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As nanoscale membranous vesicles, human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-
sEVs) have attracted extensive attention in the field of tissue regeneration. Under the premise that the mechanisms of hucMSC-
sEVs on the treatment of diabetic kidney disease (DKD) have not been revealed clearly, we constructed DKD rat model with
success. After tail vein injection, hucMSC-sEVs effectively reduced blood glucose, maintained body weight and improved renal
function in DKD rats. Notably, we found that hucMSC-sEVs suppressed YAP expression in renal cortical regions. Further
in vitro experiments, we confirmed that the expression of YAP in the nucleus of renal podocytes was increased, and the level
of autophagy was inhibited in the high-glucose environment, which could be reversed by intervention with hucMSC-sEVs. We
screened out the key protein 14-3-3ζ, which could not only promote YAP cytoplasmic retention instead of entering the
nucleus, but also enhance the level of autophagy in the cytoplasm. Ultimately, excessive YAP protein was removed by
autophagy, a classic way of protein degradation. In conclusion, our study provides new strategies for the prevention of DKD
and proposes the possibility of hucMSC-sEVs becoming a new treatment for DKD in the future.

1. Introduction

Diabetic kidney disease (DKD) is one of the most serious
microvascular complications of diabetes mellitus and the
leading cause of death and disability in end-stage renal dis-
ease (ESRD) patients [1, 2]. DKD is associated with
increased stromal expansion, which is characterized by dif-
fuse or nodular expansion of the mesangium and diffuse
thickening of the glomerular and tubular basement mem-
branes [3]. Podocytes, attached to the outside of the glomer-
ular basement membrane (GBM), and their structural and
functional changes are extremely important in the develop-
ment and progression of DKD, which are mainly manifested
in abnormal podocyte hypertrophy, disappearance, and apo-
ptosis [4–6]. Currently, the clinical treatment strategies for

DKD are blood glucose control, renin-angiotensin system
inhibitors combined with multidisciplinary treatment, sup-
plemented by reasonable and moderate regular exercise
[7], etc., whereas patients have long-term dependence on
drugs and are prone to side effects such as hypoglycemia,
hemolytic anemia, liver, and kidney damage. Thus, it is
urgent to find new strategies for the treatment of DKD.

Stem cell therapy provides an alternative strategy for
modulating complex disease processes by inhibiting patho-
genic mechanisms and promoting tissue regeneration [8].
It has been demonstrated that mesenchymal stem cells
(MSCs) could delay the progression of DKD by inhibiting
the inflammatory response and reducing kidney damage
[9–11]. In addition, MSC-conditioned medium has been
confirmed that it could inhibit oxidative stress and alleviate
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Figure 1: Continued.
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renal fibrosis caused by DKD, which revealed that MSCs
could act through paracrine mechanism [12, 13]. In recent
years, small extracellular vesicles (sEVs), the main paracrine
components of MSCs, have set off a research boom. As
important carriers of intercellular information transfer, they
can selectively encapsulate proteins, nucleic acids (miRNAs,
lncRNAs, and circRNAs), lipids, and are potential targets for
clinical treatment [14–16]. As we previously demonstrated,
the human umbilical cord mesenchymal stem cell-derived
small extracellular vesicles (hucMSC-sEVs) acted a part in
repairing tissue injury, such as liver failure [17], skin damage
[18, 19], acute kidney injury [20, 21], and unilateral ureteral
obstruction (UUO)-induced renal fibrosis [22]. However,
whether and how hucMSC-sEVs protect against DKD
remains unclear.

The related studies have elucidated the functions of
Hippo-YAP signaling in the maintenance of glomerular
development and filtration barriers, podocyte homeostasis,
renal epithelial damage, and renal fibrosis in DKD [23, 24].
Yes-associated protein (YAP), a multifunctional intracellular
connexin and transcriptional coactivator, is the core effector
of Hippo signaling pathway, which takes part in signal trans-
duction and gene transcription regulation in cells [25]. Phos-

phorylation of a key serine (Ser 127) of YAP in mammals
confines the protein to the cytoplasm and no longer takes
effects in target gene expression, which is regulated by 14-
3-3ζ protein [26]. YAP has been confirmed to be closely
related to renal fibrosis [22, 27], cell apoptosis [28], and
epithelial-mesenchymal transition [29]. Previous study by
our team has confirmed that the hucMSC-sEVs-derived
14-3-3ζ coordinated the Wnt signaling pathway by regulat-
ing YAP during skin regeneration [30]. Nevertheless, the
function of YAP in DKD needs further exploration.

