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Paraquat (PQ) is a widely used herbicide but can be lethal to humans. The kidney is vital for PQ elimination; therefore,
explorations for therapeutic approaches for PQ-induced acute kidney injury (AKI) are of great significance. Here, the effects of
a natural bioactive polyphenol isorhapontigenin (ISO) on PQ-AKI were investigated. In vitro experiments carried out in PQ-
intoxicated rat renal tubular epithelial cells (NRK-52E) showed that ISO treatment inhibited PQ-induced cell apoptosis and
oxidative stress, which was evidenced by the decreased proapoptotic proteins [cleaved caspase 3/9 and poly (ADP-ribose)
polymerase (PARP)], the reduced oxidative stress indicators [reactive oxygen species (ROS), malondialdehyde (MDA), and
lactate dehydrogenase (LDH) leakage], and the increased antioxidants [superoxide dismutase (SOD), nuclear factor E2-related
factor 2 (NRF2), and oxygenase-1 (HO-1)]. Furthermore, 50mg/kg ISO pretreatment before PQ administration significantly
attenuated PQ-AKI in rats, as manifested by the improved renal tubule damage, the reduced serum and urine markers of
kidney injury, and the inhibited cell apoptosis and oxidative stress in the renal cortex. Furthermore, expression of sex-
determining region Y box 9 (SOX9) and Toll-interacting protein (TOLLIP) in NRK-52E cells and the renal cortex was
significantly upregulated after ISO treatment. Overexpression of SOX9 increased TOLLIP transcription and attenuated PQ-
induced apoptosis and oxidative stress, whereas knockdown of SOX9 impaired the protective effects of ISO on NRK-52E cells
against PQ toxicity. In conclusion, the present study demonstrated that ISO modulated SOX9/TOLLIP expression to attenuate
cell apoptosis and oxidative stress in PQ-AKI, suggesting the potential of ISO in treating PQ-poisoned patients.

1. Introduction

Paraquat (1,1′-dimethyl-4,4′-bipyridium dichloride; PQ) is
a widely used organic herbicide. Due to the lack of specific
antidotes, exposure to PQ can be lethal to humans, with a
high case fatality rate of 42.7% after ingestion [1]. Accelerat-
ing PQ excretion through the kidney will reduce the PQ
accumulation in other organs, but the increased accumula-
tion of PQ within kidneys may enhance the PQ nephrotox-
icity and lead to acute kidney injury (AKI) [2], and the
occurrence of AKI has been reported to be associated with
the mortality in poisoning [3]. Hence, attenuating PQ-
induced nephrotoxicity is of great significance for improving
the prognosis of PQ-poisoned patients.

PQ damages the intracellular electron transfer systems
and promotes the formation of superoxide anion (O2

-), sin-
glet oxygen, and other reactive oxygen species (ROS), which
ultimately lead to the consumption of cellular nicotinamide
adenine dinucleotide phosphate (NADPH) and lipid perox-
idation of cell membranes [4–6]. Therefore, studies of the
therapeutic potential of antioxidant agents against PQ toxic-
ity have attracted much attention [7–9]. Isorhapontigenin
(trans-3,5,4′-trihydroxy-3′-methoxystilbene; ISO) is a natu-
ral bioactive polyphenol, present in various plants and fruits
[10]. Accumulating evidence has revealed the pharmacolog-
ical effects of ISO in cellular and animal models, including
antitumor, anti-inflammatory, and antiapoptotic effects
[11–14]. Additionally, in in vitro oxidative damage models,
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ISO has been found to inhibit the malondialdehyde (MDA; a
product of lipid peroxidation) formation and to rescue the
decrease of glutathione (GSH; an important antioxidant)
contents, suggesting its antioxidative roles [13]. Further-
more, ISO has been reported to slightly alleviate the renal
impairment in diabetic mice [15]. However, it remains
unknown whether ISO displays protective effects on PQ-
AKI.

