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Immunotherapy has a good therapeutic effect and provides a new approach for cancer treatment. However, only limited studies
have focused on the use of molecular typing to construct an immune characteristic index for gene expression in pancreatic
adenocarcinoma (PAAD) and to assess the effectiveness of immunotherapy in patients with PAAD. Clinical follow-up data and
gene expression profile of PAAD patients were retrieved from The Cancer Genome Atlas (TCGA) database. Based on 184
immune features, molecular subtypes of pancreatic cancer were found by the “ConsensusClusterPlus” package, and the
association between clinical features and immune cell subtype distribution was analysed. In addition, the relationship between
the proportion of immune subtypes and the expression of immune checkpoints was analysed. The CIBERSORT algorithm was
introduced to evaluate the immune scores of different molecular subtypes. We used the tumor immune dysfunction and
exclusion (TIDE) algorithm to assess the potential clinical effect of immunotherapy interventions on single-molecule subtypes.
In addition, the oxidative stress index was constructed by linear discriminant analysis DNA (LDA), and weighted correlation
network analysis was performed to identify the core module of the index and its characteristic genes. Expression of hub genes
was verified by immunohistochemical analysis in an independent PAAD cohort. Pancreatic cancer is divided into three
molecular subtypes (IS1, IS2, and IS3), with significant differences in prognosis between multiple cohorts. Expression of
immune checkpoint-associated genes was significantly reduced in IS3 and higher in IS1 and IS2, suggesting that the three
subgroups have different responsiveness to immunotherapy interventions. The results of the CIBERSORT analysis showed that
IS1 exhibited the highest levels of immune infiltration, whereas the results of the TIDE analysis showed that the T-cell
dysfunction score of IS1 was higher than that of IS2 and IS3. Furthermore, IS3 was found to be more sensitive to 5-FU and to
have a higher immune signature index than IS1 and IS2. Based on WGCNA analysis, 10 potential gene markers were
identified, and their expression at the protein level was verified by immunohistochemical analysis. Specific molecular
expression patterns in pancreatic cancer can predict the efficacy of immunotherapy and influence the prognosis of patients.

1. Introduction

Pancreatic cancer is a life-threateningmalignancy and is ranked
fourth among the major contributors to cancer-associatedmor-
tality globally [1]. The mortality rate of pancreatic cancer in
China increased during 1991–2000 and is expected to peak in
the future [2]. It is predicted that pancreatic cancer could
become the second greatest cause of mortality due to cancer
by the year 2030 [3]. In contrast with other malignancies, pan-
creatic cancer is asymptomatic until patients are at an advanced
stage. Therefore, surgery is the only effective treatment modal-

ity, which may be followed by adjuvant chemotherapy with
gemcitabine or the oral fluoropyrimidine derivative S-1.
Patients who are not candidates for surgery but are in good
physical condition are ideal candidates for FOLFIRINOX (fluo-
rouracil, folic acid, irinotecan, and oxaliplatin) and gemcitabine
combined with albumin-bound paclitaxel [4–6]. Although sur-
gical resection, chemotherapy, and antivascular therapy have
been widely used, their efficacy remains limited. Patients who
have been diagnosed with pancreatic cancer have a dismal
long-term prognosis, with a median survival time of lower than
six months and a five-year survival probability of <5% [7, 8].
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Recently, immune checkpoint treatments targeting pro-
grammed cell death 1/programmed cell death-ligand 1 (PD-
1/PD-L1) and cytotoxic T-lymphocyte-associated antigen 4
(CTLA-4) have been rapidly developed as therapeutic
approaches for cancer. Pancreatic cancer has been shown to
be among the most immunotolerant types of tumours, with
clinical trials showing unsatisfactory results and poor response
to PD-1/PD-L1 blockade monotherapy [9, 10]. Ipilimumab
(anti-CTLA-4) administered at a dosage of 3.0mg/kg in a
phase-2 clinical trial was ineffective in treating either locally
advanced or metastatic pancreatic cancer [11]. These unsatis-
factory results can be attributed to several reasons; however,
the immunosuppressive tumour microenvironment, which is
characterized by decreased mutation load, prominent myeloid
inflammation, and inadequate infiltration of effector T cells, is
the primary explanation for this phenomenon [12–14]. A
small proportion of individuals diagnosed with pancreatic
cancer has been shown in a few trials to have substantial T-
cell infiltration and long overall survival duration, indicating
the potential of immunotherapy for the successful treatment
of pancreatic cancer [15, 16]. Mirlekar et al. stated that B cells
are emerging candidates for pancreatic cancer therapy; in par-
ticular, B cells producing interleukin- (IL-) 35 play a major
role in pancreatic tumorigenesis [17–19].

Furthermore, a few pancreatic cancer patients may
exhibit a high antigen load, indicating that PD-1 inhibitors
are also effective therapeutic agents [20, 21]. As a conse-
quence, it is essential to discover reliable biological markers
to enhance the effectiveness of immune checkpoint inhibi-
tors in pancreatic cancer therapy.

The expanded public genomic data provide an ideal
resource for conducting large-scale immunoassays. To date,
many immune markers for pancreatic cancer have been iden-
tified using such databases. Zhang et al. identified immune
markers of prognostic value based on PD-L2 expression,
which can be combined with tumour-infiltrating cells to pre-
dict PAAD patients’ survival after surgery [22]. Bu et al. iden-
tified eight markers premised on immune-associated genes to
predict the prognostic characteristics of pancreatic cancer
patients [23]. Therefore, using a combination of bioinformatic
algorithms, potential therapeutic targets can be predicted to
enhance the effectiveness of immunotherapeutic regimens.

In this research, the immune characteristics of PAADwere
examined using a single-sample gene set enrichment analysis
(ssGSEA) premised on the expression levels of 184 marker
genes associated with immune cells. Based on the immune
scores, PAAD was divided into different immune subtypes
(ISs). Subsequently, the correlation between different ISs and
immune checkpoint expression was analysed, and the
immune characteristic index of each sample was evaluated
via linear discriminant analysis (LDA) to assess the patients’
immune features. This new method can help determine the
patients’ responsiveness to immunotherapy and predict the
efficacy of immunotherapy for pancreatic cancer.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. The RNA sequenc-
ing (RNA-seq) data of The Cancer Genome Atlas- (TCGA-)

PAAD cohort, which contained 177 samples, were extracted
from TCGA GDC API. The International Cancer Genome
Consortium (ICGC) was searched to retrieve the gene
expression patterns and clinical follow-up data of 237 sam-
ples included in the database. Additionally, the GSE71729
dataset with survival data was extracted from the Gene
Expression Omnibus (GEO) database, which contained 125
samples. Information regarding the immunocytologic fea-
tures was derived from a previous study [24].