14-3-3 proteins include a highly conserved family of pro-
teins that are widely present in different eukaryotic cells [31].
14-3-3 protein has various isoforms including β, ε, η, γ, τ, σ,
and ζ [32], which is widely involved in the regulation of bio-
logical processes, such as protein trafficking, signal transduc-
tion, cell cycle, apoptosis, and autophagy [33, 34].
Autophagy is a cellular self-protection that keeps cells from
damage by degrading organelles and proteins [35]. In
cisplatin-induced AKI models, we have demonstrated that
hucMSC-sEVs-14-3-3ζ enhanced autophagy levels and
reduced cell apoptosis [21, 36]. Emerging evidence suggested
that dysregulated autophagy may contribute to renal glo-
merular and tubulointerstitial lesions in DKD [37, 38]. For
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Figure 1: The characteristics of hucMSCs and hucMSC-sEVs. (a) Morphological identification of human umbilical cord tissue (40×, bar
= 20μm). (b) The morphology of hucMSCs in 3rd generation was observed under microscope (100×, bar = 50 μm). (c) Osteogenic
differentiation of hucMSC was detected by neutrophil alkaline phosphatase (NAP) staining (100×, bar = 50μm). (d) Adipogenic
differentiation of hucMSC was analyzed by Oil-Red-O staining (100×, bar = 50μm). (e) Flow cytometry analyses of phenotypic markers
of hucMSC: CD29, CD166, and CD44. (f) Nanoparticle tracking analysis (NTA) was used to detect the average particle size and
concentration of hucMSC-sEVs. (g) Detection of hucMSC-sEVs surface marker expression by western blot. (h) Representative TEM
image of hucMSC-sEVs (bar = 200 nm).
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Figure 2: Continued.
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this reason, autophagy performs a key role in the progres-
sion of DKD. However, whether hucMSC-sEVs delivered
14-3-3ζ can induce the activation of autophagy to prevent
renal injury in DKD is unclear.

This study aimed to investigate whether hucMSC-sEVs
could effectively alleviate DKD and the underlying molecu-
lar mechanisms. On the one hand, our results confirmed
that hucMSC-sEVs-delivered 14-3-3ζ induced phosphoryla-
tion at Ser 127 and cytoplasmic retention of YAP. On the
other hand, it also has been verified that hucMSC-sEVs-
14-3-3ζ could enhance autophagy in podocytes. Then it
was surprisingly found that YAP, retained in the cytoplasm,
was encapsulated into autophagosomes, which further pro-
moted the degradation of YAP. Taken together, these find-
ings underscore the importance of hucMSC-sEVs in DKD
injury repair and provide a theoretical basis for the preven-
tion and treatment of DKD.

2. Materials and Methods

2.1. Ethics. All the experimental protocols were approved by
the Medical Ethics Committee and Ethics Committee for
Experimental Animals of Jiangsu University (2020161).

2.2. Cell Culture. The isolation and characterization of
hucMSCs is briefly introduced as follows [39]. Fresh human
umbilical cord tissues were collected from the affiliated hos-
pital of Jiangsu University and processed into 1-mm3 tissue
blocks within 2 h. HucMSCs were cultured in minimal
essential medium alpha (α-MEM) containing 10% fetal
bovine serum (FBS, Gibco) at 37°C with 5% CO2. We subse-
quently expanded a large number of hucMSCs and collected
the supernatant of the 3rd to 5th generation. Rat podocytes
were purchased from American Type Culture Collection
(ATCC) and maintained in low-glucose DMEM with 10%
fetal bovine serum at 37°C with 5% CO2.