Sex-determining region Y box 9 (SOX9) is a transcription
factor that participates in several physiological and patholog-
ical processes, including cartilage development and tumori-
genesis of various tumors [16–19]. SOX9 has also been
shown to be a marker of renal progenitor cells, and activation
of SOX9-positive stem cells promotes epithelial regeneration
after AKI in mice [20, 21]. Furthermore, SOX9-mediated
tubular epithelial cell proliferation has been elucidated to
contribute to the attenuation of cisplatin nephrotoxicity
[22]. These findings imply the strong potential of SOX9 to
alleviate kidney injury and promote renal repair. More inter-
estingly, we found putative SOX9-binding domains in the
promotor of the Toll-interacting protein (TOLLIP), an
inflammation-regulating factor that has been determined to
exhibit protective effects on PQ-AKI and PQ-induced lung
injury in our previous works [23, 24]. These findings suggest
that SOX9 might alleviate AKI by regulating TOLLIP
expression.

Here in the present study, we explored the effects of ISO
on PQ-AKI, mainly focusing on its antiapoptotic and anti-
oxidative roles in PQ-intoxicated renal tubular epithelial
cells. And we further investigated the involvement of the
SOX9/TOLLIP axis in the pharmacological effects of ISO.

2. Materials and Methods

2.1. Cell Culture and Treatments. The rat kidney epithelioid
cell line NRK-52E was purchased from Procell Life Scien-
ce&Technology Co., Ltd. (Wuhan, China) and grown in
Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Grand
Island, NY, USA) supplemented with 5% fetal bovine serum
(FBS; Tianhang Biological Science Co. Ltd., Zhejiang,
China), in a humidified atmosphere with 5% CO2 at 37

°C.
NRK-52E cells were transduced with adenoviruses contain-
ing SOX9 shRNA, SOX9 cDNA, or their corresponding con-
trol to achieve the knockdown or overexpression of SOX9.

2.2. Cell Viability Assay. NRK-52E cells were treated with 0,
5, 10, 20, 40, and 80μM ISO (CAS: 32507-66-7; Aladdin
Reagent, Shanghai, China) for 24 h and then subjected to cell
count kit-8 (CCK-8) reagent (KeyGEN BioTECH, KGA317,
Nanjing, China) incubation for 2 h at 37°C to determine the
appropriate ISO concentration used in vitro. To determine
the effects of ISO on PQ-induced cytotoxicity, NRK-52E
cells were pretreated with a low (5μM) or high (10μM) dose
of ISO for 30min and then incubated with 300μM PQ
(CAS: 1910-42-5; Aladdin Reagent) for 24h. Subsequently,
cell viability was detected using the CCK-8 reagent.

2.3. Protein Lysates and Western Blotting. Protein lysates of
renal cortex and NRK-52E cells were prepared using a cell

lysis buffer supplemented with phenylmethanesulfonyl fluo-
ride (PMSF) purchased from Beyotime Biotechnology
(Shanghai, China). The nuclear and cytosolic fractions were
obtained using the nuclear and cytoplasmic protein extrac-
tion kit (Beyotime). Protein samples were resolved via
sodium dodecyl sulphate-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to polyvinylidene difluoride
(PVDF) membranes (Millipore, Billerica, MA, USA). Fol-
lowing the transfer, the membranes were blocked with 5%
nonfat milk for one hour at room temperature. Subse-
quently, the membranes were incubated with the following
primary antibodies: cleaved caspase 3 (1 : 1000, CST, #9661,
Danvers, MA, USA), cleaved caspase 9 (1 : 1000, CST,
#9507), cleaved poly (ADP-ribose) polymerase (PARP;
1 : 1000, CST, #9545), nuclear factor E2-related factor 2
(NRF2; 1 : 1000, ABclonal, A0674, Wuhan, China), heme
oxygenase 1 (HO-1; 1 : 1000, Affinity, AF5393, Changzhou,
China), SOX9 (1 : 1000, Affinity, AF6330), TOLLIP
(1 : 1000, ABclonal, A2202), Histone H3 (1 : 2000, ABGENT,
AM8433, San Diego, CA, USA), and β-actin (1 : 1000, Santa
Cruz, sc-47778, Dallas, TX, USA) overnight at 4°C. The next
day, the membranes were incubated with horseradish
peroxidase-conjugated goat antimouse/rabbit secondary
antibodies (1 : 5000) for 45min at 37°C. Finally, the mem-
branes were imaged using the chemiluminescence method.

