realization of ferroptosis as an iron-dependent modality of nonapoptotic cell death in
2012, there has been growing interest in the function of ferroptosis and its relationship to clinical diseases. Recent studies have
shown that ferroptosis is associated with multiple diseases, including degenerative diseases, ischemia reperfusion injury,
cardiovascular disease, and cancer. Cell death induced by ferroptosis has also been related to several skeletal diseases, such as
inflammatory arthritis, osteoporosis, and osteoarthritis. Research on ferroptosis can clarify the pathogenesis of skeletal diseases
and provide a novel therapeutic target for its treatment. In this review, we summarize current information about the molecular
mechanism of ferroptosis and describe its emerging role and therapeutic potential in skeletal diseases.

1. Introduction

Ferroptosis is a new cell death mode characterized by the
accumulation of lipid peroxidation mediated by iron. In
2012, Dixon et al. first proposed the definition of ferroptosis,
an iron-dependent nonapoptotic mode of cell death charac-
terized by the accumulation of lipid reactive oxygen species
(ROS) [1, 2]. Recent studies have shown that ferroptosis is
obviously distinct from previous cell death patterns, such
as autophagy, necrosis, and necrotic apoptosis, at genetic and
characterized levels (Table 1) [1–3]. Unlike the morphological
features of necrosis, it does not havemembranolytic properties
or swelling of the cytomembrane and cytoplasm. Further-
more, in contrast with autophagy, ferroptosis is characterized
by rupture of the cell membrane. Specifically, ferroptosis is
morphologically shown by reduced mitochondrial cristae
and rupture of the mitochondrial outer membrane, which
leads to mitochondrial dysfunction [1, 4, 5].

Iron homeostasis and lipid peroxidation are committed
steps in the process of ferroptosis (Figure 1) [2, 6]. Superflu-
ous iron induces ferroptosis by producing ROS, while sup-
pressing GPX4 can inhibit ferroptosis through the
accumulation of intracellular lipid peroxide [1, 6, 7]. In addi-
tion, upon exposure to some compounds used in experi-
ments and clinics, such as erastin, sorafenib, lanperisone,
and Ras-selective lethal small molecule 3 (RSL3), ferroptosis
was promoted, while ferrostatin-1 (Fer-1), liproxstatin-1
(Lip-1), and zileuton inhibited ferroptosis [8–10]. Current
studies have indicated that the relationship between ferrop-
tosis and orthopedic diseases has also attracted extensive
attention [1, 6, 11–16]. Ferroptosis has been reported in
osteosarcoma cells, promoting their sensitivity to cisplatin
with the application of erastin or RSL3, thus attenuating resis-
tance of osteosarcoma to cisplatin in vitro [17]. Another report
showed that iron overload induced by erythrocyte rupture and
the increasing excitatory toxicity of glutamate induced by
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stress in acute spinal cord injury (SCI) lead to ferroptosis,
while desferrioxamine (DFO), an inhibitor dampening ferrop-
tosis, can improve SCI [18]. In view of these findings, this
review summarizes recent research progress on ferroptosis to
supply references for further understanding of its mechanism
and describe its emerging role in skeletal diseases.

2. Origin and Development

The concept of programmed cell death first emerged in the
1960s, before ferroptosis was defined [19, 20]. Previous stud-
ies on cell death indicated that GPX4, the fourth member of
the selenium containing GPX family, but not GPX1, reduces

Table 1: Comparison of cell death in ferroptosis, autophagy, and apoptosis.

Comparison of characteristics of cell death in ferroptosis, autophagy, and apoptosis
Cell death types Ferroptosis Autophagy Apoptosis

Morphological
characteristics

Smaller mitochondria, decreased
mitochondrial ridge

Autolysosome
Cells became round, chromatin
is condensed and fragmented,

and cytoplasm shrunk

Other features
Iron ion aggregation,
cell membrane rupture

No obvious changes in
the nucleus and membrane

Cell shrinks, cytoplasm flows out,
and membrane vacuoles

Detection index ROS, PTGS↑; NADPH↓ LC3-I→LC3II Caspase↑; intracellular Ca2+↑

Positive regulatory factor Erastin, RSL3, RAS, Sorafenib, p53 ATG family, Beclin1
P53, Bax, Bak, TGF-β, radiation,