2.3. hucMSC-sEVs Purification and Characterization.
HucMSC-sEVs were isolated and purified by differential
ultracentrifugation [40]. The final content was resuspended
in PBS and subsequently passed through a 0.22-μm filter

to remove bacteria. The hucMSC-sEVs were stored at
-80°C for long-term use. The protein contents of the purified
hucMSC-sEVs were detected by bicinchoninic acid (BCA)
protein assay kit (Vazyme). The morphologies of hucMSC-
sEVs were observed by TEM (FEI Tecnai 12, Philips). The
sizes and concentrations of hucMSC-sEVs were detected
by NTA (NanoSight, Amesbury). The expression of
hucMSC-sEVs surface markers, including CD9, CD81, and
TSG101, and the lack of Calnexin and Albumin expression
were determined by western blot.

2.4. Diabetic Kidney Disease Rat Model. Aged 8 weeks male
Sprague-Dawley (S-D) rats, weight within 200-250 g, were
purchased from Charles River (Beijing, China). The rats
were fed with a regular diet at an ambient temperature of
22-25°C for 5 days and then fed with 45% high fat diet
(HFD) for 4 weeks. After being fasted for 12 h with free
access to water, HFD fed rats were treated with STZ
(35mg/kg in 0.1M citrate buffered saline, pH = 4:5) via tail
vein injection [41]. Random fasting blood glucose
(≥16.7mmol/L) was measured to evaluate whether the rat
models were successful. Eight weeks later, hucMSC-sEVs
(10mg/kg) were injected into DKD rats through tail vein
intravenously. Normal rats were fed with normal diet as
control. All rat models were harvested 24 weeks after STZ
injection, and the kidney tissues were sacrificed for follow-
up experiments.

2.5. hucMSC-sEVs Labeling and Internalization. According
to the manufacturer’s protocol, hucMSC-sEVs were labeled
with fluorochrome Dil (Red, Thermo Fisher). Then
hucMSC-sEVs in PBS were mixed with Dil in the dark at
37°C for 30min. The labeled sEVs were washed with PBS
and filtered through a 100-kDa-molecular-weight cut-off
ultrafiltration membrane (Millipore) at 1000 g for 30min
to remove the unbound dye. PBS was used as a negative con-
trol. Podocytes (1 × 104 per well) were seeded in 6-well
plates and incubated with Dil-labeled hucMSC-sEVs at
37°C for 12 h. The cells were washed with PBS and fixed in
4% paraformaldehyde. Nucleus were counterstained with
Hoechst 33342 (Sigma). A confocal microscope was used

W
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Normal DKD hucMSC-sEVs

(f)

Figure 2: High-expressed YAP was attenuated by hucMSC-sEVs in high-glucose environment. (a) There were 3 groups: normal group,
DKD group, and hucMSC-sEVs intervention group (i.v.). The blood glucose, body weight, creatinine, and blood urea nitrogen of the rats
were counted weekly, and the statistical graph was drawn. (b) H-E staining and immunohistochemical detection of YAP expression in
renal tissues at 24 weeks (bar = 100 μm). (c) QRT-PCR detection of the expression level of Yap1, KM472_gp063, and Tead1 in
podocytes. (d) The expression of YAP and NPHS2 in podocytes in high-glucose environment was observed by immunofluorescence
method (bar = 25μm). (e) Tissue immunofluorescence analysis was used to observe the expression of YAP and NPHS2 in kidney tissue
at 24 weeks (bar = 50μm). (f) Immunohistochemical staining showed the localization of WT1 (red arrows) in kidney tissue (bar = 100
μm). (n = 3; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001).
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to acquire sequentially fluorescent images (Thermo Fisher
Scientific).

2.6. Cytoplasm and Nuclear Fractionation. Cytoplasm and
nuclear fractionation was performed according to the manu-
facturer’s instructions (Vazyme). Cells were suspended in
isolation buffer A mixed with protease inhibitors and rotated
at 4°C for 1min. After 12,000 g centrifugation at 4°C for
5min, supernatant was collected containing the cytoplasm
fraction. The remaining cell debris were then suspended in
isolation buffer B mixed with protease inhibitors and rotated
at 4°C for 1min and repeated three times every 10min.
Cytoplasm and nuclear fractionation were detected by west-
ern blot.