2.2. Preprocessing of the RNA-seq Data of the TCGA-PAAD
Cohort

(1) Primary pancreatic cancer samples were extracted,
and samples without clinical data were eliminated

(2) Ensemble Gene (ENSG) IDs were matched to the
corresponding gene symbols, and 25,554 gene
expression profiles were retrieved

2.3. Preprocessing of Data from the GSE71729 Dataset

(1) Standardised datasets were downloaded from the
GEO database

(2) Primary pancreatic cancer samples were extracted,
samples without clinical data were removed, and
18,007 gene expression profiles were acquired

2.4. Preprocessing of the ICGC Data

(1) Any probes that had null results for gene detection
were eliminated

(2) The probe was aligned with the human genome

(3) Samples without clinical data were removed, and
23,294 gene expression profiles were identified

The preprocessed clinical information form is shown in
Table 1.

2.5. Identification of ISs and Immune Gene Modules. “Con-
sensusClusterPlus” package in R was utilized to build a con-
sistency matrix, which was then used to categorise samples
according to the results of a consensus clustering [25]. The
ISs of samples were identified using the normalised enrich-
ment scores of the selected immune features. The PAM algo-
rithm and the Canberra distance were utilised to conduct a
total of 500 bootstraps, each of which comprised 80% of
the patients who were included in the training set To deter-
mine the best classification, the cluster number was set
between 2 and 10, and we analysed the consistency matrix
as well as the consistency cumulative distribution function.

2.6. Immunophenotyping of Chemokines and Immune
Checkpoint-Related Genes. Chemokines and receptors per-
form an integral function in the onset and progression of
tumours. They can mediate the entry of multiple immune cells
into the tumour microenvironment (TME) and help T cells to
infiltrate the tumour, thereby affecting tumour immunity and
therapeutic efficacy. In this study, immunophenotyping was
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performed to assess whether the three ISs of PAAD had differ-
entially expressed chemokines and chemokine receptors.
CD8+ T cells in the TME may release interferon-gamma
(IFN-γ), which can stimulate the upmodulation of IDO1 genes
and PD-1/PD-L1 [26, 27]. Studies have shown that IDO1
upregulation has a positive link to unfavourable prognosis,
tumour progression, and metastasis [28, 29]. Data on Th1/
IFN-γ gene signatures were extracted from a previous study,
and the ssGSEA was used to compute each patient’s IFN-γ
scores. In addition, variations in IFN-γ scores across sub-
groups were analysed. The cytolytic activity (CYT) score is
an innovative measure of cancer immunity that is derived
depending on the levels of mRNA expression of PRF1 and

GZMA. The tumour-specific T-cell lytic activity was assessed
in each patient using the mean mRNA expression levels of
GZMA and PRF1 as described in a previous study [30]. Gene
sets associated with angiogenesis that were retrieved from a
previous research study [31] were employed to assess each
patient’s angiogenic score and analyse the variations in the
scores among distinct groups.

2.7. Response of ISs to Immunotherapy/Chemotherapy. The
three subtypes were compared to determine their respon-
siveness to chemotherapy and immunotherapy. To evaluate
the possible therapeutic impacts of immunotherapy in each
of the 3 types of PAAD, the TIDE algorithm (http://tide
.dfci.harvard.edu/) was adopted. The higher the prediction
value of TIDE, the greater the possibility of immunological
evasion, implying that there is less likelihood of patients
benefiting from immunotherapy. In addition, the “pRRo-
phetic” package was used to examine how various subtypes
respond to standard chemotherapy medications such as
gemcitabine, cisplatin, erlotinib, and 5-FU. “pRRophetic”
[32] is an R Package used for predicting clinical responsive-
ness to chemotherapy based on the levels of tumour gene
expressions. In this particular process, the array probes will
need to be remapped to the newest version of EntrezGene.
The expression data of training and test sets were quantile-
normalised independently and were then integrated by uti-
lizing the empirical Bayesian approach to normalise each
gene’s mean and variance. We eliminated the genes that
had a very low degree of variation across the samples. The
rest of the genes was employed as predictors, whereas the
levels of drug sensitivity (IC50) were utilised as outcome var-
iables. In the end, the model was applied to analyse the proc-
essed and normalised and screened clinical tumour
expression data to determine the drug sensitivity of each
individual patient.

2.8. LDA and Establishment of a Characteristic Index of
Immunophenotype. LDA was conducted to create a subtype
classification characteristic index to enhance the quantifica-
tion of the immunological features of patients in various
groups. This was done in light of the fact that various sub-
types have distinct molecular features. LDA is a method that
may be applied for supervised dimensionality reduction, and
it is often applied to a wide range of situations. In particular,
Z-score LDA (Z-LDA; Z-transformation) was performed on
prognostic-related immune features, and Fisher’s LDA opti-
misation criteria were used to specify that each group’s cen-
troids were scattered as far as possible. It was discovered that
the linear combination A led to the greatest impact on the
interclass variance of A in comparison to the intraclass var-
iance. The LDA model was used to determine each patient’s
subtype characteristic index in the TCGA dataset.

2.9. Determination of Coexpressed Gene Modules Based on
the Immune Characterisation Index. The “WGCNA” pack-
age included in R was utilised to determine the coexpression
modules of genes associated with the immune cells. Specifi-
cally, a median absolute deviation (MAD) of >50% was
selected as the cut-off for gene expression profiling in the

Table 1: Statistical analysis of the dataset used in this study.