dexamethasone

Negative regulatory factor
GPX4, FSP1, SLC7A11, Nrf2,

ferrostatin-1, liproxstatin-1, DFO
mTOR, 3-methyladenine,
wortmannin, Spautin1

Bcl-2, Bcd-XL, Z-VAD-FMK, IL-4

SLC7A
11

LOXs

Fenton reaction

FSP1
NAPD+

Ferritin

CoQ10

HSPB1

PHKG2

Fe2+

Fe3+

DM
T1

ST
EA

P3

N
CO

A
4

Fe
rr

iti
no

ph
ag

y

CoQ10H2

NAPDH

Ferroptosis

PUFAs-OOH

PUFAs-OH

GPX4

RSL3

Lipoxstatin-1

BAP1

P53

Cystine

Cystine

SystemXc–

SLC3A
2

SLC7A
11

Erastin
Sorafenib
Sulfasalazine

PUFAs-OOHPUFAsTFR1Fe3+Fe2+

CP LOXS

Cysteine

Glumate
Ferrostatin-1

Lipid ROS

Lipid peroxidation

GSH

G
SS

GSSH
NAPD+

NAPDH

Figure 1: Mechanisms of ferroptosis. Ferroptosis is characterized by iron accumulation, excessive production of ROS, and lipid
peroxidation. This illustration shows the process of ferroptosis, summarizing the key molecules and targets regulating iron and lipid
peroxidation. TFR1: transferrin receptor 1; PUFA: polyunsaturated fatty acid; LOX: lipoxygenase; STEAP3: six-transmembrane epithelial
antigen of prostate 3 metalloreductase; SLC7A11: solute carrier family 7 member 11; DMT1: divalent metal transporter 1; SLC3A2:
solute carrier family 3 member 2; BAP1: BRCA1-associated protein 1; ROS: reactive oxygen species; FSP1: ferroptosis suppressor protein
1; FPN1: ferroportin 1; GPX4: glutathione peroxidase 4; GSH; glutathione; GSSG: oxidized glutathione; GSS: glutathione synthetase;
PHKG2: phosphorylase kinase G2; HSPB1: heat shock protein beta-1; NCOA4: nuclear receptor coactivator 4; RSL3: Ras-selective lethal 3.
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lipid hydroperoxides in membranes, and cloning GPX4
reveals its distinct nature such as the scavenging capacity
of membrane lipid hydrogen peroxide products compared
to other GPXs, thus suppressing cell death [21, 22]. It was
thought that this phenomenon was caused by the inhibition
of apoptosis or autophagy. Meanwhile, the presence of
GPX4 has been further observed in animals and humans
[23, 24]. This further confirms the important role of GPX4
in cell death patterns. Before long, Dolma et al. found that
erastin had selective lethality in Ras-expressing cancer cells,
and the cell death pattern was different from what we previ-
ously knew until the 2000s [25]. In addition, RSL3 and RSL5,
which can directly bind to GPX4 protein to inactivate it and
induce the production of lipid ROS, selectively killed Ras-
transformed (BJeLR) BJ fibroblasts in a new way different
from apoptosis [1]. It is interesting that the mode of cell
death induced by this composition is nonapoptotic, as cell
death is induced by erastin and RSL3 in the absence of apo-
ptotic markers [4, 5, 25]. Ushered in a major breakthrough
in 2012, the new terminology ferroptosis was coined from
nutrient consumption-induced cancer cell death and oxida-
tion, the death of neurons yielding to the glutamate excito-
toxin and inhibiting the amino acid antiporter solute
carrier family 7 member 11 (SLC7A11/x CT/system Xc-)
[26–29]. With the discovery of this concept, subsequent
studies confirmed the phenomenon that GPX4 inhibited
iron-mediated death by inhibiting ROS production rather
than autophagy or apoptosis, as previously thought. Recent
studies have identified lipophilic antioxidants as powerful
inhibitors of erastin-induced cell death, suggesting that
ROS are involved in this cell death process (Figure 1) [5,
30]. Moreover, iron chelating agents were identified as sup-
pressors of cell death induction after RSL3 treatment, sug-
gesting the requirement for cellular iron [4].

In 2014, Skouta et al. found that Fer-1, a chemical com-
pound inhibiting the peroxidation induced by iron and trace
lipid hydroperoxide in liposomes, suppressed cell death in
some disease “models,” such as Huntington’s disease (HD),
periventricular white matter (PVL), and renal insufficiency.
This discovery provides the basis for the use of ferrostatin
in models of diseases, and it is the first to stress the impor-
tance of ferroptosis beyond the cellular level [31]. In 2015,
new results revealed that the retinoblastoma- (Rb-) negative
status of hepatocellular carcinoma cells promotes iron oxi-
dation disease (a type of oxidative necrosis) after exposure

to sorafenib. These findings highlight the role of retinoblas-
toma in the response of HCC cells to sorafenib and the reg-
ulation of iron disease [32]. Subsequent studies showed that
the iron chelating agent deferoxamine (DFO) significantly
inhibited RSL3/BV6-induced cell death, but it did not pro-
tect erastin/BV6 cells from death, suggesting that RSL3/
BV6- and not erastin/BV6-mediated cell death depended
on iron in 2017 [33]. In addition, activation of the Nrf2-
ARE pathway contributed to HNV cell resistance to GPX4
inhibition, and inhibition of the Nrf2-ARE pathway reversed
resistance to iron transformation in HNC cells in 2018 [34].
In 2020, glutamine deprivation increased vorinostat-
mediated cell death and ROS accumulation, and genetic
elimination of xCT improved the efficacy of vorinostat by
inducing ferroptosis (Figure 2) [35]. In summary, the dis-
covery and development of a new death mode named fer-
roptosis may provide a research approach to learn and
treat multidisciplinary diseases.

3. The Relationship between Bone Metabolism
and Iron

Iron is an important trace element in nature. In recent years,
people have gradually realized that iron deficiency and iron
overload are important inducers of the occurrence and
development of ferroptosis. For the sake of a deeper under-
standing of bone metabolism and ferroptosis, researchers
have begun to explore the relationship between iron and
bone metabolism. Medeiros et al. found that bone volume
fraction (BV/TV) and bone trabecular thickness decreased
with the increment of bone trabecular separation analyzed
by micro-CT in a female rat model fed an iron-deficient diet
[36]. With the exception of the effects of iron deficiency on
bone structure, markers of bone transformation were also
affected, which may provide ideas into the detailed mecha-
nism of how iron deficiency affects bone. In contrast, the
expression levels of parathyroid hormone (PTH) and
tartrate-resistant acid phosphatase 5B (TRAP) were upregu-
lated in iron-deficient rats, suggesting that severe iron defi-
ciency leads to increased bone resorption as bone
formation decreases. In addition, previous studies have
shown that the mineralization function of osteoblasts is
damaged through a lack of iron [37]. A population study
also reported that iron deficiency anemia (IDA) played a sig-
nificant role in some bone health indicators. In a population-
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Figure 2: The timeline of ferroptosis.
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based study from Taiwan, the risk ratio of IDA to osteoporo-
sis was 1.74 higher than that of individuals with normal iron
status [38]. Contrary to common sense, the more iron there
is, the better. High levels of iron in menopausal female and
some genetic diseases are correlated with a decrease in bone
quality and activity. These processes eventually lead to loss
of bone mass, increased risk of bone fracture, and formation
of osteoporotic bone phenotypes, as stated elsewhere [39].
Although the effects of menopause were excluded, Kim
et al. also found that an increase in ferritin resulted in bone
loss [40]. Subsequent studies have shown that there is a rela-
tionship between iron overload and a high incidence rate of
osteoporosis in hereditary hemochromatosis (HH) [41, 42].
As described above, bone metabolism is disordered in an
environment of iron deficiency, which leads to the occur-
rence of orthopedic diseases.

4. Inducers

To date, there are many inducers of ferroptosis (Table 2).
We briefly describe the following compounds.

4.1. Erastin. Cell death induced by erastin is efficiently sup-
pressed by antioxidants such as α-tocopherol, β-carotene,
butylated hydroxytoluene, and iron chelators, indicating that
ferroptosis induced by erastin requires ROS- and iron-
dependent signaling [1, 43]. Upregulation of RAF/MEK/
ERK signaling can be significant for ferroptosis induced by
erastin in tumor cells carrying oncogenic Ras [43]. In vivo,
the adaptation and water solubility of piperazine erastin
are better than those of erastin in suppressing cancer
growth [44].

The mitochondrial voltage-dependent anion channel
(VDAC) is one of the direct molecular targets of erastin,
which can be directly attached to VDAC2/3 in BJeLR cells
[43]. Reducing the expression of VDAC2 and VDAC3,
instead of VDAC1, brings about erastin resistance [43]. In
addition, erastin is able to decrease glutathione (GSH) levels
by directly suppressing system Xc- activity to affect the cys-
tine/glutamate antiporter, activating the stress response in
the ER in bone marrow-derived mesenchymal stem cells
[1, 45, 46]. This response will accelerate ROS accumulation
in ferroptosis.

Table 2: Overview of inducers of ferroptosis.