2.7. Knockdown of 14-3-3ζ in hucMSCs. To target 14-3-3ζ
genes silence, a lentiviral expression vector containing the
14-3-3ζ shRNA sequence (Sigma) was designed and Lenti-

GFP-shRNA as negative control vector. The Lenti-14-3-3ζ
shRNA vectors were generated by ligating the vector Tet-
pLKO-puro with 14-3-3ζ shRNA oligonucleotides (FUBio).
To obtain sequences information of 14-3-3ζ shRNA oligo-
nucleotides, please browse Table S1 in the Supplementary
Material. HucMSCs were transduced with the prepared
lentivirus (Lenti-14-3-3ζ shRNA or Lenti-GFP shRNA) at
the suitable dosage and selected with 1μg/mL of
puromycin (Invitrogen) for 15 days. The efficiency of 14-3-
3ζ knockdown was evaluated by western blot.

2.8. Western Blot. Total proteins from kidney tissues and
cells were extracted in radioimmunoprecipitation assay
(RIPA) buffer. Equal protein amounts of tissue or cell lysates
were separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) at 12% or 15% and trans-
ferred to polyvinylidene fluoride (PVDF) membranes supe-
rior. After being blocked with 5% skim milk for 1 h, the
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Figure 3: hucMSC-sEVs reversed high glucose-induced low-level autophagy in podocytes. (a) Flow cytometry analysis of autophagy-related
proteins: LC3B, p62, and Beclin. (b) Statistical analysis of mean fluorescence intensity of autophagy-related proteins. (c) Transfected
podocytes were visualized by fluorescence microscope to observe autophagy levels (bar = 1000μm). (d) Flow cytometry analysis was
conducted to detect the apoptosis of podocytes under different treatment conditions. (e) Statistical analysis of the proportion of apoptotic
cells. (f) The expression of autophagy and proliferation-apoptosis-related proteins were quantified by western blot ( n = 3). (g) Statistical
analysis of autophagy and proliferation-apoptosis-related proteins. (h) Quantification of podocyte autophagosomes and autolysosomes.
(i) Representative TEM images of autophagosomes (red arrows) and autolysosomes (yellow arrows) in podocytes (n = 3; ∗p < 0:05, ∗∗p <
0:01, and ∗∗∗p < 0:001).
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membranes were incubated with primary antibodies and
horseradish peroxidase (HRP)-conjugated secondary anti-
bodies and then detected by using an enhanced chemilumi-
nescent (ECL) substrate detection system. Primary
antibodies were incubated overnight at 4°C. The HRP-
conjugated goat antirabbit and goat antimouse secondary
antibodies (CWBIO) were incubated 90min at RT. For more
antibodies information, all primary antibodies involved in
this study are summarized in Table S2 in the
Supplementary Material.

2.9. Cell Transfection and Structured Illumination
Microscopy Assay. Podocytes were seeded at 6-well plates
and cultured for 24h and then transfected mRFP-GFP-LC3
adenovirus according to the manufacturer’s protocol (Han
Heng Biology). After treatment, the cells were washed with
PBS and fixed with 4% paraformaldehyde. Finally, the cells
were then stained with Hoechst33342 for nuclear staining.
The images were acquired with a structured illumination
microscopy (Nikon, SIM). The yellow puncta were auto-
phagosomes, and the red puncta were autolysosomes.

2.10. Immunoprecipitation (IP). The cell pellet was collected
in Co-IP buffer (Pierce™), and then the supernatant was
subjected to IP using the indicated primary antibodies at
4°C overnight. The lysate was centrifuged and incubated

with 30μL protein A/G gel at 4°C for 4 h. The collected pro-
tein complexes were washed 4 times with Co-IP buffer and
analyzed by western blot. Catalogue number is listed in Sup-
plementary Table S3.

2.11. Immunofluorescence and Immunohistochemistry
Analysis. Podocytes were fixed in 4% paraformaldehyde for
60min, then treated with 0.1% Triton membrane breaker
for 20min. The kidney tissue slices were deparaffinized.
The primary antibodies were incubated at 4°C overnight.
After washing with PBS, cells were incubated with goat
anti-Mouse IgG, Alexa Fluor 488 (Invitrogen) or goat anti-
rabbit IgG, Alexa Fluor 555 (Invitrogen) at RT for 2 h.
Nucleus were stained with Hoechst33342. Images were cap-
tured with a fluorescent microscope (Nikon) or a structured
illumination microscopy (Nikon, SIM). The slides were visu-
alized with a confocal microscope (DeltaVision Elite, GE).