TCGA-PAAD ICGC-PAAD GSE71729

Survival

OS
Status_0 85 93 41

Status_1 92 144 84

DSS

Status_0 99 — —

Status_1 72 — —

NA 6 — —

DFI

Status_0 46 — —

Status_1 23 — —

NA 108 — —

PFI
Status_0 74 — —

Status_1 103 — —

T stage

T1 7 — —

T2 24 — —

T3 141 — —

T4 3 — —

NA 2 — —

N stage

N0 49 — —

N1 123 — —

NA 5 — —

M stage

M0 79 — —

M1 4 — —

NA 94 — —

Stage

Stage I 21 10 —

Stage II 146 216 —

Stage III 3 1 —

Stage IV 4 6 —

NA 3 4 —

Grade

G1 31 17 —

G2 94 143 —

G3 48 72 —

G4 2 3 —

NA 2 2 —

Gender
Female 80 130 —

Male 97 107 —
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TCGA dataset. Initially, after clustering the data, a low cutoff
value was adopted to choose the coexpression modules for
analysis. A coexpression network conforms to a scale-free
network, which means that the degree of connectivity of a
node, as denoted by its logarithm log ðkÞ, has a negative link
to the likelihood of the node’s occurrence, as denoted by its
logarithm log ðPðkÞÞ, and the correlation coefficient is >0.85.
A suitable β-value was decided upon to ascertain the scale-
free nature of the established coexpression network. Subse-
quently, the expression matrix was converted into an adja-
cency matrix, which was then transformed into a
topological matrix. The topological overlap matrix (TOM)
served as the foundation for the application of the average-
linkage hierarchical clustering approach, which was then
employed to cluster genes in compliance with the require-
ments of the hybrid dynamic shear tree, and the minimal
number of genes required for each gene network module
was established. Additionally, the dynamic shear approach
was used to identify the gene modules, and then, each mod-
ule’s eigengenes were computed. Finally, after clustering the
modules, their adjacent modules were incorporated into a
single new module.

2.10. Immunohistochemical (IHC) Analysis. To verify the
protein expression of the 3 genes that have been discovered, tis-
sue microarrays (TMAs) comprising 37 tissue samples from
patients with PAAD and 23 samples from healthy controls
were procured from Shanghai Outdo Biotech Co., Ltd. (Shang-
hai, China). We carried out the experiment in compliance with
the International Ethical Guidelines for Biomedical Research
Involving Human Subjects (CIOMS), and the Ethics Commit-
tee of the Central South University Xiangya School of Medi-
cine, China, gave its approval to the study procedures. After
being dried throughout the night at 377°C, the TMA slides were
next dewaxed in xylene and desiccated in a series of increasing
doses of ethanol. Antigen was extracted from the tissue sections
by heating them in a microwave oven while they were within a
box that was loaded with EDTA antigen repair buffer (pH9.0),
after which the tissue blocks were submerged in hydrogen per-
oxide at a concentration of 3% for 25 minutes to inhibit the
activities of endogenous peroxidase. To attenuate nonspecific
staining, the TMA slides were first sealed before being treated
with bovine serum albumin (BSA) at a concentration of 3%
for half an hour at ambient temperature. Thereafter, the slides
were subjected to overnight incubation at 4°C with antibodies
as follows: anti-EPSTI1 (1 : 50 dilution; Proteintech,11627-1-
AP), anti-IFI44 (1 : 50 dilution; Proteintech, 27233-1-AP),
anti-IFIH1 (1 : 100 dilution; Proteintech, 21775-1-AP), anti-
OSA1 (1 : 100 dilution; Proteintech, 14955-1-AP), anti-OSA2
(1 : 50 dilution; Proteintech, 19279-1-AP), anti-OSA3 (1 : 50
dilution; Proteintech, 21915-1-AP), anti-PARP14 (1 : 100 dilu-
tion; Sigma, HPA008846), anti-UBE2L6 (1 : 250 dilution;
Abcam, ab109086), anti-CMPK2 (1 : 100 dilution; Sigma,
HPA041430), and anti-IFIT3 (1 : 100 dilution; Proteintech,
15201-1-AP). The tissues were subsequently washed thrice
for a total of 5 minutes each wash with 0.01mol/L of
phosphate-buffered saline (PBS; pH = 7:4). The next step
involved incubating the tissues with goat antirabbit horse-
radish peroxidase- (HRP-) labelled secondary antibody

(1 : 200 dilution, Servicebio, GB23303) for 50 minutes at
ambient temperature. PBS was then used to wash the tissue
sections, and 3,3-diaminobenzidine (DAB) was used to stain
them. The tissue slices were thereafter counterstained with
Mayer’s haematoxylin before being dried and fixed. The
evaluation of IHC staining was performed utilising semi-
quantitative scoring criteria.

Three different pathologists, all of whom were blinded
to the patient’s clinical features, independently scored the
stained sections. The percentage of positively stained cells
present across all tissues was taken into account in the
scoring system, as was the intensity to which these cells
stained. The following criteria were used for assessing the
intensity of staining: 0, negative; 1, weak; 2, moderate; 3,
strong. The proportion of positively stained cells was
determined based on the staining ratio as follows: 0 (<
5%), 1 (5–25%), 2 (26–50%), 3 (51–75%), and 4 (>75%).
The findings of the IHC staining were categorized into
the following categories depending on the staining inten-
sity, as well as the percentage of positively stained cells:
grade 0–1, negative (–); grades > 1 – 4, weakly positive
(+); grades > 4 – 8, moderately positive (++); grades > 8 –
12, strongly positive (+++).

2.11. Statistical Analysis. To analyse statistical data, the R
software (version 3.5.3) was used. The Kaplan–Meier tech-
nique was utilised to generate survival curves, and the log-
rank test was executed to examine the variations in survival
rates across different groups. Cox regression models were
used for univariate and multivariate analyses to determine
the independent prognostic significance of risk scores com-
bined with other clinical parameters. By applying the
receiver operating characteristic (ROC) curves, the effective-
ness of the risk model in the prediction of OS over one,
three, and five years was evaluated. The Wilcoxon test was
performed to analyse the differences across two groups,
whereas differences across numerous groups were evaluated
utilizing a one-way analysis of variance on ranks (ns denotes
p > 0:05, ∗ denotes p ≤ 0:05, ∗∗ denotes p ≤ 0:01, ∗∗∗ denotes
p ≤ 0:001, and ∗∗∗∗ denotes p ≤ 0:0001).