Target Inducer Mechanisms associated with ferroptosis

System Xc-

Erastin Inhibit system Xc- activity

Erastin2 Inhibition of system Xc- cystine/glutamate transporter

Imidazole ketone Erastin Metabolic stabilization inhibitor of system X-

Glutamate Inhibit system Xc- activity

GPX4

RSL3 GPX4 bound to selenocysteine sites

DPI7 (ML162) Covalently bind GPX4 (same binding site as RSL3)

DPI10 (ML210) Indirectly inhibit GPX4 activity or bind to sites different from RSL3

Altretamine Inhibit GPX4 activity

GSH

Buthionine sulfoximine Reduce GSH synthesis

N-Acetyl-4-benzoquinone imine Toxic doses deplete glutathione reserves in the liver

Cisplatin Binding to GSH inactivates GXP4

DPl2 Excessive consumption of GSH

Piperlongumine Consume GSH and inhibit GPX4 activity

ROS and iron ions

Heme Increase of intracellular unstable iron

Withaferin A
Medium dose upregulated HMOX1 expression and increased intracellular unstable

iron. High dose inhibited GPX4 activity

BAY 11-7085 Upregulation of HMOX1 expression and increase of intracellular unstable iron

FINO2 Oxidation of Fe2+ promotes ROS accumulation in cells

Artesunate Induce ferritin autophagy and release unstable iron

Dihydroartemisinin
Induce ferritin autophagy and release unstable iron; binding to free iron

inhibits ferritin translation

Siramesine
Decrease the expression of FPN, increased the expression of transferrin,

increased the intracellular unstable iron

BAY 87-2243 Inhibit mitochondrial respiratory chain complex 1 and increase ROS

iFSP1 Inhibition of FSP1 inhibits ferroptosis unrelated to glutathione activity

ROS
Auranofin Inhibit thioredoxin reductase activity

Statins
Inhibits HMG-COA reductase, which catalyzes rate-limiting steps

of the MVA pathway

ROS and GSH QD-394 Induce lipid peroxidation and decrease GSH/GSSH ratio

ROS and SQS FIN56 Induce GPX4 degradation. Bind and activate SQS to reduce CoQ10
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4.2. RSL3 and RSL5. In tumor cells, ROS, iron, and MEK are
essential in ferroptosis induced by RSL3 and RSL5 [4].
VDAC2/3 is necessary for RSL5 to realize ferroptosis but
not for RSL3 [4]. RSL3 can directly inhibit GPX4 [7]. After
integrating into GPX4, RSL3 suppresses GPX4 to promote
lipid peroxidation to increase ROS production [7]. There-
fore, recent studies have shown that at least two types of
RSLs exist. Type I RSLs, such as erastin and RSL5, can trig-
ger ferroptosis by targeting upstream regulators. Type II
RSLs suppress downstream regulators such as GPX4 to
induce ferroptosis. RSL5-induced ferroptosis can be inhib-
ited by a protein synthesis inhibitor but not RSL3-induced
ferroptosis, indicating that type I RSL-induced ferroptosis
requires protein synthesis.

4.3. Lanperisone. Lanperisone, an improved version of tol-
perisone, has been developed as a skeletal muscular relaxant
[45]. Lanperisone can selectively kill K-Ras-mutant mouse
embryonic fibroblasts through the induction of ROS medi-
ated through iron and Ras/RAF/MEK/ERK signaling. In
addition, lanperisone may inhibit the function of system
Xc- or other targets in ferroptotic pathways [1]. LP appears
to be similar to erastin in terms of potential mechanisms.
By binding to mitochondrial voltage-dependent anion chan-
nels (VDACs), erastin alters VDAC gating, leading to mito-
chondrial dysfunction and ROS production and ultimately
inducing ferroptosis. Lanperisone also suppresses tumor
growth in a K-Ras-driven mouse model of lung cancer
in vivo [47]. The specific mechanism of ROS generation
induced by lanperisone is not clear, but a study suggests that
the interference of voltage-gated ion channels is impor-
tant [45].

4.4. Sorafenib. Sorafenib can induce ferroptosis in some can-
cer cells, such as colorectal cancer cells, hepatoma cells, and
osteosarcoma cell [32, 48, 49]. Ferroptosis induced by soraf-
enib occurs free from the carcinogenic state [50]. However,

the expression of Nrf2 and Rb can suppress ferroptosis
induced by sorafenib in HCC [32, 51]. The function of soraf-
enib in ferroptosis may be associated with the inhibition of
system Xc- instead of GPX4 expression. This process is
linked to the upregulation of ER stress [52]. Further research
on sorafenib analogs shows that sorafenib suppresses system
Xc− via a nonkinase target [52].

5. Inhibitors

In addition to the above, we also summarized the inhibitors
of ferroptosis classified by some targets (Table 3).

5.1. Ferrostatin. Initial ferrostatin is known as ferrostatin-1
(Fer-1) and acts as an inhibitor of ferroptosis induced by
RSL3 and erastin in fibrosarcoma HT-1080 [1]. The activity
of Fer-1 is determined by the primary aromatic amine,
which particularly suppresses lipid oxidation and decreases
the accumulation of ROS [1]. In addition, Fer-1 can inhibit
osteoblast ferroptosis by regulating the Nrf2-ARE signaling
pathway, thereby alleviating nanoparticle-induced peri-
implant osteolysis [53]. In comparison with Fer-1, new-
generation ferrostatins (SRS 11–92 and SRS 16–86) have
the advantages of improving the stability of metabolism
and tremendously preventing diseases such as acute kidney
injury and ischemia-reperfusion injury [54, 55].

5.2. Liproxstatin-1. Liproxstatin-1 (Lip-1), a potent spiroqui-
noxalinamine derivative, is known to inhibit the accumula-
tion of ROS from lipid oxidation and cell death in GPX4
knockout cells [43]. Lip-1 may function as a lipophilic anti-
oxidant, although the mechanism of action of this inhibitor
has yet to be reported. Previous studies have proven the
close relationship between Lip-1 and ferroptosis. In vitro,
Lip-1 inhibits ferroptosis induced by ferroptosis inducers
such as erastin, RSL3, and buthionine sulfoximine. Recent
studies have also found that Lip-1 suppresses ferroptosis in

Table 3: Overview of inhibitors of ferroptosis.