2.12. QRT-PCR. Total RNA from podocytes was extracted
with TRIzol reagent. cDNA was reversed according to the
SuperScript™ II RT kit manufacturer’s instructions
(Vazyme). The qRT-PCR was used to detect the expression
levels of the target genes. β-Actin was used as the endoge-
nous control. The specific primers were produced by Sangon
Biotech, and their products are shown in Supplementary
Table S4.
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shRNA sequence was designed and Lenti-GFP-shRNA as negative control vector. The lentiviral transfection efficiency was observed by
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and total (p-)YAP levels ( n = 3). (f) Statistical analysis of protein expression. (g) Cellular immunofluorescence was used to observe the
apoptosis of podocytes (bar = 25μm). (n = 3; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001).
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2.13. Statistical Analysis. All data are expressed as mean ±
standard deviation (SD) by using Prism software (GraphPad,
San Diego). The statistically significant differences between
different groups were assessed using one-way analysis of var-
iance (ANOVA) followed by Turkey’s posttest. p values were
adjusted for multiple comparisons when appropriate. p <
0:05 was considered statistically significant.

3. Results

3.1. The Characteristics of hucMSCs and hucMSC-sEVs.
Human umbilical cord tissues were purified and isolated as

previously described. After 2 weeks, the hucMSCs were
closely arranged around the umbilical cord tissue, which
looked like long spindle-shaped and fish-like growth
(Figures 1(a) and 1(b)). After cultured in osteogenic and adi-
pogenic medium, Oil-Red-O staining revealed numerous
lipid droplets in the hucMSC cytoplasm, and the cells
became alkaline phosphatase positive (Figures 1(c) and
1(d)). These results showed that hucMSCs could be differen-
tiated into both adipocytes and osteoblasts. Flow cytometry
analysis demonstrated that hucMSCs highly express typical
MSC surface markers, including CD29, CD166, and CD44,
with the low expression of CD45, HLA-DR, and CD14
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Figure 5: hucMSC-sEVs-derived 14-3-3ζ enhanced autophagy to engulf YAP. (a) The production and number of autophagosomes (marked
as yellow dots) were observed by SIM (bar = 5 μm). (b) Statistics of the number of autophagosomes in each group. (c) Compared with other
control groups, the changes of autophagy-related proteins were detected by western blot ( n = 3). (d) Statistical analysis of the protein
expression. (e) Flow cytometry analysis was conducted to detect the apoptosis of podocytes under different treatment conditions. (f)
Statistical analysis of the proportion of apoptotic cells. (g) Observation of the expression and colocalization of YAP and LC3B by SIM
(marked as yellow dots) (bar = 5μm). (n = 3; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001).
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Figure 6: hucMSC-sEVs-derived 14-3-3ζ serves as a bridge between YAP and autophagy.
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(Figure 1(e)). hucMSC-sEVs were isolated and purified from
the cell culture supernatant by differential ultracentrifuga-
tion. Nanoparticle tracking analysis (NTA) indicated that
hucMSC-sEVs were approximately 122:9 ± 46:2nm in
diameter (Figure 1(f)). Western blot assay was used to iden-
tify surface and interior markers expression such as CD9,
TSG101, and Hsp70 except Calnexin and Albumin
(Figure 1(g)). Transmission electron microscopy (TEM)
revealed that hucMSC-sEVs displayed a classic bowl-
shaped structure with a complete membrane (Figure 1(h)).

