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Background/Aim.Lipid metabolism disorders play a crucial role in tumor development and progression. The aim of the study
focused on constructing a novel prognostic model of oral squamous cell carcinoma (OSCC) patients using fatty acid
metabolism-related genes. Methods. Microarray test and data from The Cancer Genome Atlas (TCGA) were used to identify
differentially expressed genes related to fatty acid metabolism. The quantitative real-time polymerase chain reaction (qRT-
PCR) was then used to validate the expression of targeted fatty acid metabolism genes. A risk predictive scoring model of fatty
acid metabolism-related genes was generated using a multivariate Cox model. The efficacy of this model was assessed by time-
dependent receiver operating characteristic curve (ROC). Results. 14 fatty acid metabolism-related genes were identified by
microarray test and TCGA database analysis and then confirmed by PCR. Finally, a 5 gene signature (ACACB, FABP3, PDK4,
PPARG, and PLIN5) was constructed and a RiskScore was calculated for each patient. Compared to the high RiskScore group,
the low RiskScore group had better overall survival (OS) (p = 0:02). The RiskScore derived from a 5 gene signature was a
prognostic factor (HR: 3.73, 95% CI: 1.38, 10.09) for OSCC patients. The predictive classification efficiencies of RiskScore were
evaluated and the area under the curve (AUC) values for 1, 3, and 5 years were 0.613, 0.652, and 0.681, respectively. Then we
compared the predictive performance of the prognostic model with or without the RiskScore. The 5 gene-derived RiskScore
can improve the predictive performance with AUC values of 0.760, 0.803, and 0.830 for 1, 3, and 5 years OS in prognostic
model including the RiskScore. While the predicted AUC values of the model without RiskScore for 1, 3, and 5 years OS were
0.699, 0.715, and 0.714, respectively. Conclusion. We developed a predictive score model using 5 fatty acid metabolism-related
genes, which could be a potential prognostic indicator in OSCC.
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1. Introduction

Oral cancer was one of the common malignancies in South-
east Asia, contributing to 377,713 new cases and 177,757
deaths in 2020 globally [1]. Oral squamous cell carcinoma
(OSCC), which accounts for more than 90% of oral cancers,
was characterized by a high degree of malignancy and a poor
prognosis [2]. Despite advances in treatment, the prognosis
for OSCC remains poor, with a 5-year survival rate of only
about 50% of those with advanced disease [3]. Herein, it
was imperative to explore the mechanism of carcinogenesis
and prognostic markers for the prevention and treatment
of OSCC.

Lipid metabolism disorders, a well-known feature of
malignant tumors, have been crucial for tumor development
and progression [4]. Messenger substances formed by lipids
could trigger the activation of signaling axes, including phos-
phoinositide 3-kinases (PI3Ks) and protein kinase C, which
could promote carcinogenesis [5, 6]. Fatty acids (FAs) func-
tion as a major component of lipids, which form the basic
structure of the cell membrane, and played an important
role in tumor cell proliferation, invasion, and metastasis
[7]. Numerous research have highlighted the potential role
of FA metabolism in carcinogenesis, diagnosis, treatment,
and prognosis [8, 9]. To date, much attention has been paid
to the molecular mechanism and signal transduction path-
way of OSCC triggered by FA metabolism. For example,
blocking the expression of differentiation cluster 36
(CD36), which correlates with FA uptake, inhibited OSCC
metastasis in mice and humans [10, 11]. Uma et al. discov-
ered that downregulation of FA-binding proteins (FABPs)
was associated with metastasis of squamous cell carcinoma
of the tongue [12]. Considerable evidence suggested that
peroxisome proliferator-activated receptors (PPARs), which
mediate lipid biosynthesis, are considered a therapeutic tar-
get in head and neck cancer [13, 14]. In addition, increased
gene and protein expression of the FA family of transport
proteins has been found in the tumor microenviron-
ment [15].

In this study, we used public datasets and a microarray
assay test to create and validate an OSCC prognostic signa-
ture based on FA metabolism genes. In addition, we con-
ducted a thorough analysis of signature genes in order to
improve the clinical utility of the markers.