3. Results

3.1. Identification of Molecular Subtypes Premised on
Immune-Associated Features. First, the enrichment scores
of 184 immune-associated features in GEO, ICGC, and TCGA
cohorts were calculated (Supplement Table 1). The relationship
between these enrichment scores and the prognosis of
pancreatic cancer was analysed via univariate survival
analysis, which showed that 48, 64, and 16 immune-related
features were linked to prognosis in TCGA, ICGC, and GEO
cohorts, correspondingly. As depicted in Figure 1(a), there
was less overlap among the features, suggesting that the
consistency of these features among datasets of different
platforms is poor and a feature varies significantly among
different cohorts. Therefore, 16 immune-related features
related to prognosis identified from a minimum of two
cohorts were used for further analysis.
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Figure 1: Continued.
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The “ConsensusClusterPlus” function in R was adopted
to perform clustering on 177 PAAD samples that were
included in the TCGA cohort, and the cumulative distribu-
tion function (CDF) was utilised to determine the optimum
number of clusters. From the CDF delta curve, the optimal
number of clusters was 3, which resulted in highly stable
clustering (Figures 1(b) and 1(c)). Consequently, three ISs
(IS1, IS2, and IS3) were identified using the k value of 3
(Figure 1(d)). The prognostic aspects of these 3 ISs were
additionally analysed, and it was shown that there are con-
siderable differences in how well they correlate with the
prognosis of patients with pancreatic cancer (Figure 1(e)).
The prognosis for IS1 and IS2 was much less favourable in
contrast with that of IS3. In addition, the same method
was used for molecular typing of pancreatic cancer patients
in the ICGC cohort. The substantial variations in prognosis
that were found across the 3 ISs (Figure 1(f)) were similar to
those that were seen among the ISs in the training set. The
same phenomenon was observed in the GEO cohort
(Figure 1(g)). From these findings, the three molecular sub-
types identified based on the immune characteristic scores
can be used for different cohorts.

3.2. Expression of Chemokines and Immune Checkpoint-Related
Genes Determined via Immunophenotyping. In the TCGA
cohort, the expression of most chemokines was higher in IS1
and IS2 than in IS3 (Figure 2(a)), and IS1 and IS2 also had ele-
vated levels of chemokine receptor expression as opposed to
IS3, which had lower levels (Figure 2(b)). This finding suggested
that the three immunological subtypes exhibited varying infil-
tration degrees of immune cells, possibly resulting in differences
in tumour progression and immunotherapeutic effects.

The IFN-γ scores were highest in IS1 and lowest in IS3
(Figure 2(c)). In addition, it was shown that the CYT scores
of the three subtypes were substantially different from one
another (Figure 2(d)). The immune T-cell lytic activity was
highest in IS1 and lowest in IS3.

Furthermore, there were remarkable variations in angio-
genesis scores identified across the various subtypes
(Figure 2(e)). The angiogenesis scores of IS1 were remark-
ably higher in contrast with the scores of IS2 and IS3.

Across the 3 subtypes, there were considerable variations
in the expression of 40 (40/47, 85.1%) genes linked to
immune checkpoints. As depicted in Figure 2(f), the expres-
sion levels of the majority of genes linked to immune
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Figure 1: The immune subtypes of pancreatic adenocarcinoma (PAAD). (a) Venn diagram demonstrating the intersection between
prognostic-associated immune characteristics in the three datasets: Gene Expression Omnibus (GEO), International Cancer Genome
Consortium (ICGC), and The Cancer Genome Atlas (TCGA). (b) Cumulative distribution function (CDF) curve of TCGA cohort. (c)
CDF delta area curve of TCGA cohort as well as the delta area curve of consensus clustering illustrating the relative alterations in the
area under the CDF curve for each category number k in comparison with category number k − 1; the category number k is shown along
the horizontal axis, whereas the relative change in area under the CDF curve is shown along the vertical axis. (d) Heat map illustrating
sample clustering when consensus k is 3. (e) Kaplan–Meier (KM) curve for analysing the prognosis of the 3 immune subtypes (ISs) in
TCGA cohort. (f) KM curve for analysing the prognosis of the 3 ISs in the ICGC cohort. (g) KM curve for analysing the prognosis of
the 3 ISs in the GEO cohort.
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Figure 2: (a) Variations in the distribution and expression levels of chemokines across participants in The Cancer Genome Atlas (TCGA)
cohort. (b) Variations in the distribution and expression levels of chemokine receptors in the TCGA cohort. (c) Variations in the IFN-γ
score distribution across various subgroups in the TCGA cohort. (d) Variations in the lytic activity of the immune T cells exhibited
across various subgroups. (e) Variations in angiogenesis scores recorded across various subgroups. (f) Variations in the expression and
distribution of genes associated with immune checkpoints in TCGA cohort. One-way analysis of variance (ANOVA) was employed to
conduct statistical tests to determine the significance level (∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001; ∗∗∗∗p < 0:0001).
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checkpoints were remarkably greater in IS1 and IS2 as
opposed to IS3. T-cell exhaustion marker genes, including
HAVCR2, CD274, PDCD1, CTLA4, and LAG3, had sub-
stantially greater expression levels in IS1 compared to
those in IS3 among these immune checkpoint-associated
genes. According to the results of the CYT score evalua-
tion, IS1 and IS2 had a high lytic activity of immune T
cells but the worst prognosis, which could be attributed
to T-cell exhaustion in IS1.

3.3. Immune and Pathway Characteristics of Different Immune
Subtypes. To examine the scores of 22 different kinds of
immune cells present in each sample included in the TCGA
dataset, the CIBERSORT method was used. Figure 3(a) illus-
trates the pattern of distribution of these immune cell scores
across the 3 subgroups, whereas Figure 3(b) illustrates the
variations in these scores across the 3 subtypes. Based on these
scores, significant differences in immune-related features were
observed among different subtypes. The proportion of mem-
ory and resting CD4+ T cells, M0 macrophages, and M1
macrophages was elevated in all subtypes, thus indicating the
importance of these immune cell types in pancreatic cancer.
On analysing differences in the involvement of ten oncogenic
pathways among the 3 subtypes as described in a previous
study [33], it was observed that except for the NRF1, PI3K,
and TP53 pathways, the remaining 7 pathways had signifi-
cantly different enrichment scores. Among these 7 pathways,
except for the MYC pathway, the enrichment scores of the
remaining 6 pathways in IS1 and IS2 were substantially ele-
vated as opposed to those in IS3. Among the 6 pathways, the
enrichment score of the transforming growth factor-beta
(TGF-β) pathway was substantially elevated in IS1 and IS2
compared to IS3 (Figure 3(c)). As per the findings of the
infiltration analysis, IS1 had the highest immune cell infiltra-
tion level, followed by IS2; however, IS3 had the lowest infiltra-
tion level (Figure 3(d)). However, the expression level of most
genes linked to the immune checkpoint was considerably
elevated in IS1 and IS2 in contrast with that in IS3. To examine
the correlation between the three ISs and six immunopheno-
types reported in a previous study on pancancer, the
molecular subtype data were extracted from the study for
comparison [34]. Six immunophenotypes were found to have
significantly different distributions across the 3 ISs
(Figure 3(e)). The proportion of patients with a dismal prog-
nosis belonging to the C2 subtype was substantially greater
in IS1 in comparison to IS2 and IS3, whereas the proportion
of patients with a dismal prognosis belonging to the C6 sub-
type was substantially greater in IS1 and IS2 in comparison
to IS3, which was in line with the dismal prognosis for IS1
and IS2. Based on these findings, it appears that the 3 subtypes
that have been established may be utilised as a supplement to
the six subtypes that were established in the previous research.