3.2. High-Expressed YAP Was Attenuated by hucMSC-sEVs
in High-Glucose Environment. After establishing a 24-week
DKD rat model successfully, we injected hucMSC-sEVs at
a dose of 10mg/kg through the tail vein to observe the repair
effect. Compared with normal and DKD groups, the inter-
vention of hucMSC-sEVs effectively improved the symp-
toms of the DKD rats, which has reflected in a certain
degree of hypoglycemic effect, maintaining a better body
weight and reducing the levels of creatinine and urea nitro-
gen (Figure 2(a)). By means of hematoxylin-eosin staining
(H-E staining) and YAP immunohistochemistry on renal
tissue sections, pathological damage such as glomerular
basement membrane thickening and renal tubular dilatation
in DKD rats could be observed. The expression of YAP
increased at the same time. hucMSC-sEVs inhibited the
expression of YAP and alleviated renal tissue damage
(Figure 2(b)). In vitro, first we stimulated podocytes with
different gradients of glucose and found that 30mM was
the optimal concentration for high-glucose treatment (Sup-
plementary Figure S1A-D). Immunofluorescence results of
podocytes showed increased expression and entry of YAP
into the nucleus, accompanied by decreased expression of
the podocyte function-specific marker NPHS2, which were
corrected after the intervention of hucMSC-sEVs
(Figure 2(d)). Furthermore, treatment of podocytes in a
high-glucose environment with insulin did not attenuate
YAP expression nor inhibit YAP entry into the nucleus
significantly, whereas hucMSC-sEVs did (Figure S1E-H). It
was also confirmed from the mRNA level that YAP and its
related transcription factors were highly expressed in high
glucose-induced podocytes and hucMSC-sEVs could
effectively attenuate their expression (Figure 2(c)). It was
more intuitively observed by immunofluorescence that
hucMSC-sEVs could effectively reduce the expression of
YAP in the glomerular region of DKD rats, that is,
hucMSC-sEVs could alleviate podocyte dysfunction caused
by DKD. In addition, immunohistochemical staining
showed that the number of cells positive for the podocyte
nuclear marker WT1 was significantly decreased in the
DKD group, while the number of podocytes increased after
the hucMSC-sEVs intervention, which alleviated the
podocyte loss that occurred during the DKD period
(Figures 2(e) and 2(f)).

3.3. hucMSC-sEVs Reversed High Glucose-Induced Low-Level
Autophagy in Podocytes. Flow cytometry analysis showed
that under continuous high-glucose stimulation, the level
of autophagy-related proteins (LC3B, p62, and Beclin) in

podocytes were inhibited, which could be alleviated by
hucMSC-sEVs (Figures 3(a) and 3(b)). After that, double-
labeled LC3 (mRFP-GFP-LC3) lentivirus was transfected
into podocytes for 48 h, and then high glucose and high glu-
cose with hucMSC-sEVs were given. Subsequently, the inter-
vention of chloroquine, an autophagy inhibitor, was used to
further explore the changes in autophagy levels under differ-
ent processing conditions. In the transfected podocytes, both
the chloroquine group and the high-glucose treatment group
appeared stronger GFP signal compared with the normal
group, whereas the intervention of hucMSC-sEVs could
effectively weaken the intensity of GFP signal (Figure 3(c)).
The results of flow cytometry analysis showed that
hucMSC-sEVs could mitigate the cell apoptosis of high glu-
cose and/or chloroquine on podocytes (Figures 3(d) and
3(e)). The changes of autophagy-related proteins and
proliferation-apoptosis-related proteins in podocytes were
consistent with the above phenomenon (Figures 3(f) and
3(g)). Podocyte autophagosomes and autophagolysosomes
were observed by transmission electron microscopy, and it
was found that hucMSC-sEVs could promote the occurrence
of autophagy (Figures 3(h) and 3(i)).

3.4. YAP Was Held in the Cytoplasm by hucMSC-sEVs-
Derived 14-3-3ζ. We screened the highly expressed 14-3-3ζ
protein by LC-MS/MS analysis of hucMSC-sEVs. In order
to verify the role of 14-3-3ζ, we constructed a 14-3-3ζ lenti-
virus stable transfection system for hucMSC cells
(Figure 4(a)), and the knockdown efficiency was verified by
protein surface labeling (Figure 4(b)). hucMSC-sEVs were
labeled with Dil and uptake by podocytes (Figure 4(c)).
Co-IP experiments confirmed that compared with the GFP
control group, the expression of phosphorylated YAP at ser-
ine 127 in podocytes was reduced after the intervention of
knockdown 14-3-3ζ-sEVs (Figure 4(d)). Further separation
of nucleoplasmic proteins in podocytes verified that the
nuclear translocation of YAP increased in a high-glucose
environment. hucMSC-sEVs effectively inhibited YAP from
entering the nucleus and blocking in the cytoplasm, which
worked by 14-3-3ζ (Figures 4(e) and 4(f)). The apoptosis
level of podocytes was clearly visualized by the fluorescence
intensity and localization of Caspase3. The results con-
firmed that knockdown of 14-3-3ζ in hucMSC-sEVs could
decrease the podocytes apoptosis to a certain extent
(Figure 4(g)).