Target Inhibitor Mechanisms associated with ferroptosis

ROS and iron ions

Minocycline Minocycline reduces iron overload after ICH and iron induced brain injury

Ferrostain-1 Scavenge ROS, inhibit lipid peroxidation, and reduce unstable iron in cells

Liproxstatin-1 Scavenge ROS, inhibit lipid peroxidation, and activate the Nrf2 signaling pathway

Curcumin Chelate iron, reduce iron accumulation, and activate the Nrf2 signaling pathway

Alpha tocopherol
analogs

Remove ROS and inhibit lipid peroxidation

Nitrogen oxides Inhibit Fenton reaction and hydroxyl radical production

GSH and GPX4
Baicalein

Inhibit GSH depletion, GPX4 degradation, and lipid peroxidation and activate the Nrf2
signaling pathway

Gastrodin Inhibit glutamate-induced iron death in HT-22 cells

ACSL4 Rezulin Prevention of ferroptosis and lipid peroxidation in Pfa1 cells induced by RSL3

5-LOx Zileuton Protect ACSL4 overexpressed LNCaP and K562 cells from erastin-induced ferroptosis

TFR1 and FTH1 HSPB1 Inhibit ferroptosis induced by erastin

Lipid peroxidation XJB-5-131 Suppress lipid peroxidation

Iron Deferoxamine Deplete iron and prevent iron-dependent lipid peroxidation
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osteosarcoma cells induced by bavachin through the stat3/
p53/slc7a11 axis [56]. Intraperitoneal injection of Lip-1 in
GPX4 knockout mice prolongs animal life in response to
renal injury [43]. Lip-1 can also prevent other organ ischemia
reperfusion injuries in mice, such as hepatic and cerebral
injury by evaluating proferroptotic changes after ischemia
and the levels of protein and lipid peroxidation [57].

5.3. Prominin-2. Ferroptosis causes clinically extensive
necrosis during heart attack and acute kidney injury. Belav-
geni et al. described the terpenoid membrane glycoprotein
prominin-2 as a novel endogenous ferroptosis inhibitor
[58]. Subsequent studies found that iron-promoting stimu-
lants (including inhibition of GPX4 and its withdrawal from
the extracellular matrix) induce the expression of promi-
nin2, a pentapeptide involved in the dynamic regulation of
the vitamin. Prominin2 promotes iron-resistant death of
breast epithelial and breast cancer cells [59]. Mechanistically,
prominin2 promotes the formation of ferritin-containing
polyvesicles (MVBs) and exosomes that transport iron out
of the cell, thereby inhibiting ferroptosis. These findings
suggest that resistance to iron death can be driven by the
prominin2-MVB-exosome-ferritin pathway and has broad
implications for iron homeostasis, intracellular transport,
and cancer [59, 60].

6. Important Mechanisms
Associated with Ferroptosis

6.1. Inducing Ferroptosis by Suppressing System Xc-. System
Xc- is a plasma membrane cystine/glutamate antiporter
made up of a twelve-pass transmembrane transporter pro-
tein linked to the transmembrane regulatory protein
SLC3A2 through a disulfide bridge that is often present in
phospholipid bilayers. It is also an integral part of the cell
antioxidant system. Cystine and glutamate are intercellularly
and extracellularly exchanged by system Xc- at equal propor-
tions [1]. Cysteine is degraded into cysteine in cells and is
closely related to the production of glutathione (GSH).
GSH suppressed ROS in the presence of glutathione peroxi-
dases (GPXs). Suppressing the viability of system Xc- influ-
ences the production of GSH by decreasing the absorption
of cystine, which results in downregulating GPX activity
and greatly weakening cell antioxidant capacity. Due to the
influence described above, the eventual occurrence of oxida-
tive damage and ferroptosis is inevitable. In addition, by
downregulating the expression of SLC7A11, p53 can also
inhibit cystine uptake by system Xc-, thus reducing the activ-
ity of GPX4, leading to decreased cell antioxidant capacity
and ferroptosis [61, 62].

6.2. Inducing Ferroptosis by Suppressing GPX4 through the
MVA Pathway. In the case of the GPX family, recent studies
have shown that GPX4 plays a considerable role in the
occurrence of ferroptosis mainly by suppressing the forma-
tion of lipid peroxides. GPX4 is a unique selenium-
utilizing form of glutathione peroxidase that can specifically
protect lipids in cell membranes from oxidative damage.
GPX4 acts as a phospholipid hydroperoxidase and plays a

role in the conversion of glutathione to oxidized glutathione
(GSSG) and decreases phospholipid hydroperoxide produc-
tion (AA/ADA-PE-OOH) to the corresponding phospho-
lipid alcohol (PLOH) [63]. The accumulation of lipid
peroxides induced by the downregulation of GPX4 activity
can result in the emergence of ferroptosis. In contrast, cells
overexpressing GPX4 suppress ferroptosis by decreasing
the production of lipid peroxides [43]. RSL3, which induces
ferroptosis, has a direct function on GPX4 and suppresses its
activity to reduce the generation of the antioxidant capacity
of cells and accumulate ROS, thus resulting in the occur-
rence of ferroptosis [7]. Selenocysteine is one of the essential
amino acids in the activation of GPX4, and its tRNA, which
plays a crucial role in efficient translational decoding of
UGA and synthesis of selenoproteins through isopentenyla-
tion, links selenocysteine to GPX4 [64]. The mevalonate
(MVA) pathway is a metabolic pathway for the synthesis
of isoprene pyrophosphate and dimethyl allyl pyrophos-
phate from acetyl coenzyme A. In addition, when GPX4 is
inactivated, it will inhibit the conversion of lipid peroxide
to lipid alcohol. Lipid peroxide (LPO) can be used as an
important indicator of ferroptosis. For example, nanoplat-
form could inhibit the expression of HMGCR to downregu-
late the mevalonate (MVA) pathway and glutathione
peroxidase 4 (GPX4), thereby producing more LPO to
induce cancer cell ferroptosis. Apart from these, IPP and
CoQ10 play vital roles in the mevalonate (MVA) pathway
[64–66]. Consequently, suppressing the MVA pathway can
reduce the synthesis of selenocysteine tRNA, thus influenc-
ing GPX4 expression and leading to ferroptosis.

6.3. Inducing Ferroptosis by Injuring Mitochondrial VDACs.
VDAC is involved in energy metabolism mainly by affecting
the transport of ATP/ADP in and out of mitochondria.
Meanwhile, VDACs, as transmembrane channels, can trans-
port ions and metabolites and play a key role in regulating
ferroptosis [67]. Tarangelo et al. found that erastin exerts
effects on VDACs, leading to mitochondrial structural injury
and dysfunction and bringing about a large amount of
released reactive oxygen species (ROS), ultimately leading
to ferroptosis [68]. By blocking the oligomerization of
VDAC1 but not VDAC2 or VDAC3, they found that
liproxstatin-1 short-circuited the ferroptosis pathway [69].