3.4. The Efficacy of Chemotherapy and Immunotherapy in
Treating Various Immune Subgroups. As shown in
Figure 4(a), TIDE scores were remarkably elevated in IS1
and IS2 in contrast with IS3, suggesting that IS3 showed a
better response to immunotherapy than IS1 and IS2. TIDE

can also predict the response to immunotherapy (responders
versus nonresponders).

Furthermore, the predicted T-cell rejection and dysfunc-
tional scores of the three subtypes were compared
(Figures 4(b) and 4(c)). The predicted T-cell dysfunction
scores were highest in IS1 and were not significantly differ-
ent between IS2 and IS3, which validated that although IS1
had the highest immune scores, the poor prognosis might
be attributed to T-cell dysfunction. In addition, the predicted
T-cell rejection scores were highest in IS2 and lowest in IS3,
which is in line with the unfavourable prognosis of IS2 and
the favourable prognosis of IS3. The responsiveness of vari-
ous subtypes to the conventional chemotherapeutic drugs
gemcitabine (Figure 4(d)), erlotinib (Figure 4(e)), and 5-FU
(Figure 4(f)) was also analysed, and it was found that IS1
and IS2 were more sensitive to gemcitabine and erlotinib,
whereas IS3 had a greater sensitivity to 5-FU.

3.5. LDA and Establishment of a Characteristic Index Based
on Immunophenotypes. LDA was carried out to develop a
subtype classification characteristic index to provide an
improved measurement of the immune features shared by
patients within distinct groups. The first two model charac-
teristics clearly distinguished samples of distinct subtypes
(Figure 5(a)), and remarkable variations were observed in
the characteristic indices among the three subtypes
(Figure 5(b)). ROC curves were charted to demonstrate the
effectiveness of the characteristic index in classifying various
subtypes (Figure 5(c)), and the combined area under the
ROC curve (AUC) of three subtypes for prediction was
0.93. When the immune subtype characteristic index was
used in the ICGC dataset, the findings were comparable to
those recorded in the TCGA dataset. Remarkable variations
were observed in the characteristic index among the three
subgroups (Figure 5(d)), and ROC analysis illustrated a
combined AUC value of 0.72 (Figure 5(e)). Additionally,
when the immune subtype characteristic index was used in
the GEO dataset, the findings were comparable to those
recorded in the TCGA dataset. Remarkable variations were
observed in the characteristic index among the three sub-
types (Figure 5(f)), and ROC analysis illustrated a combined
AUC value of 0.81 (Figure 5(g)). These findings illustrate
that the immune subtype feature index is a useful tool for
evaluating the immune-related characteristics of PAAD
patients. A high characteristic index indicates lower immu-
nosuppression (IS3), whereas a lower characteristic index
indicates stronger immunosuppression (IS1).

3.6. Coexpression Gene Module Identification Using the
Immunological Characteristic Index. The “WGCNA” pack-
age included in R was utilised to detect the gene coexpres-
sion modules relevant to the immune system. After
clustering the samples (Figure 6(a)), we selected a soft
threshold of 7 and a β-value of 7 to guarantee the establish-
ment of a network that is free of scaling (Figures 6(b) and
6(c)). As per the standards established by the hybrid
dynamic shear tree, at least 30 genes were set as the thresh-
old required for each module, and the modules were sub-
jected to cluster analysis with the following parameters:
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Figure 3: Continued.
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Figure 3: (a) Distribution of 22 distinct immune cell components in the three subtypes. (b) Variations in the distribution of 22 different
immune cell components across the three subtypes. (c) Variations in the scores of the ten pathways linked to tumour aberrations across
the three subtypes. (d) Variations in the infiltration levels of immune cells across the three subtypes. (e) The intersection of three
immunomolecular subtypes with the subtypes reported in a previous study on pancarcinoma.
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Figure 4: (a) Differences in TIDE scores across the three subtypes. (b) Differences in T-cell dysfunction scores across the three subtypes. (c)
Differences in T-cell rejection scores across the three subtypes. The box plots demonstrate the estimated IC50 values for gemcitabine (d),
erlotinib (e), and 5-Fu (f).
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Figure 5: (a) Correlation between the first two features and immune characteristic index across the three immune subtypes. (b) Variations
in the immune characteristic index across the three subtypes in The Cancer Genome Atlas (TCGA) cohort. (c) Receiver operating
characteristic (ROC) curve of the immune characteristic index in TCGA dataset. (d) Variations in the immune characteristic index
across three subtypes in the ICGC cohort. (e) ROC curve of the immune characteristic index in the ICGC cohort. (f) Differences in the
immune characteristic index among the three subtypes in the GSE71729 dataset. (g) ROC curve of the immune characteristic index in
the GSE71729 dataset.
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Figure 6: (a) Cluster tree for each sample. (b) An examination of the scale-free fit index using a variety of soft-thresholding powers (β). (c)
An investigation of the mean connectivity at a number of different soft-thresholding powers. (d) A dendrogram showing the clustering of all
remarkably expressed genes and long noncoding RNAs depending on a dissimilarity metric (1-TOM). (e) The proportion of genes included
in each every module. (f) Relationship between each module and clinical characteristics.
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minModuleSize, 30; deepSplit, 1; height, 0.25. In total, 30
modules were acquired (Figure 6(d)). There was no clus-
tering of the grey module with the other modules in the
gene set. The statistical information on the transcripts of
each module is presented in Figure 6(e) which demon-
strates that the grey module could not be assigned to a
gene module. Furthermore, the association of each module
with age, M stage, sex, N stage, tumour stage, T stage,
tumour grade, IS1, IS2, and IS3 was analysed
(Figure 6(f)). A significantly positive association was found
between the orange module and IS1, whereas a substantial
association was observed between the orange module and
IS2 and IS3, respectively.