2.4. Measurement of Oxidative Stress. To measure ROS
levels, cells were incubated with 2′,7′-dichlorofluorescein
diacetate (DCFH-DA) probes (Beyotime) for approximately
30min and then were subjected to flow cytometry detection.
The ROS in cells could oxidize DCFH to produce fluorescent
2′,7′-dichlorofluorescein (DCF). Therefore, the fluorescence
intensity of DCF indicated ROS levels. The MDA content,
superoxide dismutase (SOD) activity, and lactate dehydroge-
nase (LDH) leakage were determined using commercially
available kits (MDA, Nanjing Jiancheng Bioengineering
Institute, A003, Nanjing, China; LDH, Wanleibio, WLA072,
Shenyang, China; SOD, Nanjing Jiancheng Bioengineering
Institute, A001) per manufacturers’ instructions.

2.5. Quantitative Real-Time PCR (qPCR) Assays. Total RNA
was extracted from renal cortex tissues and NRK-52E cells.
RNA concentrations were measured using the Thermo Sci-
entific NanoDrop 2000 (Pittsburgh, PA, USA). The cDNAs
were obtained from reverse transcription and used as tem-
plates for qPCR. The qPCR was performed on a quantitative
real-time PCR system, using the 2x Taq PCR Master Mix
(Solarbio, PC1150, Beijing, China) and SYBR Green (Solar-
bio, SY1020). The primer sequences were given as follows
(5′-3′): HO-1 forward (Fwd), CGAAACAAGCAGAACC
CA; HO-1 reverse (Rev), CACCAGCAGCTCAGGATG;
SOX9 Fwd, GCACATCAAGACGGAGCAA; SOX9 Rev,
AGGTGAAGGTGGAGTAGAGCC; TOLLIP Fwd, CAGC
CTGTGGTTCTGATG; and TOLLIP Rev, TCTTTGTTC
CCTCTTTGG. The comparative CT (2−ΔΔCT) method was
used to calculate relative changes in gene transcripts (β-actin
served as a housekeeping gene control).
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Figure 1: Continued.
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2.6. Dual-Luciferase Reporter Assay. The dual-luciferase
reporter assay was conducted to explore the transactivation
activities of SOX9 on TOLLIP promoters. In brief, NRK-
52E cells were cotransfected with SOX9-overexpressing
plasmids and luciferase reporter plasmids containing the
promoter region of the TOLLIP gene using the Lipofecta-
mine™ 3000 Transfection Reagent (Thermo Scientific,
L300015). At 48h after transfection, cells were lysed, and
luciferase levels were quantified by using the dual-
luciferase reporter gene assay kit (KeyGEN BioTECH,
KGAF040), with Renilla luciferase being the control.

2.7. Measurement of Cell Apoptosis. Flow cytometry was
performed to determine the percentage of apoptotic cells.
In brief, cells were incubated with Annexin V-FITC and 7-
amino-actinomycin D (7-AAD) solution (KeyGEN Bio-
TECH) for 15min at room temperature and subjected to
flow cytometry detection. Hoechst staining and terminal
deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) staining were performed to evaluate the cell death
by using commercially available kits per manufacturers’ pro-
tocols (Hoechst, KeyGEN BioTECH, KGA212; TUNEL,
Roche Diagnostics, 12156792910, Basel, Switzerland).

2.8. PQ-AKI Models. All animal experiments were per-
formed in accordance with the ARRIVE guidelines and the
Guide for the Care and Use of Laboratory Animals [25].
The animal experiment protocols were approved by the
Ethics Committee of Shengjing Hospital of China Medical
University (accession number, 2020PS702K). PQ-AKI
models were established according to previously reported
research, in which the rats showed significant histological
features and biomarkers of AKI after PQ injection [23, 26].
PQ was dissolved in normal saline to prepare the stock solu-
tion (625mg/ml). Six- to eight-week-old male Wistar rats
were used for establishing the PQ-AKI model. Rats were
injected intraperitoneally with PQ (25mg/kg; PQ working
solution: 6.25mg/ml) to induce AKI. ISO was intraperitone-

ally injected into rats at low (25mg/kg) or high (50mg/kg)
doses once a day for a continuous seven days prior to PQ
injection. Serum, urine, and kidney tissue samples were
collected 24 h after injection of PQ. The metabolism cages
were used to collect 24 h urine samples after PQ injection.