2. Materials and Method

2.1. Study Participants and Clinical Sample. Tumor and
adjacent masses of OSCC patients were obtained between
December 2015 and October 2020 from the First Affiliated
Hospital of Fujian Medical University in Fujian Province,
China. The inclusion criteria of the patient were as follows:
(1) cancers of the lip, oral cavities, and parotid corresponded
to codes C00 to C07 according to the 10th revision of the
International Classification of Diseases (ICD-10); (2)
patients who reside in Fujian Province for more than 10
years; and (3) patients with surgical resection and confirmed
by pathological examination. Those with other cancers or
who had received any preoperative chemotherapy or radio-

therapy were not eligible. All surgically resected samples
were taken immediately after resection, then frozen in liquid
nitrogen and maintained in -80°C cryopreservation until
RNA extraction. Finally, 5 pairs of tumor and adjacent
masses were submitted to the Arraystar human mRNA
microarray test to obtain mRNA expression profiling, and
90 pairs of tumor and adjacent masses were used to confirm
target mRNA expression through quantitative real-time
polymerase chain reaction (qRT-PCR).

The clinicopathological data of OSCC patients were
obtained from the hospital’s electronic medical record sys-
tem. Patients were followed up by telephone interview every
6 months following surgery until January 2021 or until the
patient died. Time from the initial diagnosis to death from
any cause or last follow-up was defined as overall survival
(OS). Censored data included those who were still alive,
those who were lost to follow-up, and those who died from
other causes.

The study was approved by the Institutional Review
Board of Fujian Medical University and conducted following
the ethical standards described in the Declaration of
Helsinki.

2.2. Microarray Assay Test. mRNA expression profiling was
obtained from 5 pairs of tumors and matching adjacent mass
by microarray test. As described previously [16], CapitalBio
Technology Human mRNA Array v4 (4 × 180K format,
Capitalbio Technology Corporation Co., Ltd., Beijing,
China) was used for microarray analysis, which included
detection probes for 34,235 human mRNAs, as well as
4974 Agilent control probes. The Agilent G2565CA Scanner
was used to scan the arrays (Agilent Technologies, Santa
Clara, California). Agilent Feature Extraction software was
used to evaluate the array images (v10.7). Agilent Gene-
Spring software was used to perform quantile normalization
and further data processing.

2.3. TCGA Data Downloading and Preprocessing and GO
Analysis. The Cancer Genome Atlas (TCGA) data from
patients with head and neck squamous cell carcinoma
(HNSCC) were obtained from the official website of UCSC
Xena (https://xenabrowser.net/datapages/). mRNA sequenc-
ing data of 502 tumor masses and 44 adjacent masses were
used to obtain differentially expressed genes (DEGs). The
significant DEGs were considered as log 2jFCj > 1:0 and
the false discovery rate ðFDRÞ < 0:05.

DEGs were submitted to Gene Ontology (GO; http://
www.geneontology.org) for functional enrichment analysis
to obtain related metabolism pathways.

2.4. RNA Extraction and qRT-PCR. Following the manufac-
turer’s recommendations, total RNA was isolated from
tumor masses using TRIzol reagent (Invitrogen, Thermo
Fisher Scientific, Inc., Waltham, Massachusetts). Using the
PrimeScript RTase reagent Kit, 1.0 ug total RNA was reverse
transcribed into first-strand cDNA (Takara, Dalian, China).
The ABI 7500 System (Applied Biosystems, Carlsbad, Cali-
fornia) was used to perform the qRT-PCR with 2.0 ul cDNA
using the SYBR PrimeScript RT-PCR kit (Takara, Dalian,
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China). GAPDH was used as an internal control. The target
genes’ relative expression levels were calculated using the
2−ΔΔCt method. The primer sequences of these mRNAs were
provided in Supplementary Table 1. The described details
were shown in Supplement Material and Methods.

2.5. Statistical Analysis. R software was used to conduct the
statistical analysis (version 4.1.1). Mann–Whitney U test
was used to compare gene expression levels. Correlation
between two variables was evaluated by Pearson or Spear-
man coefficient. The coefficients of multivariate Cox regres-
sion model (β) were multiplied by the relative expression
levels of DEGs to obtain the prognostic RiskScore.

