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Context. Kuntai capsule (KTC), a proprietary Chinese medicine, have been used for the treatment of polycystic ovary syndrome
(PCOS). Objective. This study elucidates the potential therapeutic targets and molecular mechanisms of KTC in the treatment of
PCOS. Materials and Methods. Using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform
(TCMSP), the active ingredients and potential targets of KTC were obtained. The Gene Expression Omnibus (GEO) database
was used to find differentially expressed genes (DEGs) related to PCOS. Search the CTD, DisGeNet, genecards, NCBI, OMIM,
and PharmGKB databases for therapeutic targets related to PCOS. The intersection of potential targets, DEGs, and therapeutic
targets was submitted to perform bioinformatics analysis by R language. Finally, the analyses’ core targets and their
corresponding active ingredients were molecularly docked. Results. 88 potential therapeutic targets of KTC for PCOS were
discovered by intersecting the potential targets, DEGs, and therapeutic targets. According to bioinformatics analysis, the
mechanisms of KTC treatment for PCOS could be linked to IL-17 signaling route, p53 signaling pathway, HIF-1 signaling
pathway, etc. The minimal binding energies of the 5 core targets and their corresponding ingredients were all less than -6.5.
Further research found that quercetin may replace KTC in the treatment of PCOS. Discussion and Conclusions. We explored
the active ingredients and molecular mechanisms of KTC in the treatment of PCOS and found that quercetin may be the core
ingredient of KTC in the treatment of PCOS.

1. Introduction

Polycystic ovary syndrome (PCOS) is one of the most com-
mon endocrine and metabolic diseases in gynecology. The
main symptom of PCOS is excessive androgen, which also

affects ovarian function and causes infertility [1]. At present,
the cause of PCOS is still unclear, but recent studies have
shown that the predisposing factors of PCOS may be related
to the patients’ daily life style and psychological factors [2].
Oral contraceptives, antiandrogens, and other hormonal
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interventional drugs are the clinically recognized therapy
options [3, 4]. The efficacy and safety drugs for PCOS, on
the other hand, have yet to be discovered.

In recent years, the curative effect of many classic pre-
scriptions of traditional Chinese medicine (TCM) in the
treatment of PCOS has been recognized by more and more
people [5]. According to Chinese medicine theory, one of
the core pathogenic processes of PCOS is kidney shortage
and blood stasis [6]. Kuntai Capsule (KTC) nourishes the
kidneys and also improves blood circulation, which helps
to regulate estrogen levels and promote ovarian function
(Zhang H et al. [7]). The mechanisms of KTC in the treat-
ment of PCOS may be related to increasing the patient’s sen-
sitivity to insulin, inhibiting oocyte apoptosis, and
improving impaired ovarian function, according to the liter-
ature (Zhang J et al. [8]; Zhang B et al. [9, 10]). However, the
specific mechanisms of KTC in the therapy of PCOS
remains unknown.

As one of the cutting-edge methods to explore the mech-
anisms of drug therapy, network pharmacology has achieved
remarkable results in exploring the therapeutic mechanisms
of TCM prescriptions and screening the active ingredients
and therapeutic targets of TCM ([11]; Gao X et al. [12]).
Therefore, we used network pharmacology, bioinformatics,
molecular docking, and other methods to reveal the active
ingredients, targets, and molecular mechanisms of KTC in
the treatment of PCOS. The flow chart of the entire study
is shown in Figure 1.

2. Materials and Methods

2.1. Screen the Active Ingredients and Targets of KTC. We
searched the active ingredients of KTC through the TCMSP
database (https://old.tcmsp-e.com/tcmsp.php) based on the
conditions of drug-like properties ≥ 0:18 and bioavailability
≥ 30% [13]. Then, we searched for the targets of the active
ingredients through the TCMSP database and converted
the target names to the gene names through the uniprot
database (https://www.uniprot.org/). Finally, the Cytoscape
3.7.2 software was used to construct the relationship net-
work between the active ingredients and target genes of
KTC.

2.2. Collect the Therapeutic Targets of PCOS. The therapeutic
targets were attained by searching DisGeNet, genecards,
NCBI, OMIM, and PharmGKB with “PCOS” and “polycys-
tic ovary syndrome” as keywords. Then, we converted the
target names to the gene names by the uniprot database.