2.9. Serum and Urine Biochemistry Measurements. Serum
and urine samples were collected 24 h after injection of
PQ. Serum creatinine (Scr), blood urea nitrogen (BUN),
urine neutrophil gelatinase-associated lipocalin (NGAL),
and urinary proteins were measured using the following
commercially available kits: Creatinine (Cr) Assay Kit (Nan-
jing Jiancheng Bioengineering Institute), Urea Assay Kit
(Nanjing Jiancheng Bioengineering Institute), Rat Lipoca-
lin-2/NGAL ELISA Kit (FineTest, Wuhan, China), and
Urine Protein Test Kit (Nanjing Jiancheng Bioengineering
Institute).

2.10. Renal Histological Analysis and Immunohistochemistry.
Histological alterations in the kidney were evaluated after
PQ injection. The tissues of the renal cortex of rats were
embedded in paraffin, dissected into 5μm sections, and sub-
jected to hematoxylin and eosin (H&E) staining and peri-
odic acid-Schiff (PAS) staining. For determining the
expression of SOX9 and TOLLIP in the renal cortex, the sec-
tions were incubated with the antibodies against SOX9
(Affinity, AF6330) or TOLLIP (A2202, ABclonal) overnight
at 4°C. The next day, sections were incubated with the horse-
radish peroxidase-conjugated goat antirabbit secondary
antibody for one hour at 37°C followed by incubation with
diaminobenzidine (DAB; Maixin Biotech, Fuzhou, China)
for color development. The representative images of sections
were captured under the microscope at 100 and 400
magnifications.

2.11. Statistical Analysis. GraphPad Prism software (Version
9.0) was used for data analysis. Data were presented as
means and standard derivations. When comparing variables
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Figure 1: Isorhapontigenin (ISO) alleviates paraquat- (PQ-) induced cell apoptosis. CCK-8 assays showed the cell viability of NRK-52E cells
incubated with (a) different concentrations of ISO for 24 h or (b) ISO (5 μM or 10 μM) for 30min followed by a 24 h coincubation with
300μM PQ. (c, d) Flow cytometry analysis was performed to determine the percentage of apoptotic cells. (e) Western blot showed the
expression of apoptosis-related proteins. (f) Cell death was analyzed via nuclear staining with Hoechst. (g) Quantitative analysis for
apoptotic cells. The scale bar represents 50 μm; 400x magnification. Error bars represent standard deviations. ∗P values < 0.05, ∗∗P
values < 0.01, and ∗∗∗P values < 0.001.
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between more than two groups, analysis of variance
(ANOVA) was used for parametric data. Statistical signifi-
cance was considered at P < 0:05.

3. Results

3.1. ISO Alleviates PQ-Induced Cell Apoptosis. As deter-
mined by the CCK-8 assay, 5μM and 10μM ISO had no
obvious impact on the cell viability of NRK-52E cells
(Figure 1(a)). Therefore, we used 5μM and 10μM ISO
(ISO-L and ISO-H) to explore the effects of ISO on PQ-
induced cell death. We found that pretreatment with ISO
markedly reversed the cell viability reduced by PQ exposure
(Figure 1(b)). Consistently, flow cytometry analysis showed
that ISO significantly decreased the percentage of apopto-

tic cells after PQ incubation (Figures 1(c) and 1(d)). Sim-
ilar results were obtained from the Hoechst staining
(Figures 1(f) and 1(g)). Furthermore, as demonstrated by
the Western blot analysis, the levels of proapoptotic pro-
teins (cleaved caspase 3, caspase 9, and PARP) were mark-
edly elevated in PQ-intoxicated cells, which was restored
by ISO pretreatment (Figure 1(e)). These results indicated
that ISO significantly alleviated the PQ-induced cell death
in rat renal tubular epithelial cells.