Kaplan−Meier (KM) curves and the log-rank test were
used to compare survival rates. A RiskScore was calculated
by multiplying the coefficients (β value) of a multivariate
Cox regression model in which all 5 genes were included
by their corresponding expression level. The predictive per-
formance of RiskScore for OS was evaluated using the time-
dependent receiver operating curve (ROC) and decision
curve analysis (DCA). Independent prognostic factors were
investigated using univariate and multivariate Cox regres-
sion. The nomogram was used to visualize the results of
multivariate Cox regression analysis, performance of which
was evaluated by calibration curves.

All of the tests were two-sided. A result with a p value
< 0.05 was considered statistically significant.

3. Result

3.1. Identification of the DEGs Related to FA Metabolism.
The study design was presented in a flowchart (Figure 1).
mRNA sequencing data of 502 tumor samples and 44 adja-
cent normal samples of HNSCC patients were downloaded
from TCGA and a total of 3465 DEGs were identified of
which 1877 genes were upregulated and 1587 genes were
downregulated (Figure 2(a)). While 2588 DEGs (1339
upregulated and 1249 downregulated) were identified from
microarray test with 5 pairs of tumors and matching adja-
cent normal samples, results of which were shown in the vol-
cano plot (Figure 2(b)). 235 common DEGs of the two gene
sets were identified and presented in the Venn plot
(Figure 2(c)). The 235 DEGs were then submitted to GO
analysis and found to be enriched in 41 GO annotations
(Supplement Table 2), which included 7 FA metabolism-
related processes (Figure 2(d)). A total of 219 genes are
involved in these 7 FA metabolism-related processes,
which were then cross-verified with 235 DEGs. Finally, 14
genes, which were not only differentially expressed but also
related to FA metabolism-related processes, were selected.
A bubble plot was constructed to visualize their expression
profiles (Figure 2(e)). Furthermore, a Protein-Protein
Interaction Network (PPI) analysis was performed for
these 14 genes and the result was shown in Figure 2(f),
demonstrating the hub role of the FABP3, PPARG,
ACACB, and PDK4.

3.2. Validation of DEGs Related to FA Metabolism by qRT-
PCR. mRNA expressions of 14 DEGs were validated by

qRT-PCR in 90 pairs of OSCC tumor and adjacent samples.
The expression level of 5 DEGs can only be detected in a
limited number of tumor masses and thus be excluded. Rel-
ative expression levels of the remaining 9 DEGs, including
LHCGR, FABP3, NPY5R, PPARG, RGN, PLIN5, ACACB,
PDK4, and FABP4, were shown in Supplement Figure 1.
The expression levels of FABP3, PPARG, PLIN5, ACACB,
and PDK4 in oral cancer samples were significantly lower
than those in adjacent normal samples (all p < 0:05) and
then were included in the prognosis analysis.

3.3. Construction of the Prognostic Risk Model. KM curves
and log-rank test results of ACACB, FABP3, PDK4, PPARG,
and PLIN5 were shown in Figure 3(a). KM curves revealed
that the expression levels of ACACB, FABP3, PDK4,
PPARG, and PLIN5 were related to the survival of patients
with OSCC. Patients in the low-expression level group had
higher survival rate than those in the high-expression level
group of ACACB (p = 0:044), FABP3 (p = 0:0073), PDK4
(p = 0:037), PPARG (p = 0:023), and PLIN5 (p = 0:017).
The global expression changes of ACACB, FABP3, PDK4,
PPARG, and PLIN5 in 90 OSCC patients were visualized
by a heatmap (Figure 3(b)). In general, expression of
ACACB, FABP3, PDK4, PPARG, and PLIN5 was lower in
the survival group, which was consistent with the results
presented in the KM curve. In addition, several potential
prognostic factors of OSCC were explored by Cox regression
analysis. TNM stage (HR: 2.85, 95% CI: 1.01-10.30) and
lymph node metastasis at diagnosis (HR: 2.89, 95% CI:
1.12-8.52) were found to be independently related to survival
of patients with OSCC (Table 1). Expression level of ACACB
(HR: 3.88, 95% CI: 1.50-10.02), FABP3 (HR: 3.24, 95% CI:
1.31-8.04), PDK4 (HR: 3.22, 95% CI: 1.21-7.72), PPARG
(HR: 2.71, 95% CI: 1.01-7.42), and PLIN5 (HR: 3.42, 95%
CI: 1.01-11.68) was significantly associated with OS in
OSCC after adjusted for TNM stage and lymph node metas-
tasis (Figure 3(c)).