3.5. hucMSC-sEVs-14-3-3ζ Enhanced Autophagy to Engulf
YAP. After verifying the critical role of hucMSC-sEVs-14-
3-3ζ on YAP, we still investigated the regulatory mechanism
of 14-3-3ζ on autophagy. The structured illumination
microscopy (SIM) was applied to observe the production
of autophagosomes. The yellow puncta represented auto-
phagosomes, and the red puncta were autolysosomes. The
expression and the puncta of autophagosomes were
decreased in the sh14-3-3ζ-sEVs group compared with the
shGFP-sEVs group and the hucMSC-sEVs group
(Figures 5(a) and 5(b)). Western blot results further con-
firmed that knockdown of 14-3-3ζ significantly suppressed
the expression of autophagy-related proteins (Figures 5(c)
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and 5(d)). The number of apoptotic cells had significantly
increased in sh14-3-3ζ-sEVs group compared with the con-
trol group, whereas pretreatment with hucMSC-sEVs
resulted in fewer apoptotic cells (Figures 5(e) and 5(f)).
Moreover, we unexpectedly found that the expression of
YAP did not decline after the intervention of the autophagy
inhibitor chloroquine (Figure 3(f)). Consequently, YAP was
confirmed to colocalize with perinuclear LC3B in podocytes
after chloroquine pretreatment (Figure 5(g)). It has been
confirmed that YAP was enclosed in autophagosomes.

4. Discussion

Diabetic kidney disease (DKD) has become the leading
cause of chronic kidney disease, placing a huge burden
on the economy and society. The onset of DKD is insidious
in the early stage, and the patients only pay attention to it
when the symptoms of polydipsia and polyuria occur, so
that it develops to advanced renal failure and even uremia.
Due to the complex pathogenesis of DKD and the lack of
specific and effective intervention targets, there is cur-
rently no breakthrough in treatment [42]. As far as the cur-
rent clinical treatment of DKD is concerned, it is limited to
only renin-angiotensin system inhibitors combined with
multidisciplinary therapy [43]. Despite the addition of
new clinical trials with renal outcomes as the primary end-
point, the progression of DKD has not been fully con-
trolled. Therefore, it is urgent to find new treatment
methods for DKD.

In the twenty-first century, stem cell therapy has opened
the door to the medical field. Stem cells can be used as ideal
“seed” cells for the repair of tissue and organ damage caused
by pathological changes due to their high-efficiency prolifer-
ation, multidirectional differentiation potential, immune
regulation, and self-replication [44]. Umbilical cord, adi-
pose, and bone marrow-derived MSCs have been proved to
have effects of inhibiting inflammation and antifibrosis and
inhibiting apoptosis in DKD [45–49]. In addition, the para-
crine approach of MSCs is considered to be more superior
efficacy, among which are especially small extracellular vesi-
cles (sEVs) [50]. sEVs, which encapsulate therapeutic pro-
teins or RNA molecules, are not only promising
biomarkers but also potential targets and tools for the treat-
ment of DKD [51]. In this study, we successfully constructed
high-glucose models both in vivo and in vitro, confirming
that hucMSC-sEVs could effectively lower blood glucose
level and reduce renal damage. This provides new ideas for
the development of DKD treatment regimens.

YAP, a transcriptional regulator, has become the focus of
great interest because of its remarkable biological properties
in tissue organ development and tissue homeostasis. YAP
activity is critical for cell proliferation throughout organ
growth, tissue renewal, and regeneration [52, 53]. Previ-
ously, we confirmed that YAP is a key molecule in the treat-
ment of renal fibrosis and the highly expressed YAP could be
degraded by the CK1δ/β-TRCP ubiquitin system carried by
hucMSC-sEVs in the UUO model [22]. In the DKD model
of this study, we found that YAP was highly expressed in a
high-glucose environment, accompanied by renal impair-

ment and massive cell apoptosis both in vivo and in vitro.
Afterwards, the key protein molecule, 14-3-3ζ, that played
a vital role in hucMSC-sEVs were screened by LC-MS/MS
technology. Via knocking down the 14-3-3ζ protein, the
ability of hucMSC-sEVs to weaken YAP was reduced. Mean-
while, the apoptosis of podocytes was promoted at the same
time. These evidences directly illustrate the importance of
14-3-3ζ.