3.2. ISO Ameliorates the PQ-Induced Oxidative Stress in
NRK-52E Cells. Next, we evaluated the effects of ISO on
PQ-induced oxidative stress. In PQ-intoxicated NRK-52E
cells, MDA, a major toxic product of lipid peroxidation,
was significantly increased, along with a significant decline
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Figure 2: Isorhapontigenin (ISO) ameliorates the paraquat- (PQ-) induced oxidative stress in NRK-52E cells. NRK-52E cells were
pretreated with ISO (5 μM or 10μM) for 30min followed by a 24 h coincubation with 300μM PQ. (a) The malondialdehyde (MDA)
contents, (b) superoxide dismutase (SOD) activity, and (c) lactate dehydrogenase (LDH) leakage were determined using the
commercially available kits. (d, e) Flow cytometry was performed to determine the reactive oxygen species (ROS) production in cells.
The fluorescence intensity of 2′,7′-dichlorofluorescein (DCF) indicated ROS levels. (f) Protein levels of nuclear factor erythroid 2-related
factor 2 (NRF2) and heme oxygenase-1 (HO-1) were detected via Western blot. (g) The mRNA levels of HO-1 were measured via
quantitative real-time PCR. Error bars represent standard deviations. ∗∗P values < 0.01; ∗∗∗P values < 0.001.
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Figure 3: Continued.
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in the activity of SOD and an obvious increase in the leakage
of LDH (Figures 2(a)–2(c)). However, 10μm ISO pretreat-
ment significantly protected cells from PQ-induced alter-
ations (Figures 2(a)–2(c)). The flow cytometry analysis also
determined that ISO pretreatment decreased the PQ-
induced ROS production in NRK-52E cells (Figures 2(d)
and 2(e)). Furthermore, Western blot and qPCR revealed
that the upregulated expression levels of antioxidative mole-
cules HO-1 and nuclear NRF2 were reversed by 10μm ISO
pretreatment (Figures 2(f) and 2(g)). These findings sup-
ported that ISO ameliorated PQ-induced oxidative stress in
NRK-52E cells.

3.3. SOX9 Regulates TOLLIP Expression and Attenuates PQ
Toxicity to NRK-52E Cells. Afterward, we investigated the
role of SOX9 in PQ-intoxicated NRK-52E cells. As shown
in Figures 3(a)–3(c), the upregulation of mRNA and protein
levels of SOX9 and TOLLIP was observed in PQ-intoxicated
cells and was enhanced by 10μm ISO pretreatment. And
the dual-luciferase reporter assay validated the transcrip-
tional regulation of TOLLIP by SOX9 (Figure 3(d)). Next,
we overexpressed SOX9 in NRK-52E cells (Figures 3(e)
and 3(f)) and found that PQ-induced cell apoptosis was

significantly reduced in SOX9-overexpressing cells in com-
parison to control cells (Figures 3(g) and 3(h)), along with
an obvious reduction in MDA production and LDH leakage
(Figures 3(i) and 3(j)). Furthermore, overexpression of
SOX9 upregulated TOLLIP expression in PQ-treated
NRK-52E cells (Figures 3(k) and 3(l)). The above results
suggested that SOX9 increased TOLLIP expression and
attenuated PQ toxicity to NRK-52E cells.