6.4. Ferroptosis Mediated by p53. p53 is a pivotal tumor sup-
pressor gene, which regulates cell growth and senility by
promoting apoptosis and repairing DNA under stressful
conditions and plays a vitally important role in the occur-
rence and development of tumors [70]. Researchers have
accidentally found that p53 is also closely related to ferrop-
tosis. A study has shown that acetylation-deficient p53
mutants can boost ferroptosis. Jiang et al. found that the
activity of p53-silenced H1299 cells was not different when
induced by ROS [61]. However, almost all of the cells died
induced by reactive oxygen species after activating p53.
The cell death rate decreased significantly when cells were
treated with Fer-1, a ferroptosis inhibitor. Recent studies
have reported that p53 can suppress cystine uptake by sys-
tem Xc- through downregulation of SLC7A11 expression,
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thus regulating GPX4 expression and reducing antioxidant
capacity and ultimately ferroptosis [61]. In addition, the
p53-SAT1-ALOX15 pathway is also associated with the pro-
cess [67]. In addition, the expression of p53 can also have an
opposite effect on ferroptosis. Tarangelo et al. found that p53
suppressed the competence of system Xc- but also decreased
the sensitivity of many cells, such as human HT-1080 fibro-
blasts, to ferroptosis [68]. He et al. found that these cells,
called human HT-1080 fibroblasts, were not sensitive to fer-
roptosis induced by erastin-2 when treated with the p53
inducer nutlin3. Subsequent research demonstrated that
nutlin-3 increases the expression of wild-type p53 in wild-
type U-2OS, Caki-1, and A549 cells, which could lead to fer-
roptosis [71]. In addition, inhibition of ferroptosis sensitivity
requires the help of CDKN1A (encoding p21), which regu-
lates glutathione synthesis and metabolism. Previous out-
comes clearly state that the p53-p21 axis can negatively
regulate ferroptosis in cancer cells [68]. Apart from what
was mentioned before, Xie et al. found that p53 played an
important role in suppressing ferroptosis in colorectal can-
cer [72]. Consequently, p53 regulation of ferroptosis may
be bidirectional and the detailed mechanism needs to be fur-
ther studied.

6.5. Relationship between Iron Metabolism and Ferroptosis.
Iron is a necessary trace element for humans. Abnormal iron
metabolism in the body can affect the occurrence and devel-
opment of normal physiological processes. In the blood, iron
mainly exists in the form of Fe2+, which originates from
erythrocyte degradation or intestinal absorption [73]. Six
transmembrane epithelial antigen of the prostate 3
(STEAP3) can resolve Fe3+ into Fe2+, and unstable iron pool
(LIP) and ferritin will finally be storage places for Fe2+ with
mediation of zinc-iron regulatory protein family 8/14 (ZIP8/
14) or divalent metal transporter 1 (DMT1). Superfluous
Fe2+ is oxidized to Fe3+ by ferroportin (FPN) [74]. The recy-
clability of internal iron, as mentioned above, strictly regu-
lates iron homeostasis in cells. Silencing TFRC (the gene
encoding TFR1) can suppress ferroptosis induced by erastin
[11], but heme oxygenase-1 (HO-1) can expedite ferroptosis
induced by erastin by replenishing iron [75]. Recent studies
have found that ferroptosis is related to heat shock protein
beta-1 (HSPB1). This protein can suppress TFR1 expression
to decrease intracellular iron content, and the overexpres-
sion of HSPB1 can effectively inhibit ferroptosis [76]. Iron
response element binding protein 2 (IREB2) plays a key
role in iron metabolism, and inhibiting it can significantly
inhibit ferroptosis by increasing the expression of ferritin
heavy chain 1 (FTH1), which is an important component
of ferritin [77].

6.6. Regulating Ferroptosis through the Lipid Metabolism
Pathway. The accumulation of ROS is one of the important
characteristics of ferroptosis. Lipid metabolism and ferrop-
tosis are closely related. The lipid peroxidation of polyunsat-
urated fatty acids (PUFAs) is susceptible and closely related
to the occurrence of ferroptosis [78]. The process of esterifi-
cation and oxidation is necessary to transmit signals to cause
ferroptosis. Recent research shows that phosphatidyletha-

nolamine (PE), containing arachidonic acid (AA) or its
derivative adrenaline, plays a pivotal role in ferroptosis
[79]. Lysophosphatidylcholine acyltransferase 3 (LPCAT3)
and acyl-CoA synthetase long-chain family member 4
(ACSL4) are related to the synthesis and reconstruction of
PE, activating PUFAs and influencing the transmembrane
function of PUFAs [80]. Therefore, downregulating the
expression of the above two products can reduce the accu-
mulation of intracellular lipid peroxide substrates and
inhibit ferroptosis. Ultimately, with the catalysis of lipoxy-
genase (LOX), PUFA-PE can play a further oxidative role
and eventually induce ferroptosis.

7. Ferroptosis in Bone-Related Diseases

7.1. Osteoporosis. Osteoporosis is a systemic bone disease
that is prone to fracture due to the decrease in bone density
and quality, destruction of bone microstructure, and
increase in bone fragility [81]. In addition, pain caused by
osteoporosis can reduce the quality of life of patients; spinal
deformation and fracture can be disabled, limiting patients’
activities and increasing the incidence of pulmonary infec-
tion and bedsores, not only increasing the quality of life
and mortality of patients but also imposing a heavy eco-
nomic burden on individuals, families, and society [82].
Current treatments for osteoporosis are limited, and calcium
is only supplemented when appropriate, but calcium alone
cannot be used as an osteoporosis treatment, only as a basic
adjunct, and an increasing number of people are experienc-
ing the problem, so addressing this aspect is imminent [83].
In addition, previous studies on autophagy, apoptosis and
osteoporosis have some shortcomings [84, 85]. The discov-
ery of ferroptosis may provide a new direction for the treat-
ment of osteoporosis.

Along with the further comprehension of ferroptosis,
ferroptosis is recognized as a new factor for osteoporosis.
Tian et al. observed that the death of osteoblasts in vitro
induced by ferroptosis is involved in the mitochondrial apo-
ptotic pathway through the analysis of intracellular labile
iron levels by flow cytometry and fluorescence microscopy
and mitochondrial membrane potential (MMP) [86]. Iron
overload could induce apoptosis in osteoblasts and osteopo-
rosis in vivo. Mitochondrial apoptosis and ROS-mediated
necroptosis are closely related to ferroptosis, leading to the
death of osteoblasts and thus causing bone rarefaction [87,
88]. In addition, some experts found that the characteristics
of ferroptosis such as the function of osteoblasts and osteo-
clasts in osteoporotic mice are reflected in bone mineral den-
sity, trabecular number, and trabecular bone mass measured
by micro-CT in the femur [89]. The above studies suggest
that ferroptosis has a great influence on osteoporosis
(Figure 3).