The 14-3-3 protein family is widely distributed in
eukaryotes and participates in a variety of signal transduc-
tion pathways and important cell life activities, such as cell
growth and development, gene transcription, and cell apo-
ptosis [54, 55]. According to studies, the 14-3-3 protein reg-
ulates the process of autophagy and the formation of
autophagosomes by binding to autophagy-related proteins
such as Beclin and hVPS34 [56]. Autophagy is a cellular pro-
cess that determines cell fate and is tightly regulated by dif-
ferent signaling pathways, some of which, such as MAPK,
PI3K and mTOR, are tightly regulated by the 14-3-3 protein
[57]. Our previous related studies confirmed that 14-3-3ζ
derived from hucMSC-sEVs could increase the level of
autophagy and repair skin and acute kidney injury [19,
21]. However, in this study, we further confirmed that
hucMSC-sEVs-derived 14-3-3ζ could increase the level of
autophagy in podocytes and promote the formation of auto-
phagosomes in DKD. Knockdown of 14-3-3ζ could attenu-
ate the level of autophagy in podocytes, thus confirming
the important role of 14-3-3ζ protein.

Autophagy is a highly conserved degradation system in
which cellular contents such as proteins, organelles, and
lipids are degraded in a lysosome-dependent manner. This
may be related to the way in which p62-mediated
ubiquitination-modified target proteins bind to autophagy
receptors [58]. Lee et al. demonstrated that excess YAP is
degraded by autophagy through the p62/Sqstm1-Nrf2 axis
in HCC [59]. Additional studies have shown that enhanced
autophagic activity in Alzheimer’s disease promotes β-amy-
loid clearance in vitro and in vivo [60]. Here, we explored
the “link” role of 14-3-3ζ protein in DKD. On the one hand,
we first proved that the secretion of 14-3-3ζ protein from
hucMSC-sEVs inhibited the entry of YAP into the nucleus
and promoted its retention in the cytoplasm. On the other
hand, we confirmed that 14-3-3ζ enhanced the level of
autophagy in podocytes. In order to explore whether the
highly expressed autophagy could remove excess YAP from
the cytoplasm, the autophagy inhibitor chloroquine was
used to block the formation of autophagic flux. It was found
that chloroquine did not attenuate the expression of YAP,
that is to say, the decrease of YAP was caused by the
enhancement of autophagy. And after treated with chloro-
quine, YAP colocalized with perinuclear LC3B, which indi-
cated that YAP was enclosed in autophagosomes.

In conclusion, we demonstrate that YAP exacerbates
renal damage and podocyte apoptosis in DKD. hucMSC-
sEVs degraded cytoplasmic retained YAP in the way of
increasing the level of autophagy by delivering 14-3-3ζ. This
article demonstrated the potential of hucMSC-sEVs as nano-
scale biomaterials for the treatment of DKD in the future
(Figure 6).
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5. Conclusion

Taken together, we demonstrated that the application of
hucMSC-sEVs could reduce the apoptosis of renal podocytes
induced by high glucose, inhibit the high expression of YAP,
promote the activation of autophagy, and exert a cytoprotec-
tive effect. These results indicated that hucMSC-sEVs could
inhibit YAP from entering the nucleus and linger in the
cytoplasm by transporting 14-3-3ζ protein, which was even-
tually devoured and cleared by autophagy. Consequently,
hucMSC-sEVs can be used as a new therapeutic tool for
the prevention and treatment of DKD.

Data Availability

The datasets of the current study are available from the cor-
responding author upon reasonable request.

Additional Points

Highlights. (i) YAP protein was highly expressed in DKD
both in vitro and in vivo, which was suppressed by
hucMSC-sEVs. (ii) hucMSC-sEVs carried the internal 14-
3-3ζ protein to promote YAP retention in the cytoplasm.
(iii) hucMSC-sEVs-14-3-3ζ promoted a surge in the level
of autophagy in podocytes. (iv) YAP, retained in the cyto-
plasm, was phagocytosed into autophagosomes.
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