3.4. SOX9 and TOLLIP Participate in the Pharmacological
Effects of ISO. Next, we performed the adenovirus-based
knockdown of SOX9 in NRK-52E cells (Figures 4(a) and
4(b)). Downregulation of SOX9 impaired the ISO
treatment-mediated inhibition of PQ-induced cell apoptosis
(Figures 4(c) and 4(d)) and reversed the protective impacts
of ISO on PQ-induced oxidative stress, as evidenced by the
increased MDA and LDH, compared to the negative control
adenovirus transduced cells (Figures 4(e) and 4(f)). Further-
more, the silencing of SOX9 markedly reduced the ISO-
elevated TOLLIP expression in PQ-treated cells
(Figures 4(g) and 4(h)). These results indicated that ISO
might attenuate PQ-induced cell apoptosis and oxidative
stress by regulating SOX9 and TOLLIP expression.
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Figure 3: SRY-box transcription factor 9 (SOX9) regulates Toll-interacting protein (TOLLIP) expression and attenuates paraquat (PQ)
toxicity to NRK-52E cells. NRK-52E cells were pretreated with ISO (5 μM or 10μM) for 30min followed by a 24 h coincubation with
300μM PQ. The expression of SOX9 and TOLLIP was evaluated at (a, b) protein and (c) mRNA levels using Western blot and
quantitative real-time PCR (qPCR). (d) A dual-luciferase reporter assay was performed to explore the effects of SOX9 on the activities of
the TOLLIP promoter. (e, f) Verification of adenovirus- (Ad-) mediated overexpression of SOX9 in NRK-52E cells using Western blot
and qPCR. Forty-eight hours after Ad transduction, cells were incubated with 300μM PQ for 24 h. (g, h) Flow cytometry was performed
to determine the cell apoptosis. Levels of (i) malondialdehyde (MDA) and (j) lactate dehydrogenase (LDH) were measured using the
commercially available kits. TOLLIP expression was determined at the (k) protein and (l) mRNA levels using Western blot and qPCR.
Error bars represent standard deviations. ∗P values < 0.05, ∗∗P values < 0.01, and ∗∗∗P values < 0.001.
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Figure 4: Continued.
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3.5. ISO Attenuates Renal Injury in PQ-AKI Rats.We further
evaluated the protective effects of ISO in vivo. As determined
by H&E staining and PAS staining, 50mg/kg ISO signifi-
cantly attenuated the damage of renal tubules in PQ-
injected rats (Figures 5(a) and 5(b)). Furthermore, Scr,
BUN, NGAL, and urinary proteins were obviously elevated
after PQ intoxication but were restored via 50mg/kg ISO
treatment (Figures 5(c)–5(f)), suggesting that ISO preserves
renal functions of PQ-AKI rats.

3.6. ISO Alleviates Cell Apoptosis and Oxidative Stress in the
Renal Cortex of PQ-AKI Rats. TUNEL staining showed that
cell apoptosis increased significantly in the renal cortex of
PQ-AKI rats compared to control rats, but ISO reduced
the number of apoptotic cells (Figure 6(a)). Consistently,
the Western blot assay revealed that ISO treatment partially
reversed the elevated levels of proapoptotic proteins (cleaved
caspase 3, cleaved caspase 9, and cleaved PARP) in the renal
cortex of PQ-AKI rats (Figure 6(b)). Furthermore, 50mg/kg
ISO markedly reduced the contents of MDA in the renal
cortex of PQ-AKI rats (Figure 6(c)) and rescued the expres-
sion levels of HO-1 and nuclear NRF2 (Figures 6(d) and
6(e)). These results confirmed the protective impact of ISO
on PQ-induced nephrotoxicity.

3.7. ISO Upregulates Expression Levels of SOX9 and TOLLIP
in the Renal Cortex of PQ-AKI Rats. Next, we evaluated the
effects of ISO on the expression of SOX9 and TOLLIP in
the renal cortex of PQ-AKI rats. Immunohistochemical
staining revealed that SOX9 and TOLLIP were upregulated
in the renal cortex of PQ-AKI rats and were further
increased by ISO administration (Figures 7(a) and 7(b)).
Western blot analysis and qPCR showed similar results
(Figures 7(c)–7(e)). These findings implied the involvement
of SOX9 and TOLLIP in the protective effects of ISO against
PQ-AKI.

4. Discussion

In this study, we identified the therapeutic effects of ISO on
PQ-induced AKI in rats. We also uncovered the molecular
mechanism underlying the protective impacts, that ISO
modulated SOX9/TOLLIP expression to alleviate PQ-
induced cell apoptosis and oxidative stress in renal tubular
epithelial cells. Our findings demonstrated the potential of
ISO to attenuate PQ-induced nephrotoxicity.

AKI is a complex disorder, manifesting with an abrupt
decline in renal filtration functions [27]. In PQ-poisoned
patients, the incidence of AKI could reach 71.7% [28]. And
several renal function indexes were used to predict PQ clear-
ance and the prognosis of patients [3]. For example, Zhang
et al. observed a negative correlation between the BUN and
the ratio of urine-to-plasma PQ (an indicator to evaluate
the PQ elimination) [29]. In addition, Scr showed strong
power for evaluating the prognosis of acute PQ-poisoning
patients and was identified as one of the independent risk
indicators of in-hospital death events [30–32]. Furthermore,
urinary NGAL, a sensitive marker to reflect the kidney
injury [33], also displayed high sensitivity and specificity
when predicting the mortality of acute PQ-poisoned patients
[28, 34]. In previous research, ISO was reported to slightly
alleviate the renal impairment in diabetic mice [15]. Consis-
tently, we observed an obvious increase in these kidney
injury indexes in PQ-AKI rats, while a high dose of ISO pre-
treatment significantly restored this increase, suggesting
ISO-mediated protection of kidney functions after acute
exposure to PQ.