Recently, Ni et al. observed that ferroptosis affected oste-
oclasts in the process of differentiation induced by RANKL.
The overexpression of TFR1 and the amount of significantly
decreased ferritin induced by downregulating aconitase
activity can lead to ferroptosis during RANKL stimulation
without oxygen deficiency. However, these phenomena
regarding changes in intracellular iron homeostasis and the
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activation of ferritinophagy could not be observed under
hypoxia. In addition, they also found that HIF-1α impaired
autophagic flux under hypoxia in vitro. 2ME2, a HIF-1α-
specific inhibitor, prevents OVX-induced osteoporosis in
rats in vivo, probably due to the increase in ferroptosis
markers such as PTGS2 and MDA [90]. In addition, other
scholars found interesting phenomena about the occurrence
of ferroptosis in skeletal muscle related to changes in iron
metabolism and lipid peroxidation and different expression
of TFR1 by comparing different age groups of mice. With
intramuscular injection of lentivirus expressing TFR1, skele-
tal muscle regeneration is enhanced and suppresses ferrop-
tosis in different age groups of mice, thus preventing
osteoporosis [91]. Liu et al. further clarified the relationship
between ferroptosis and osteoporosis through animal
models of osteoporosis in vivo and cell models in vitro
[92]. From the above research content, we have a better
understanding of ferroptosis orchestrated with osteoporosis
than before and can treat and prevent osteoporosis accord-
ing to some targets. However, due to some technical limita-
tions, many detailed mechanisms in ferroptosis involved in
osteoporosis remain unclear.

7.2. Acute Spinal Cord Injury. SCI is usually caused by frac-
tures and/or dislocations of the spine as a result of direct or
indirect violence. It leads to severe dysfunction of the lower
limb and thus causes serious physical and psychological
damage to patients themselves and causes a huge economic
burden on society. SCI has high mortality and disability
rates [93]. Due to previous research on SCI, the prevention,
treatment, and rehabilitation of SCI have become major
topics in today’s medical community.

Previous studies have mostly studied the mechanisms of
acute spinal cord injury from the aspects of apoptosis and
autophagy. For example, the AMPK/mTOR signaling path-
way is activated after spinal cord injury. This inactivates
the intracellular AMPK-activated mTOR, which catalyzes
the phosphorylation of ULK1 to promote autophagy. After
spinal cord injury, the mitochondria of neurons produce
excessive reactive oxygen species through the processes of
protein decomposition, lipid peroxidation, and DNA dam-
age, which leads to the aggravation of spinal cord injury
and apoptosis [94, 95]. In addition, potential roles of pheno-
lic compounds as key phytochemicals have also been
revealed in preclinical and clinical studies in regulating
upstream dysregulated oxidative stress/inflammatory signal-
ing mediators and extrinsic mechanisms of axon regenera-
tion after SCI [96, 97]. Meanwhile, polyphenols were also
identified as a potent inhibitor of ferroptosis, which was con-
firmed in in vitro and in vivo studies in different disease
models [98–101]. However, whether polyphenols can
improve acute SCI by interfering with ferroptosis and
whether they interact with apoptosis and autophagy still
need further study. Fortunately, recent studies have shown
that variances in mitochondrial function and structure in
ferroptosis can be observed by transmission electron micros-
copy, and ferroptosis markers in SCI rats exhibit several
changes in spinal cord tissue, which are different from
autophagy and apoptosis. As mentioned above, ferroptosis
plays an important role in SCI [18]. After SCI, spinal cord
hemorrhage, degeneration, red blood cell rupture, and
hemolysis occurred in the injured spinal cord and thus
caused iron overload. Stress also activated ROS accumula-
tion and lipid peroxidation [102].
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Figure 3: The mechanism of ferroptosis induced by iron overload in osteoporosis. Ferroptosis induced by iron overload leads to an increase
in mitochondrial membrane potential and the accumulation of lipid peroxide by affecting glutathione and fatty acid cycle. It further
promotes the activation of osteoclasts and the apoptosis of osteoblasts, leading to the increase of bone resorption and the decrease in
bone formation, resulting in osteoporosis and finally osteoporotic fracture.
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Some scholars have found that ferroptosis can lead to
serious consequences of secondary injury after spinal cord
injury and that DFO can suppress ferroptosis to promote
functional recovery in SCI rats [18]. Galluzzi et al. experi-
mented on spinal nerve cells with ferrous ions and found
that with the increase in iron in cells, the degree and metab-
olites of lipid peroxidation related to neuronal inactivation
also increased [103]. Zhang et al. observed that a ferroptosis
inhibitor called SRS16-86 can reduce ferroptosis markers
and upregulate the levels of GPX4, xCT, and GSH in SCI
rats, thus preventing more complications after SCI [104].
In addition, the morphology of mitochondria was similar
to normal, and more mitochondrial cristae appeared after
SRS16-86 intervention. Subsequent studies have shown that
the extracellular regulated protein kinase (ERK) pathway has
a certain connection with ferroptosis, and downregulating
the RAS/RAF/ERK pathway by the ferroptosis inhibitor
U0126 could inhibit neuroinflammation and protect neu-
rons, thus recovering from SCI and reducing local redox
damage [105]. As will be readily seen from what we men-
tioned above, acute SCI is closely related to ferroptosis.
However, the current research is still insufficient, and the
detailed mechanism of SCI related to ferroptosis is unclear.

7.3. Osteosarcoma. Osteosarcoma is one of the most com-
mon bone malignancies. The typical osteosarcoma origi-
nates from the bone; another completely different type is
osteosarcoma juxtaposed with the bone cortex, which origi-
nates from the periosteum and adjacent connective tissue
[106]. The mortality and disability rate of osteosarcoma is
high in children and adolescents. Some patients suffer from
both physical and psychological damage. Although early
diagnosis and timely medication or surgery have greatly
improved patient quality of life, subsequent physical and
mental rehabilitation treatment is limited, and its curative
effect is not satisfactory.