Nextly, the 5 genes significantly related to OSCC prog-
nosis were used to establish a prognostic RiskScore model
by the formula below

RiskScore = −0:170ХGeneACACB + 0:267ХGeneFABP3
+ 0:119ХGenePDK4 + 0:180ХGenePPARG
+ 0:097ХGenePLIN5:

ð1Þ

The coefficients (β value) of 5 genes were derived from a
multivariate Cox regression model in which all 5 genes were
included (Table 2). And the corresponding partial correla-
tion coefficient of the 5 genes with the RiskScore was also
calculated and shown in Table 2.

The RiskScore was calculated for each patient based on
the expression levels of the 5 genes and was divided into
high and low score groups. As shown in Supplement
Figure 2, the expression levels of ACACB, FABP3, PDK4,
PPARG, and PLIN5 were lower in the low RiskScore group
than in the high RiskScore group (all p < 0:05), which was
consistent with the partial correlation results between
RiskScore and the 5 genes.
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And next, the distribution of RiskScore in patients with
OSCC was described in Figure 4(a). The proportion of death
of patients with high RiskScore was significantly higher than
that of patients with low RiskScore, which suggested that
patients with high RiskScore had worse prognoses. KM
curve was plotted according to low and high RiskScore as
shown in Figure 4(b), and a better OS was found in patients
with low RiskScore compared with those with high Risk-
Score (p = 0:02). The predictive classification efficiencies of
the model were then examined, and the area under the curve
(AUC) values for 1, 3, and 5 years OS were 0.613, 0.652, and
0.681, respectively (Figure 4(c)).

3.4. Comparison of Different Prognosis Models and
Construction of Nomogram. Furthermore, Cox regression
analyses were used to investigate the prognostic indepen-
dence of the RiskScore (Table 1). Results showed that Risk-
Score (HR: 3.73, 95CI: 1.38-10.09) was independently
associated with survival of patients with OSCC after adjust-
ing for age, sex, BMI, tobacco smoking, alcohol drinking,
oral hygiene, TNM stage, tumor size, tumor site, and lymph
node metastasis at diagnosis. This finding suggested that the
RiskScore, which was derived from 5 genes, was an indepen-
dent prognostic factor.

Then, time-dependent ROC and DCA were used to eval-
uate the predictive performance of the prognostic model
with or without the 5 gene signature-derived RiskScore.

The predicted AUC values of the model without RiskScore
for 1, 3, and 5 years OS were 0.699, 0.715, and 0.714, respec-
tively. While the predicted AUC values of the model with
RiskScore for 1, 3, and 5 years OS were 0.760, 0.803, and
0.830, respectively (Figures 5(a)–5(c)), which indicated
improved predictive performance by RiskScore. As shown
in DCA curve (Figure 5(d)), a higher net benefit of the
model with RiskScore was observed in clinical treatment.
Moreover, a nomogram was constructed according to the
improved prognostic model to predict 1-year, 3-year, and 5
years OS (Figure 5(e)). And the accuracy of the model and
potential model overfit was assessed and shown in the cali-
bration curve (Figures 5(f) and 5(g)), in which the predic-
tions fell on a 45 degree diagonal line.

3.5. Correlation Analysis between Clinical Characteristics and
5 Genes. We further visualized the association between the 5
genes, RiskScore, and clinicopathological features in patients
with OSCC, and the results were shown in Figure 6 and Sup-
plement Table 3. Age, tobacco smoking, and tumor size were
inversely correlated with the RiskScore, while BMI, tumor
site, and lymph node metastasis at diagnosis were
positively associated with the RiskScore. Moreover, oral
hygiene exhibited a general negative correlation with the 5
genes and RiskScore. Interestingly, positive correlations
were observed between the 5 genes, RiskScore, and blood
lipid indicators (including TC, TG, HDL-C, VLDL-C, Apo
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Figure 1: Flowchart of the study. DEGs: differentially expressed genes; TCGA: the cancer genome atlas; HNSCC: head and neck squamous
cell carcinoma.
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Figure 2: Screening for fatty acid metabolism-related genes by microarray test and TCGA database. (a) Volcano plot of differentially
expressed genes of HNSCC in TCGA. (b) Volcano plot of differentially expressed genes by microarray test. (c) Venn plot of DEGs in
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A1, and Apo B), which provided supportive evidence that
the 5 genes may play important role in the lipid
metabolism regulation.