It was reported that PQ could induce apoptosis of renal
tubular epithelial cells to exsert nephrotoxicity [35, 36]. For
example, PQ could modulate the expression of Bcl-2 family
members such as proapoptotic Bax and antiapoptotic Bcl-2
to activate the intrinsic mitochondrial apoptotic pathway
[7], as they could control the outer mitochondrial mem-
brane permeability, thus regulating the release of apoptotic
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Figure 4: SRY-box transcription factor 9 (SOX9) and Toll-interacting protein (TOLLIP) participate in the pharmacological effects of
isorhapontigenin (ISO). (a, b) Verification of adenovirus- (Ad-) mediated knockdown of SOX9 in NRK-52E cells using Western blot and
quantitative real-time PCR (qPCR). Forty-eight hours after Ad transduction, cells were incubated with 300μM PQ for 24 h. (c, d) Flow
cytometry was performed to determine the cell apoptosis. Levels of (e) malondialdehyde (MDA) and (f) lactate dehydrogenase (LDH)
were measured using commercially available kits. TOLLIP expression was determined at the (g) protein and (h) mRNA levels using
Western blot and qPCR. Error bars represent standard deviations. ∗P values < 0.05, ∗∗P values < 0.01, and ∗∗∗P values < 0.001.
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mediators [37]. Additionally, PQ could increase the genera-
tion of ROS and directly lead to mitochondrial outer mem-
brane permeabilization, thus enhancing the release of
cytochrome C from mitochondria into the cytosol. Cytosolic
cytochrome C further binds to the apoptotic protease acti-
vating factor 1, contributing to the activation of the initiator
caspase 9 and the executioner caspases like caspase 3 [38,
39].

Previous research demonstrated that ISO displayed anti-
apoptotic impacts on doxorubicin-induced cardiotoxicity
and reduced the cleaved caspase 3 levels [14]. Consistently,
in the present study, we found that ISO markedly decreased
the PQ-mediated induction of active caspases 3 and 9, as
well as the cleavage of PARP, a specific caspase substrate that
prevents DNA repair-induced survival [40]. Furthermore,
ISO was found to suppress the neuron apoptosis in cerebral
ischemia/reperfusion injuries in rats, by decreasing the Bax
and increasing the Bcl-2 [12]. These findings indicated that
ISO effectively protected renal tubular epithelial cells from
PQ-induced cell apoptosis, and this protection might be
attributed to its modulation of Bax and Bcl-2 to restrain
the mitochondrial outer membrane permeabilization.

Elevated ROS production during the redox cycle process
is one of the main causes of PQ toxicity, which contributes
to mitochondrial oxidative stress and cell death [4–6]. Oxi-
dative stress is manifested by increased oxidative products
and reduced antioxidants [41]. Normal cells have the ability
to eliminate the excess ROS through antioxidant enzymes to
prevent oxidative damage and maintain the oxidative bal-
ance [42]. However, severe exposure to toxicants such as
PQ could harm the oxidative balance [43, 44]. For example,
PQ significantly increased ROS and MDA production and
LDH leakage but reduced the levels of the antioxidant
enzyme SOD and the antioxidative molecules NRF2 and
HO-1 [45, 46]. Therefore, antioxidants appeared to be
promising approaches to relieve PQ-induced toxicity.