2.3. Screen Targets Related to PCOS. We merged the three
PCOS-related datasets (GSE5850, GSE98421, GSE34526)
found in the Gene Expression Omnibus (GEO) database
and further used the R language “sva” and “limma” packages
for batch correction and differentially expressed genes
(DEGs) screening jlog 2 ðfoldchangeÞj > 1 and p value <
0.05).

2.4. Potential Therapeutic Targets of KTC in the Treatment of
PCOS. Therapeutic targets obtained from CTD, DisGeNet,
genecards, NCBI, OMIM, and PharmGKB databases were

combined with DEGs from the GEO database and screened
for targets appearing in at least two databases. These targets
were then intersected with KTC therapeutic targets to iden-
tify prospective KTC therapeutic targets for PCOS.

2.5. The Analysis of PPInetwork, GO, and KEGG. We
obtained the interactions between potential therapeutic tar-
gets of KTC through the STRING database. The protein-
protein interaction (PPI) network was constructed by the
Cytoscape software, and the core therapeutic targets were
further screened according to the degree value. To investi-
gate the probable molecular mechanisms of KTC in the
treatment of PCOS, R language was used to perform Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis.

2.6. Molecular Docking. Firstly, identify the active ingredi-
ents that correlate to KTC’s core targets in the treatment of
PCOS. The active ingredient’s two-dimensional structure
was retrieved via the PubChem website and translated into
the three-dimensional structure with the lowest free energy
by using the ChemBio3D software. Then, the 3D structure
of the core target was obtained through the PDB database,
and the water molecules and small molecule ligands were
deleted through the “PyMOL” software. Next, the “Auto-
DockTools” software was used to convert the protein and
drug ingredient into PDBQT format files and identify active
pockets. Finally, we used the “vina” software for molecular
docking.

2.7. Identify the Core Ingredients of KTC. We intersected the
therapeutic targets of all active ingredients in KTC with the
therapeutic targets of KTC. The active ingredient with the
most overlapping targets was considered to be the core
ingredient of KTC. Further bioinformatics analysis of the
potential therapeutic targets of the core ingredients was
performed.

3. Results

3.1. The Active Ingredients and Targets of KTC. According to
the screening conditions, 80 active ingredients and 204 ther-
apeutic targets of KTC were obtained through the TCMSP
database (Supplementary Table 1 and Supplementary
Table 2). After converting target names to gene names, the
KTC regulatory network was constructed though the
“Cytoscape” software. As shown in Figure 2, the
surrounding circles were the active ingredients of KTC,
and different colors represented different drugs. The red
triangles and blue rectangles represented the active
ingredients shared by various TCM and therapeutic targets,
respectively. The degree value represented the number of
edges connected to the node in the graph. The top three
pharmaceutical ingredients in terms of degree value were
quercetin, kaempferol, and wogonin.

3.2. Therapeutic Targets for PCOS. We found 988, 2540, 477,
181, and 327 therapeutic targets in the DisGeNet, genecards
(relevance score 1), NCBI, OMIM, and PharmGKB
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databases, respectively, by using keywords “polycystic ovary
syndrome” and “PCOS” (supplement table 3).

3.3. Targets Related to PCOS. We utilized the R language
"limma" package to detect 315 DEGs after excluding batch
effects in three data datasets linked to PCOS (supplement
table 3). The red dots on the left represented genes with
low expression in PCOS patients, whereas the blue dots on

the right represented genes with high expression in PCOS
patients (Figure 3(a)). Figure 3(b) shows the expression of
the top 20 DEGs ranked high and low in PCOS patients
versus healthy individuals.

3.4. Potential Therapeutic Targets of KTC. The obtained
DEGs from the GEO database were combined with PCOS-
related targets from the DisGeNet, genecards, NCBI, OMIM,
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Figure 1: Flow chart.
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and PharmGKB databases. Targets that appeared at least
twice were screened and intersected with therapeutic targets
of KTC, resulting in 88 potential therapeutic targets for
PCOS (Figures 4(a) and 4(b); Supplementary Table 4).