4. Discussion

OSCC is a common malignant tumor that can arise at any
site in the mouth cavity. Although significant advances have
been made in the development of comprehensive treatment
strategies for OSCC, effective prognostic biomarkers and
therapeutic targets are still lacking. In order to improve
patient prognosis and develop potential therapy, it is critical
to identify genetic factors that drive tumor progression and
contribute to unfavorable outcomes. Recent studies have
revealed an expanded range of roles played by lipids in the
development and progression of human cancers including
oral cancer.

Tumor cells have different metabolic requirements than
normal cells, which have been widely reported [17]. FA
metabolism as a potential target for cancer treatment has
received considerable attention, and targeted inhibition of

FA uptake has been an effective strategy for patient survival
[18, 19]. Numerous studies, including animal studies and
epidemiological studies, have shown that FA metabolism
was involved in malignant tumor progression and tumor
resistance [20, 21], and several tumor-related FA metabolic
pathways have been identified that were correlated with poor
prognosis in glioblastoma, squamous cell carcinoma of the
lung, and hepatocellular carcinoma [22–24]. Abnormal
expression of enzymes involved in de novo lipogenesis has
been reported to be a promising target for oncotherapy
[25, 26]. However, most of the previous studies have focused
on the association between FA metabolism and malignant
tumors, which are mainly derived from glandular epithelium
[18, 27–29], and few studies have reported the association
between FA metabolism and OSCC.

In the present study, we used TCGA database and
microarray test to construct a risk predictive scoring model
consisting of 5 FA metabolism-related genes. The FA
metabolism-related genes included in the risk predictive
scoring model have already been reported in human cancers.
ACACB served as an inhibitor of FA oxidation and studies
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Figure 3: Identification and validation of 5 fatty acid metabolism-related gene signature by qRT-PCR. (a) The Kaplan−Meier survival curve
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showed that inhibition of ACACB reduced cell proliferation
in breast carcinoma and hepatocellular carcinoma [30]. Pre-
vious studies establishing the importance of de novo lipo-

genesis in tumor progression and the knockout of ACACB
genes in mice indicated a crucial role of ACACB in liver car-
cinogenesis [31]. In recent clinical studies, FABP3 has been

Table 1: Univariate and multivariate Cox regression analyses of potential prognostic factors in patients with OSCC.

Variable
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Age (y)

≤60 Reference Reference

>60 0.71 (0.29, 1.70) 0.439 0.63 (0.22, 1.73) 0.823

Sex

Male Reference Reference

Female 0.91 (0.35, 2.35) 0.851 1.15 (1.32, 4.18) 0.363

BMI

18.5~ Reference Reference

18.5~24 0.34 (0.09, 1.16) 0.086 0.45 (0.09, 2.03) 0.299

24~ 0.20 (0.03, 1.20) 0.078 0.21 (0.02, 1.69) 0.144

Tobacco smoking

No Reference Reference

Yes 1.01 (0.42, 2.38) 0.977 1.45 (0.42, 5.02) 0.557

Alcohol drinking

No Reference Reference

Yes 0.83 (0.33, 2.05) 0.685 0.71 (0.21, 2.36) 0.573

Oral hygiene

Well Reference Reference

Poor 1.37 (0.58, 3.22) 0.473 1.06 (0.35, 3.21) 0.913

TNM stage

I-III Reference Reference

IV 3.26 (1.04, 11.09) 0.045 2.85 (1.01, 10.30) 0.048

Tumor size (cm)

≤2 Reference Reference

>2 0.86 (0.36, 2.05) 0.741 2.36 (0.75, 7.39) 0.138

Tumor site

Tongue Reference Reference

Others site 2.36 (0.79, 7.01) 0.123 1.23 (0.46, 3.23) 0.680

Lymph node metastasis at diagnosis

No Reference Reference

Yes 3.84 (1.40, 10.49) 0.009 2.89 (1.12, 8.52) 0.033

RiskScore

Low Reference Reference

High 2.91 (1.13, 7.52) 0.027 3.73 (1.38, 10.09) 0.009

Table 2: The coefficients between the 5 genes and survival of OSCC by multivariate Cox analysis.