Gratifyingly, bavachin, a bioactive compound extracted
from the fruit of Psoralea corylifolia, induces ferroptosis
through the STAT3/p53/SLC7A11 axis in osteosarcoma

cells, such as MG63 and HOS cells, thus inhibiting the fur-
ther development of osteosarcoma (Figure 4(a)) [56]. Mean-
while, Chen et al. found that ferroptosis can lead to lipid
peroxidation and dysfunction after osteosarcoma and that
Fer-1 could suppress ferroptosis to promote functional
recovery in osteosarcoma mice (Figure 4(b)) [107]. Recent
studies have shown that osteosarcoma cells, such as U2os
and Saos-2 cells, have a high level of ROS and more lipid
peroxidation metabolites than normal cells. Coincidently,
they observed ferroptosis marker changes in osteosarcoma
cells. Lin et al. confirmed that a ferroptosis inhibitor named
ferrostatin-1 could reduce ferroptosis-related genes such as
HMOX1 and upregulate GPX4 expression in osteosarcoma
cells after intervention with EF24 (a synthetic analog of cur-
cumin), thus promoting the recovery of cell function and
morphology (Figure 4(c)) [108]. In addition, subsequent
studies have shown that NF-κB signaling and the mitogen-
activated protein kinase (MAPK) pathway have a certain
connection with ferroptosis, and downregulating the MAPK
pathway by the ferroptosis inhibitor Fer-1 could promote
osteosarcoma cell death, thus recovering from osteosarcoma
and reducing ROS production (Figure 4(d)) [17, 108–110].
Lv et al. also found that β-phenethyl isothiocyanate, a valid
medicine against cancers such as lung cancer and breast can-
cer, could lead to human osteosarcoma cell death by inter-
fering with iron metabolism through upregulating the
MAPK signaling pathway [111–113]. As time goes by, peo-
ple may pay much more attention to osteosarcoma in chil-
dren and adolescents, and we also have a profound
understanding of this disease. However, as far as we know,
the role of ferroptosis in the regulation of osteosarcoma is
unclear. Further research is needed to elucidate the detailed
mechanism of osteosarcoma correlated with ferroptosis.

7.4. Osteoarthritis. Osteoarthritis is a degenerative disease
that involves the degeneration and injury of articular carti-
lage and reactive hyperplasia of articular edge and subchon-
dral bone caused by many factors, such as aging, trauma,
congenital joint abnormalities, and joint deformities [114].
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Figure 4: (a) The ultrastructure of MG63 and HOS cells (reproduced from ref. [56] with permission from 2021 Hindawi Publishing
Corporation); (b) KDM4A regulation of ferroptosis and tumor progression in OS (reproduced from ref. [107] with permission from
2021 Elsevier B.V.); (c) RNA sequencing analysis of gene transcriptional profiles changings of U2os cells and Saos2 cells after treating
with indicated dose of EF24 (reproduced from ref. [108] with permission from 2021 Elsevier B.V.); (d) ROS levels in MNNG/HOS, U-2
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According to statistics, approximately 300 million people
suffer from osteoarthritis worldwide [115]. While surgery
and medication have greatly improved the motor functions
of patients, subsequent rehabilitation treatment requires fur-
ther perfection [116].

Recent studies have shown that OA, which is closely
related to inflammation, is a complex process associated
with ferroptosis in terms of iron homeostasis [117, 118].
Yao et al. found that erastin, a specific ferroptosis inducer,
downregulated type II collagen (collagen II) expression
orchestrated with OA in chondrocytes, while ferrostain-1
could ameliorate this phenomenon by eliminating lipid
ROS (Figures 5(a) and 5(b)) [119]. Ferrostatin-1 attenuated
OA progression, as detected by immunohistochemistry and
the OARSI score, by suppressing ferroptosis and upregulat-
ing GPX4 expression in the OA mouse model. In addition,
the Nrf2 antioxidant system and ferroptosis regulate each
other under inflammatory and iron overload conditions,
although the detailed mechanism is still unclear [120]. A
subsequent study also found that D-mannose, a compound
involved in immune regulation, exerted a chondroprotective
effect by attenuating the sensitivity of chondrocytes to
ferroptosis and alleviating OA progression (Figure 5(c))
[121]. Through further research, GPx4 was shown to play
an important role in the relationship between osteoarthritis
and ferroptosis. GPx4 regulates ferroptosis or oxidative
stress and ECM degradation through the MAPK/NF-κB sig-
naling pathway to alleviate the progression of osteoarthritis

(Figures 5(d) and 5(e)) [122]. Bin et al. also found that
inflammation induced by suppressing miR-10a-5p regulated
by IL-6 can promote ferroptosis in cartilage cells through
cellular oxidative stress and iron homeostasis imbalance
[105]. In addition, subsequent results suggest that IL-6 in
IVD exacerbates its degeneration by inducing cartilage cell
ferroptosis, thus causing lumbar instability, fracture, and
intervertebral disc degeneration [123]. They may make the
IL-6/miR-10a-5p/IL-6R axis a potential therapeutic target
for IDD intervention in the future. To date, we realize that
ferroptosis plays an important role in osteoarthritis, but
the detailed mechanisms require further study.

7.5. Rheumatoid Arthritis. Rheumatoid arthritis (RA), a
chronic systemic disease with a sophisticated etiology, is
considered a common disease that affects 0.5–1% of the
global population [124]. RA is a chronic autoimmune dis-
ease that is characterized by multijoint, symmetrical, and
invasive joint inflammation and is often accompanied by
the involvement of extraarticular organs and positive serum
rheumatoid factor, which can lead to joint deformity and
loss of function [125, 126]. However, current medical strate-
gies only alleviate symptoms and delay the process instead of
healing it completely, and later rehabilitation exercise is not
very satisfactory [127, 128].

Recent studies have shown that ferroptosis plays an
important regulatory role in autoimmune and inflammatory
diseases [129, 130]. For example, treatment with the Gpx4
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Figure 5: (a) Cartilage degradation was assessed by safranin O/fast green about collagen II and GPX4 expression in an OA model
(reproduced from ref. [119] with permission from 2020 Elsevier B.V.); (b) immunohistochemistry staining of GPX4 (reproduced from
ref. [119] with permission from 2020 Elsevier B.V.); (c) chondrocytes 24 h postindicated treatments by MitoTracker Red staining
(reproduced from ref. [121] with permission from 2021 Ovid Technologies, Inc.); (d) mitochondrial membrane rupture in OA cartilage
tissues by a transmission electron microscope (reproduced from ref. [122] with permission from 2022 Elsevier B.V.); (e) three-
dimensional models of mouse knee joints. Red arrow shows osteophyte formation (reproduced from ref. [122] with permission from
2022 Elsevier B.V.).

12 Oxidative Medicine and Cellular Longevity



CIA
+Vehicle

PT
G

S2
G

PX
4

CIA
+Etan

CIA
+IKE

CIA+Etar
+IKE

(a)

Control
Q1
2.50%

Q2
2.31%

Q4
91.8%

Q3
3.35%

RSL3 ICA+RSL3

Comp-FL1-A::FL1-A
107

C
om

p-
FL

2-
A

::F
L2

-A

106105104103
102

103

104

105

106

107 Q1
3.68%

Q2
8.29%

Q4
84.2%

Q3
3.78%

Comp-FL1-A::FL1-A
107

C
om

p-
FL

2-
A

::F
L2

-A

106105104103
102

103

104

105

106

107 Q1
2.00%

Q2
3.99%

Q4
87.9%

Q3
6.06%

Comp-FL1-A::FL1-A
107

C
om

p-
FL

2-
A

::F
L2

-A

106105104103
102

103

104

105

106

107

(b)

Male Female

N.S.