3.7. Identification of the Immune Characteristic Index of the
Coexpressed Gene Modules. The association of the immune-
related features of 29 gene modules with the immune
characteristic index was examined (Figure 7(a)). The immune
feature index was shown to have strong correlations with 18 dif-
ferent modules. Subsequently, modules were chosen depending
on their substantial association with the immune characteristic
index for prognosis, and eightmodules, including black, orange,
violet, and white modules, were strongly linked to the prognosis
of pancreatic cancer (p < 0:05) (Figure 7(b)). The orange mod-
ule was identified as a candidatemodule based on its association
with the molecular subtype and prognosis. Subsequently, the
functions of genes within the orange module were assessed via
enrichment analysis (Figures 7(c) and 7(d)). There existed a link
between these genes and immunologic processes, including
IFN-γ-mediated signalling pathway, cellular response to IFN-
γ, type-I IFN signalling pathway, and response to IFN-γ. Fur-
thermore, the hub genes of the module were determined to be
those genes that had a correlation coefficient greater than 0.8
and were remarkably linked to prognosis (p < 0:05). Finally,
10 key genes in the orange module were identified, including
CMPK2, EPSTI1, IFI44, IFIH1, IFIT3, OAS1, OAS2, OAS3,
PARP14, and UBE2L6. These genes may be potential markers
related to the immune characteristic index. A protein interac-
tion network constructed based on these 10 hub genes
(Figure 7(e)) revealed close interaction among them.

3.8. Prognostic Analysis and Clinical Validation of 10 Hub
Genes. TMAs comprising 37 tissue samples from PAAD
patients and 23 samples from healthy controls were obtained
to validate protein expression. The findings illustrated that
the expression level of CMPK2, EPST1, IFIH1, IFI44, IFIT3,
OSAS1, OAS3, OAS2, UBL2L6, and PARP14 was consider-
ably lowered in cancer tissues in contrasted with the normal
tissues (Figures 8(a)–8(j), Supplementary Figure 1A-J). The
KM curve of these 10 genes is presented in Supplementary
Figure 1K–T. Seven out of the ten hub genes exhibited
substantial associations with the prognosis of patients with
pancreatic cancer, illustrating that they are possible
indicators linked to the immune characteristic index.

4. Discussion

Pancreatic cancer is among the most lethal malignancies that
pose the greatest risk of death worldwide, and the associated

changes in the fibrogenic matrix and cytogenetic or epige-
netic landscape create biological and physical barriers to suc-
cessful treatment [35]. Previous studies have suggested that
mismatched repair protein-deficient pancreatic cancer is
characterised by microsatellite instability. Immune check-
point inhibitor therapy is effective, with many patients with
pancreatic cancer achieving satisfactory results with immu-
notherapy [36]. Therefore, to enhance the effectiveness of
immune checkpoint inhibitors in pancreatic cancer therapy,
it is necessary to identify reliable biological markers. In this
research, pancreatic cancer was categorized into 3 subtypes:
IS1, IS2, and IS3, to improve the understanding of its immu-
nobiological components, and remarkable variations in
prognosis were discovered across these subtypes. The corre-
lation of the molecular subtypes with tumour immune cell
infiltration, chemical drugs, and immunotherapy response
was further analysed. The findings illustrated that the 3 sub-
types exhibited distinct immune-related characteristics,
immune cell infiltration levels, and immunotherapeutic
effects. In addition, an immune characteristic index was con-
structed, which was found to be associated with immune
checkpoint-related genes. Finally, 10 putative gene markers
linked to the immune characteristic index were detected
via coexpression network analysis. Therefore, we con-
structed and validated novel stratified immunoprognostic
markers for pancreatic cancer and provided new predictive
indices for immunotherapy of pancreatic cancer.

The characteristics of T-cell dysfunction and rejection in
tumour-infiltrating lymphocytes (TILs) are considered accu-
rate predictors of the responsiveness to immune checkpoint
inhibitors. These characteristics can more accurately predict
melanoma patients’ prognoses after treatment with first-line
anti-CTLA4 or anti-PD1 therapy as opposed to other biolog-
ical markers such as tumour mutation burden and PD-L1
levels [37]. In this study, TIDE scores were substantially ele-
vated in IS1 and IS2 in contrast with IS3, suggesting that IS3
benefited more from immunotherapy. In addition, IS1 had
the highest predicted T-cell dysfunction score; however, no
remarkable variations were observed in T-cell dysfunction
scores between IS2 and IS3. Based on these findings, it was
validated that although IS1 had the highest immune scores,
its poor prognosis may be attributed to T-cell dysfunction.
Furthermore, IS2 was found to have the highest T-cell rejec-
tion score, whereas IS3 exhibited the lowest score, which
may be attributed to the dismal prognosis of IS2 and the
good prognosis of IS3. Since the mid-1990s, gemcitabine
has been administered as a mainstay chemotherapy drug to
treat advanced pancreatic cancer, and it is critical for
patients with unresectable pancreatic cancer. However, the
overall survival response is poor, and pancreatic cancer cells
in most patients are resistant to gemcitabine [38]. On the
other hand, combination therapy with gemcitabine and the
anti-EGFR tyrosine kinase inhibitor erlotinib confers a sur-
vival advantage over gemcitabine alone. Additionally, gem-
citabine has also shown promising results when combined
with platinum or capecitabine [39, 40]. In this study, the
response of the three subtypes to gemcitabine, cisplatin, erlo-
tinib, and 5-FU was analysed, and IS1 and IS2 were found to
be more sensitive to gemcitabine, cisplatin, and erlotinib,
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Figure 7: Continued.