3.5. Analysis Results of GO, KEGG, and PPI Networks. In
order to further explore the mechanisms of KTC in the treat-
ment of PCOS, we performed R language to perform GO
and KEGG enrichment analyses of potential therapeutic tar-
gets (supplement table 5). As shown in Figure 5(a), in terms
of biological processes, targets were mostly enriched in
reactions with metal ions, lipopolysaccharides, bacteria-
derived molecules, nutritional levels, apoptosis, reactive
oxygen metabolism, reproductive system, neuronal death,
etc. In terms of cell components, targets were mostly
enriched in membrane raft, membrane microdomain,
membrane region, RNA polymerase II transcription factor
complex, nuclear transcription factor complex, and so on.
In terms of molecular function, the targets were mostly
enriched in the activity of steroid hormone receptors,
nuclear receptors, transcription factors, oxidoreductase
factors, etc. KEGG enrichment analysis found that the
targets were mostly enriched in IL-17 signaling pathway,
TNF signaling pathway, p53 signaling pathway, Toll-like
receptor signaling pathway, HIF-1 signaling pathway, etc.
(Figure 5(b)). Figure 6(a) illustrates the PPI network of
potential therapeutic targets. The darker the color, the
larger the node area and the higher the degree and

importance (Figure 6(a)). The selected core potential
therapeutic targetswere shown in Figure 6(b). The R
language scripts used in this study were shown in
Supplementary Table 9.

3.6. The Results of Molecular Docking. By analyzing the PPI
network, the five targets with the highest degree of MAPK1,
MAPK8, TP53, AKT1, and JUN were identified and further
searched for their corresponding active ingredients. Then,
following the molecular docking steps described in the
methods section, we executed the corresponding operations
and acquired the molecular docking data for the targets
and their corresponding active ingredients (Supplementary
Table 6). We found that the binding energies of all
molecular docking results were less than -6.5. The docking
results for the four compounds with the lowest binding
energies are shown in Figure 7.

3.7. The Core Ingredients of KTC. By intersecting the targets
of each active ingredient with the potential therapeutic tar-
gets of KTC (supplement table 7), we finally determined
that quercetin was the core ingredient of KTC. Quercetin
had 71 targets that overlap with the potential therapeutic
targets of KTC for PCOS (Figure 8(a)). We performed PPI
network analysis on these 71 targets and found that the 5
core targets were almost the same as those of KTC
(Figure 8(b)). As shown in Figure 8(c), the repetition rate
of the GO and KEGG enrichment analysis results of
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quercetin and KTC reached 75%, which were IL-17 signaling
pathway, TNF signaling pathway, endocrine resistance, p53
signaling pathway, HIF-1 signaling pathway, apoptosis-
multiple species, and so on (Figure 8(d); supplement
table 8).

4. Discussion

Many TCM formulations have been used for the clinical
treatment of PCOS. KTC targets the pathogenesis of PCOS
by invigorating the kidney and promoting blood circulation,
regulating the level of estrogen, and improving ovarian func-
tion. TCM formulations are difficult to examine at the
molecular level due to their multi-ingredient and multitarget
features. However, the emergence of network pharmacology
has made it possible to systematically research TCM formu-
lations. Therefore, this study relies on network pharmacol-
ogy and bioinformatics to explore the molecular
mechanisms of KTC in the treatment of PCOS.

By intersecting the therapeutic targets of KTC and PCOS
in the bioinformatics database, 88 potential therapeutic tar-
gets of KTC for PCOS were finally obtained. We used poten-

tial therapeutic targets to construct a PPI network and
further screened out 5 core targets (MAPK1, MAPK8,
TP53, AKT1, and JUN). In mammals, the MAPK family
participates in a variety of biological processes in the human
body. Currently, the 14 MAPK family members that have
been identified played important roles in transforming
extracellular stimuli into cellular responses [14]. The cas-
cades of MAPK are involved in many steps in the regulation
of ovulation, including the recovery of meiosis and the rup-
ture of follicles. MAPK1 plays a significant role in the mech-
anisms of insulin resistance and ovulation dysfunction in
PCOS patients [15]. MAPK8 affects the progress of PCOS
by regulating the autophagy of follicular cells [16]. TP53, a
transcription factor, stabilizes and induces the transcription
of genes related to cell cycle arrest, apoptosis, and metabo-
lism [17]. TP53 participates in the occurrence and progres-
sion of PCOS by inducing the apoptosis of ovarian
granulosa cells [18]. JUN belongs to the AP-1 transcription
factor family, which causes fibrosis and regulates many core
cell biological processes [19]. As an important regulator of
ovarian function, AKT participates in multiple biological
processes including the activation of primordial follicles
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top 10 results of BP, CC, MF enrichment analysis respectively). (d) KEGG enrichment analysis of therapeutic target (the top 30 results).
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and the differentiation of granulosa cells [20]. AKT1 is
involved in the proliferation of granular cells and follicle for-
mation. The upregulated AKT1 in PCOS patients may be
related to granule cell dysfunction [21].