0

200

400

600

800

1000

1200

H
ep

at
ic

 ir
on

 co
nt

en
t

(𝜇
g/

g 
w

et
 w

ei
gh

t)

⁎
Control AUR Control AUR

Male (Perls’ staining) Female (Perls’ staining)

(c)

NC

H
&

C
To

lu
id

in
e

Bl
ue

 O
Sa

fra
ni

n 
O

CIA+Vehicle CIA+IKE

(d)

Weeks
CIA

3

5

7

NC CIA CIA+IKE

(e)

Figure 6: (a) Immunohistochemical staining about PTGS2 and GPX4 expression in the joints of CIA mice (reproduced from ref. [131] with
permission from 2022 Nature Publishing Group); (b) cell death in the different study groups by flow cytometry (reproduced from ref. [136]
with permission from 2021 Ingenta PLC); (c) Perls’ Prussian blue–stained liver sections (reproduced from ref. [138] with permission from
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permission from 2022 Nature Publishing Group); (e) representative microcomputed tomography (micro-CT) images of control and CIA
model mice with or without IKE treatment (reproduced from ref. [131] with permission from 2022 Nature Publishing Group).
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inhibitor RSL3 specifically increased cell death in fibroblast
activation protein-α (FAPα+) fibroblasts, but not macro-
phages, endothelial cells, T cells, or B cells of cell death. In
addition, the number of surviving FAPα+ fibroblasts in the
synovial area was higher, close to that of macrophages, sug-
gesting that macrophages may protect FAPα+ fibroblasts
from IKE treatment-induced lipid peroxidation and ferrop-
tosis in CIA mice [131]. Of course, how immune cells induce
ferroptosis in RA requires further study. Besides, a previous
study revealed that in an RA model, metalloproteinases
(MMPs) are activated by excessive ROS, thus suppressing
the synthesis of cartilage protein and leading to cartilage
injury and bone destruction. In short, excessive ROS is
closely related to RA [132]. Simultaneously, excessive ROS
also have a hand in ferroptosis of synovial cell death. In fer-
roptosis, ROS are transformed into hydrogen peroxide
through the Fenton reaction, which produces hydroxyl
(·OH) or alkoxyl (RO·) radicals with the help of superoxide
dismutase in the presence of reduced Fe2+. Afterwards,
Fe3+ can be converted into Fe2+ by the Haber-Weiss reaction
[133]. Meanwhile, FSP1 improves lipid peroxidation and
blocks iron sagging by combining with CoQ10 [134, 135].
It could be calculated that FSP1, which acts parallel to
GPX4, is likely to abolish the TNF-α/ROS feedback loop
and prevent ferroptosis of cell death in RA. Moreover, low-
dose imidazole ketone erastin (IKE) together with etaner-
cept, a TNF antagonist, induced ferroptosis in fibroblasts
and attenuated arthritis progression in a collagen-induced
arthritis (CIA) mouse model (Figures 6(a), 6(d), and 6(e))
[131]. Luo and Zhang and Zu et al. also observed the same
phenomenon as ICA, an important role in both rheumatoid
arthritis and osteoarthritis and associated with gene expres-
sion and cellular functions in the synoviocytes of osteoar-
thritis, inhibiting ferroptosis through the Xc-/GPX4 axis,
thus attenuating cell death in the RA model (Figure 6(b))
[136, 137]. On the basis of previous research, Yang et al.
observed lipid peroxidation and iron metabolism disorders
in LPS-induced synovial cells (Figure 6(c)) [138]. At present,
many scholars have invested much time and energy in the
study of ferroptosis in RA and have developed related drugs,
such as curcumin and baicalein, to intervene in RA due to
lipid peroxidation and iron metabolism disorders in RA
[139, 140]. However, we still know little about the detailed
mechanisms. We hope that subsequent research can over-
come these bottlenecks.

8. Questions and Perspectives

In recent years, our understanding of ferroptosis has gradu-
ally deepened in biomedicine, and thousands of articles have
been published. On the whole, ferroptosis is considered to be
a programmed regulation of cell death, which is strictly reg-
ulated at multiple layers and multiple levels [141, 142].
Many pharmacological and genetic operations have been
used to regulate changes induced by ferroptosis in multidis-
ciplinary diseases such as cardiovascular diseases, renal
injury, and skeletal muscle diseases and attenuate disease
mortality and disability rates [43, 138, 143, 144]. However,
research on ferroptosis is in an immature stage, and an array

of doubts remain unanswered, especially in skeletal diseases.
For example, cell death patterns have many similarities in
skeletal diseases, such as ferroptosis, autophagy, and apopto-
sis. What is the association between these cell death pat-
terns? Is it mutual promotion or antagonism? How these
different cell death patterns can be integrated into a system
still needs further study [6]. According to previous research,
iron plays an indispensable role in the development of fer-
roptosis [1]. With the exception of iron ions, ferroptosis
occurs under the regulation of some metal ions in some
instances [145, 146]. This makes us doubt the traditional
definition of ferroptosis. Is iron vital to promote lipid perox-
idation, or can other fungi induce ferroptosis? This view
requires further discussion. Subsequent studies have shown
that FPN, as an upstream iron metabolism gene, can regulate
ferroptosis, but how the downstream pathway is regulated is
still not very clear [11, 75–77]. Ferroptosis accompanies
inflammation in some diseases such RA and acute kidney
injury and modulates the immune system, causing inflam-
matory damage and inhibiting cell growth [147–150]. Under
what circumstances will it promote ferroptosis-induced
inflammation? In addition, no clinical trials have been con-
ducted on ferroptosis activators in skeletal diseases. How
can we integrate basic research results and thus promote
the recovery of skeletal diseases to reduce disability and
mortality? As stated above, even if we invest more time
and enthusiasm than before in conducting research on fer-
roptosis, a series of detailed problems about ferroptosis
urgently need to be solved.

9. Conclusion

In this review, we summarize the mechanism of ferroptosis,
such as suppressing GPX4 expression and activating the
lipid metabolism pathway; briefly list several inducers and
inhibitors; and expound on the manifestations of iron death
in skeletal diseases. As will be readily seen from this article,
our research on ferroptosis is still superficial at present. It
is of great significance to explore the mystery of ferroptosis
and its specific role in multiple distinct diseases, especially
skeletal diseases, and to develop targeted therapeutic regi-
mens. This will be the general trend of future research.
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RSL5: Ras-selective lethal 5.
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