20 Oxidative Medicine and Cellular Longevity



Epstein−Barr virus infection

Herpes simplex virus 1 infection

Hepatitis C

Influenza A

NOD−like receptor signaling pathway

Antigen processing and presentation

Measles

Human immunodeficiency virus 1 infection

RIG−I−like receptor signaling pathway

Proteasome

0.10 0.15 0.20 0.25

Enrichment ratio

Size
5.0

7.5

10.0

12.5

15.0

5

7

9

−log10 (FDR)
Top10 pathway_KEGG

(d)

OAS3

OAS2 OAS1

IFIT3

IFIH1 IFI44

EPSTI1

CMPK2

UBE2L6

PARP14

(e)

Figure 7: (a) Association of the module characteristic vector with immune characteristic index. (b) Correlation between prognosis and each
gene module linked to the immune characteristic index. (c) The findings of the biological functional enrichment analysis regarding the
orange module. (d) The findings of the biological functional enrichment analysis regarding the orange module. (e) Protein interaction
network of putative gene markers associated with the immune characteristic index.
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whereas IS3 was found to be most sensitive to 5-FU. These
results may serve as a reference for making clinical decisions
regarding the administration of appropriate drugs because
different groups of patients may exhibit different chemother-
apeutic responses.

Different immune subtypes have different responses to
immunotherapy, which may lead to different clinical
advances. IFN-γ is an immune system cytokine that is pri-
marily generated by natural killer cells and activated T cells.
It is crucial for regulating immunological responses and
anticancer immunity [41]. High lytic activity is associated
with increased tumour survival rates, possibly owing to the
increased immune and cytolytic activity of M1 macrophages
and T cells. Studies on gastric and colorectal cancers have
reported the antitumour immune function of the CYT score,
which is a prognostic indicator of the effectiveness of
immune checkpoint blockade therapy [42, 43]. Angiogenic
factors drive immunosuppression by directly inhibiting
immune effector cells and antigen-presenting cells or by
enhancing the effects of tumour-associated macrophages
(TAMs), myeloid inhibitory cells (MDSCs), and regulatory
T cells (Tregs). A vicious loop that impairs antitumor immu-
nity may be formed when immunosuppressive cells induce
angiogenesis [44]. In this research, the immune cell scores

in the 3 subtypes were calculated, and substantial variations
were observed in immune characteristics across these sub-
types. The proportion of CD4+ memory T cells, CD4+ rest-
ing T cells, M0 macrophages, and M1 macrophages was
considerably elevated in the three subtypes, illustrating that
these cells may have a fundamental function in immuno-
therapy of pancreatic cancer. Furthermore, the expression
level of chemokines and their receptors was elevated in IS1
and IS2 compared to in IS3. The three subtypes had different
immune characteristics, and the expression level of a majority
of chemokines and checkpoint-associated genes was elevated
in IS1 and IS2 in contrast with IS3. In addition, the IS1 sub-
group exhibited the highest IFN-γ score, angiogenesis score,
and immune T-cell lytic activity. These results suggest that
immune cell infiltration might vary across various immune
subtypes, which might result in differences in the advance-
ment of the tumours as well as the effectiveness of immuno-
therapy. Nevertheless, the fundamental processes are yet to
be elucidated, and the findings of this study need to be vali-
dated in additional research. The expression level of most
genes linked to immune checkpoints was substantially ele-
vated in IS1 and IS2 as opposed to IS3, suggesting that the
activity of cytotoxic T lymphocytes (CTLs) in IS1 may be sup-
pressed by immune checkpoint molecules. This finding may
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Figure 8: Prognostic analysis and clinical validation of 10 hub genes. (a–j) Expression of CMPK2, EPST1, IFIH1, IFI44, IFIT3, OSAS1,
OAS3, OAS2, UBL2L6, and PARP14 in cancer and control tissues.
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be attributed to the worst prognosis observed in IS1 despite
the greatest infiltration levels of immune cells in the TME.

The TGF-β signalling pathway exerts a dual modulatory
function in the onset and progression of tumor [45]. Apoptosis
may be triggered in epithelial cells by TGF-β, which also can
suppress their growth and proliferation. For this reason, the loss
of responsiveness of epithelial cells to TGF-β-mediated sup-
pression of proliferation is a key event in the process of carcino-
genesis. With tumour progression, TGF-β enhances the
invasion, metastasis, and drug resistance of tumour cells and
maintains cancer cell stemness [46]. In addition, TGF-β inhibits
or modulates the immune response, recruits macrophages and
neutrophils to tumours, and induces their differentiation into
the “type-2” phenotype. It also inhibits the normal antitumour
function of neutrophils, macrophages, and type-1-differentiated
T cells and promotes the secretion of protumour cytokines
(including IL-11 and increased release of TGF-β) from type-2
immune cells [47–49]. Therefore, TGF-β signalling in the
TME inhibits the antitumour “cytotoxic” effects of completely
differentiated cells in the immune system. In this research, the
enrichment scores of the TGF-β pathway were significantly ele-
vated in IS1 and IS2 with elevated immune cell infiltration levels
as opposed to IS3 with lower immune cell infiltration, suggest-
ing thatmolecular typing is an efficient way to predict the effects
of immunotherapy. Therefore, blocking the TGF-β signalling
pathway has a powerful therapeutic potential in altering the bal-
ance of immune responses and enhancing the mechanisms of
antitumour immunity.

Considering the different molecular characteristics of
the three subtypes, a subtype classification index was
established in this study using LDA. This index may be
applied to evaluate the patients’ immune features. A high
characteristic index predicts lower immunosuppression
(IS3), and a low characteristic index predicts higher immu-
nosuppression (IS1).

Analysis of the coexpression network revealed the pres-
ence of a core gene module that was determined to be
dependent on the immune characteristic index. A total of
29 clinically relevant modules were screened, of which, the
orange module was associated with both molecular subtypes
and prognosis. This module included 10 core genes, namely,
CMPK2, EPSTI1, IFI44, IFIH1, IFIT3, OAS1, OAS2, OAS3,
PARP14, and UBE2L6, which were strongly linked to the
immune characteristic index. Cytidine/uridine monopho-
sphate kinase 2 (CMPK2) is a type of mitochondrial nucleo-
side monophosphate kinase, which can maintain UTP/CT in
cells [50]. It participates in mitochondrial DNA synthesis in
mammals and mediates immunomodulation and antiviral
activity via both IFN-independent and IFN-dependent path-
ways. In addition, it is involved in IFN-induced suppression
of human HIV infection [51, 52], assumes an instrumental
function in promoting the arteriosclerotic effects of IFNα,
and is a promising treatment target for SLE [53]. Epithe-
lial–stromal interaction 1 (EPSTI1) is a gene that responds
to interferons and is well known for its role in the metastasis
of malignant tumours. When compared with healthy breast
tissue, the level of EPSTI1 expression is considerably ele-
vated in invasive breast cancer tissues. EPSTI1 expression
is related to the onset and migration, stem cell-like