We performed KEGG enrichment analysis on 88 potential
therapeutic targets of KTC for PCOS, and found that molecu-
lar mechanisms of KTC’s treatment of PCOS might be related
to IL-17 signaling pathway, TNF signaling pathway, p53 sig-
naling pathway, Toll-like receptor, and so on. IL17A, a proin-
flammatory cytokine, is mainly secreted by T-helper 17 cells.
In PCOS patients, IL17A is abundantly expressed. The activa-
tion of the IL17A signaling pathway can result in the release of
inflammatory mediators such as TNF, IL-6, and IL-1 ([22];
Gao Q et al. [23]). TNF is a cytokine with a wide range of bio-
logical activities, including TNF-α and TNF-β secreted by
macrophages and T lymphocytes, respectively. As an adipo-
kine of systemic inflammation, TNF-α is highly expressed in
obese PCOS patients ([24]; Zhang Q et al. [25]). TNF-α signal-
ing pathway is related to the uptake of glucose in tissues, which
may lead to the decline of female fertility [26]. Increased
androgen is a common clinical feature of PCOS patients,
which can promote the expression of p53 [27]. P53 has previ-
ously been linked to cytokines including IL-1, IL-6, and TNF-
α. The p53 signaling pathway may be involved in ovarian
granulosa cell autophagy and death, which could be linked
to PCOS pathophysiology [28]. The expression of Toll-like
receptors in PCOS patients is significantly increased, which
can lead to a decrease in the rate of available embryos in PCOS
patients ([29]; Wang Y et al. [30]). Insulin resistance, the sig-
nificant pathogenic feature of PCOS, is present in almost 85
percent of patients [31]. Recent studies have found that Toll-
like receptors activate the NF-κB signaling pathway, leading
to insulin resistance in PCOS patients ([32]; Wang D et al.
[33]).

By molecular docking of the 5 core targets and their cor-
responding drug ingredients, we found that wogonin-TP53,
kaempferol-MAPK8, quercetin-TP53, and quercetin-
MAPK1 have excellent binding efficiency. Wogonin, a natu-
rally occurring flavonoid compound, has anti-inflammatory,
antioxidant, anticancer, and antiviral effects [34]. Wogonin
regulates the redox process of chondrocytes and inhibits
the biological activity of inflammatory mediators produced
by macrophages and lymphocytes [35, 36]. In PCOS
patients, endoplasmic reticulum stress induces granulosa cell
apoptosis through death receptor 5 [37]. By controlling the
process of endoplasmic reticulum stress, kaempferol, a natu-
ral flavonol active molecule, improves the survival rate of
noncancer cells [38, 39]. The core ingredient of KTC was
quercetin which had 71 targets that overlap with the poten-
tial therapeutic targets of KTC for PCOS. As one of the
potential risk factors of PCOS, oxidative stress damages the
insulin resistance, lipid metabolism, and follicular develop-
ment of PCOS. Quercetin works as an antioxidant by lower-
ing free radical generation, preventing lipid peroxidation,
and altering antioxidants [40]. Studies have found that quer-
cetin reduces the body weight, cysts, and ovarian diameter
and restores healthy follicle function to alleviate the meta-
bolic disorders of PCOS model rats [41]. Oral quercetin
has been shown in clinical studies to successfully reduce

adiponectin-mediated insulin resistance and hormone
abnormalities in PCOS patients [42].

5. Conclusion

In this study, we uncovered the targets and molecular mech-
anisms of KTC in the treatment of PCOS and confirmed that
quercetin may replace KTC for the treatment of PCOS
patients through network pharmacology, bioinformatics,
molecular docking, and other methods. These results may
provide evidence for the clinical application of KTC in the
treatment of PCOS.
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