Gene symbol Full name Coefficient (β value) Partial correlation with RiskScore#

ACACB Acetyl-CoA carboxylase beta -0.170 0.256∗∗

FABP3 Fatty acid binding protein 3 0.267 0.793∗∗

PDK4 Pyruvate dehydrogenase kinase 4 0.119 0.364∗∗

PPARG Peroxisome proliferator activated receptor gamma 0.180 0.612∗∗

PLIN5 Perilipin 5 0.097 0.429∗∗

#adjusted for sex and age. ∗∗Correlation was significant at the 0.01 level.
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linked to tumor growth, but its functions have been contra-
dictory. Increased FABP3 expression has been reported to be
involved in the progression and aggressiveness of gastric
cancer [32]. It was also reported that the expression of
FABP3 was significantly increased in tumor mass compared
to adjacent mass in non-small-cell lung cancer and higher
expression of FABP3 was an independent prognostic factor
in non-small-cell lung cancer [33]. However, FABP3 has
been reported to act as a tumor suppressor in breast cancer,

and its transfection into breast cancer exhibited an antiprolif-
erative effect [34]. PDK4, an important regulator of cellular
energy metabolism, was found to be relatively highly
expressed in several cancers [35]. Regulation of PDK4 was
an important regulator of ferroptosis resistance in carcinogen-
esis and tumor progression [36]. PPARG regulates the perox-
isomal β-oxidation pathway of FAs and was an important
regulator of adipocyte differentiation and glucose homeostasis.
Studies suggest that PPARG has been associated with tumor
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prognosis [37], and maybe a therapeutic target for OSCC [14,
38]. The close correlation of PLIN5 with FA metabolism and
its involvement in maintaining lipid homeostasis by inhibiting
lipolysis have made it a therapeutic target as well as a prognos-
tic biomarker in tumors [39, 40]. Thus, the RiskScore of FA
metabolism-related genes reflected in the weighted sum of 5
genes has shown expected predictive performance in the cur-

rent study and exhibited potential to become new biomarkers
for OSCC.

We further leveraged the complementary value of the FA
metabolism-related RiskScore to prognosis of OSCC and
found that the inclusion of the RiskScore improved the ability
to predict patients with OSCC beyond traditional clinicopath-
ological features. The novel RiskScore of 5 FA metabolism-
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RiskScore. (e) Construction of nomogram with RiskScore and clinical. (f, g) Calibration curves of the nomogram.
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related genes provided new perspectives for identifying OSCC
at high risk of mortality. All cancers are generally acknowl-
edged to share common pathogenesis involving multiple
stages and multiple genes [41]. Studies investigating different
prognosticmodels of varied tumors have shown that the inclu-
sion of gene biomarkers may outperform the classical prog-
nostic model and be valuable for tailored treatment [42]. Jin
et al. [43] found that the prognostic model associated with
ferroptosis-related lncRNA may be better than the traditional
model in OSCC and provides a new perspective for OSCC
therapy. Lipidmetabolism-based prognosticmodels have been
developed for colorectal cancer, glioblastoma, and breast can-
cer, which proved that a gene-based prognostic model can
support clinically individualized treatment [44–46]. Patient
outcomes can be greatly improved by customized treatments
guided by biomarkers that embodied individual differences
in tumor genetic and biological characteristics.

Although this study is based on multiomics data analysis
and was clinically validated, it still has several limitations.
Firstly, the clinical sample size is small and still needs valida-
tion in larger patient cohorts. Secondly, although the 5 genes
used to establish the RiskScore have been widely investigated
in cancers, we did not conduct in vitro experiments to con-
firm their roles in OSCC cell lines. The underlying mecha-
nisms remain to be elucidated by further studies. Thirdly,
we mainly focused on fatty acids metabolism-related genes
in the model development and did not include all the com-
mon DEGs and GO annotations identified. The potential
of developing a panel of markers with optimized predictive
ability irrespective of their function need further validation
in future studies.

5. Conclusion

In conclusion, we identified a 5 gene signature-derived prog-
nostic RiskScore that was an independent prognostic indica-
tor for OSCC patients. Inclusion of the 5 gene signature
exhibited superior predictive performance compared with
classical prognostic model in OSCC. This study may provide
new perspectives in the development of new biomarkers and
therapeutic targets for OSCC.
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