characteristics, epithelial–mesenchymal transition (EMT)
as well as the invasion and metastasis of breast cancer cells.
It is highest in the basal subtype of breast cancer, which
has a poor prognosis. EPST11 can regulate the exogenous apo-
ptosis of breast cancer cells with positive and triple-negative
oestrogen receptors. miR-654-5p blocks the growth of breast
cancer cells by specifically targeting EPSTI1, demonstrating
its potential as a treatment target [54–58]. EPSTI1, an
insulin-like growth factor induced by IL-28a, performs a vital
function in IL-28a-induced antiviral activity [59]. Recent stud-
ies have reported the involvement of EPSTI1 in immune
response, immune function, immune amnesty, and autoim-
mune disorders [60]. IFN-induced protein 44 (IFI44) is linked
to various viral infections. It has the potential to be utilised as a
target for the regulation of the innate immune system follow-
ing viral infection [61, 62] and may inhibit signals from extra-
cellular signal-modulated kinase by binding to intracellular
GTP, ultimately resulting in an arrest of the cell cycle.
LINC01116 is a critical component in the advancement of
gefitinib-resistant non-small-cell lung carcinoma (NSCLC)
by influencing the expression of IFI44, thus offering a novel
treatment target for overcoming TKI resistance in NSCLC
[63]. IFN-induced helicase C domain 1 (IFIH1), commonly
referred to as melanoma differentiation-associated protein 5
(MDA5), is an intracellular protein that can recognise viral
RNA and mediate natural immune responses. In a study on
the molecular regulation of M1 macrophages in acute respira-
tory distress syndrome, IFIH1 was identified as a novel regula-
tor of M1macrophage polarisation and a potential therapeutic
target [64]. The 2′,5′-oligoadenylate synthetase (OAS) family,
including OAS1, OAS2, and OAS3, is composed of IFN-
induced antiviral enzymes and has been well studied in the
field of tuberculosis [65, 66]. OAS1, OAS2, OAS3, and OASL
have been recognised as pivotal genes in a bioinformatic study
focusing on trastuzumab-resistant gastric cancer [67]. Addi-
tionally, the expression of IFN-stimulated genes, as well as
chemokines produced by human macrophages, is negatively
regulated by OAS1 and OAS3. Therefore, OAS proteins may
modulate the innate immunological signals produced by mac-
rophages, which has multiple implications for the treatment of
viral diseases [68]. Poly(adenosine diphosphate-ribose) poly-
merase (PARP) is an intracellular ADP ribotransferase that
protects lymphocytes from apoptosis. PARP14 accelerates
lymphogenesis driven by continuous overexpression of the c-
Myc oncogene and performs an indispensable function in
the glycolysis flux induced by IL-4, suggesting a possible asso-
ciation of PARP14 with metabolic modulation [69, 70].
PARP14 has been reported as a promising drug target among
the other 18 members of the PARP family that are known.
Recent research has identified the molecular processes of
PARP14 as a new prospective therapeutic target for a variety
of malignancies, such as prostate cancer, multiple myeloma,
ovarian cancer, diffuse large B-cell lymphoma, and breast can-
cer. PARP14 is involved in the cellular response and signalling
pathways of the immune system, in which it regulates the acti-
vation of macrophages, and is considered a viable target for
treating tumour-related and allergic inflammation [71, 72]. It
may promote the proliferation, antiapoptotic activity, and
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gemcitabine resistance of pancreatic cancer cells through the
NF-ΚB signalling pathway, thereby illustrating its promise as
a target for pancreatic cancer therapy [73]. The elevated
expression level of PARP14 is linked to the unfavourable prog-
nosis of primary hepatocellular carcinoma. In addition,
targeting PARP14 enhances the sensitivity of hepatoma cells
to antihepatoma drugs [74]. Ubiquitin/ISG15-conjugating
enzyme E2L6 (UBE2L6) is an E2 ubiquitin/ISG15-binding
enzyme that has a decisive function in inhibiting cell prolifera-
tion and xenograft tumour advancement by interacting with E3
ubiquitin ligase to target c-Myc for proteasomal disintegration
[75]. It is a new autophagy inhibitor, which may impact the
chemosensitivity of oesophageal cancer cells [76]. In addition,
it assumes a fundamental function in inhibiting the differentia-
tion of leukaemia cells [77] and is a new molecular target to
overcome cisplatin resistance [78]. The abovementioned genes
have been extensively investigated with regard to tumour
progression and prognosis and might act as useful biological
markers for prognostic prediction and estimating the efficacy
of immunotherapy in pancreatic cancer patients. Because these
immune marker-based genes are closely related to tumour
development and immune invasion, they warrant further
investigation. Moreover, additional comprehensive and com-
parative studies should be conducted to validate the efficacy of
the classification in clinical evaluation and decision-making.

In the present research, pancreatic cancer was divided
into distinct immune molecular subtypes, and the associa-
tion of these subtypes with immune checkpoints was exam-
ined. In addition, an immune characterisation index was
established to assess the immune-related characteristics of
patients. This study provides potential molecular targets
for developing new immunotherapeutic approaches for pan-
creatic cancer, which may eventually help to develop indivi-
dualised patient therapy. Although the link between the
index and immune cells was validated, this research has
some drawbacks. First, the findings are founded on a
single-centre clinical trial and require further validation in
multicentre clinical trials and larger prospective studies. Sec-
ond, all patients in this study were selected retrospectively,
which might have contributed to selection bias owing to
the small sample size. Additionally, only microarray expres-
sion datasets were included in this study. Hence, the molec-
ular functions of the identified marker genes should be
investigated in functional experiments, and future studies
should focus on immunotyping and clinical validation of
the characterisation index, which may provide more evi-
dence for the use of the index in clinical practice.

As far as we know, this study is the first to stratify
patients with pancreatic cancer based on immune character-
istics and to construct an immune subtype characteristic
index linked to the expression of genes linked to immune
cells. The findings of this study offer novel insights into
predicting the efficacy and possible therapeutic targets of
immunotherapy. Collectively, this research highlights the
possible molecular targets for establishing novel immuno-
therapeutic strategies for pancreatic cancer, which might
eventually aid in the establishment of individualised thera-
pies for patients based on their immune characteristics.
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