ISO was previously found to exhibit antioxidative effects
by preventing the MDA production and antioxidant GSH
reduction, and its antioxidative effects were much more

potent than those of the classical antioxidant vitamin E
[13]. Additionally, accumulating evidence revealed the
mechanism underlying its antioxidative functions. First,
ISO contains a very important active site (A4-hydroxyl
group), which contributes to its activity to directly scavenge
two classic ROS (hydroxyl and hydroperoxyl radical) [47].
Besides this, ISO could bind the flavin adenine dinucleotide
site in xanthine oxidase (XO), to suppress the O2

- generation
catalyzed by XO [48]. Given that XO played an important
role in PQ toxicity, and the XO inhibitor significantly
reduced the mortality of PQ-intoxicated rats [49, 50], ISO
might also exhibit therapeutic effects on PQ-AKI by inhibit-
ing XO. Furthermore, ISO was demonstrated to trigger the
activation of NRF2 by increasing NRF2 expression and
enhancing its nuclear translocation [51–53], thus signifi-
cantly increasing the expression of various antioxidant
enzymes. Compared to the direct scavenging for ROS or
XO inhibition, the activation of NRF2 can amplify the anti-
oxidant effect of ISO and prolong the duration of its
functions.

Consistently, in our present study, we found that ISO
pretreatment markedly increased SOD, NRF2, and HO-1
and reduced ROS, MDA, and LDH to protect against PQ-
induced oxidative stress, supporting the beneficial role of
ISO in maintaining the oxidative balance in PQ-intoxicated
NRK-52E cells. Similar effects were observed in other cell
types. For instance, ISO pretreatment also reduced intracel-
lular ROS levels in airway epithelial cells in patients with
chronic obstructive pulmonary disease [11], suggesting the
potential therapeutic effects of ISO on PQ-induced lung
injury as well.

The beneficial impacts of TOLLIP on PQ-AKI were
described in our previous research. Specifically, TOLLIP
suppressed TLR2/4-NF-κB signaling to protect against PQ-
induced NLRP3 inflammasome activation, thus attenuating
kidney injuries [23]. Additionally, TOLLIP significantly
antagonized bleomycin-induced caspase 3 protein cleavage
and mitochondrial ROS accumulation to protect epithelial
cells from apoptosis [54]. Conversely, TOLLIP exhaustion
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Figure 5: Isorhapontigenin (ISO) attenuates renal injury in paraquat- (PQ-) acute kidney injury (AKI) rats. Rats received an intraperitoneal
injection of 25mg/kg or 50mg/kg ISO once a day for 7 days before injection of PQ. (a) Hematoxylin and eosin (H&E) staining and (b)
periodic acid-Schiff (PAS) staining showed pathological alterations in the renal cortex of rats. Scale bars represent 200μm or 50 μm;
100x or 400x magnification. (c) Serum creatinine (Scr), (d) blood urea nitrogen (BUN), (e) urinary neutrophil gelatinase-associated
lipocalin (NGAL), and (f) urinary proteins were evaluated using commercially available detection kits. Eight rats in each group. Error
bars represent standard deviations. ∗∗P values < 0.01; ∗∗∗P values < 0.001.
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abolished the therapeutic effect of isorhynchophylline (a bio-
active alkaloid) on PQ-induced oxidative stress and mito-
chondrial damage in NRK-52E cells [55]. Hence, TOLLIP
might participate in the antiapoptotic and antioxidative
functions of ISO.

SOX9 was reported to inhibit the apoptosis of chon-
drocytes [56] and was identified as an important marker

in kidney repair, particularly in renal tubular epithelial
regeneration [20]. Here in the present study, we reported
the SOX9-mediated transcriptional regulation of TOLLIP
and further determined that the regulation of SOX/TOL-
LIP expression was underlying the molecular mechanism
of ISO effects on PQ-AKI. Interestingly, in a recent study,
ISO protected against doxorubicin-induced cardiotoxicity
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Figure 6: Isorhapontigenin (ISO) alleviates cell apoptosis and oxidative stress in the renal cortex of paraquat- (PQ-) acute kidney injury
(AKI) rats. (a) Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining showed the apoptotic cells in the renal
cortex. Scale bars represent 200 μm or 50 μm; 100x or 400x magnification. (b) Expression of cell apoptosis-related proteins in the renal
cortex was detected using Western blot. (c) Malondialdehyde (MDA) content in the renal cortex was measured using the commercially
available kit. (d) Protein levels of nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) were detected using
Western blot. (e) The mRNA levels of HO-1 were measured using quantitative real-time PCR (qPCR). Eight rats in each group. Error
bars represent standard deviations. ∗∗∗P values < 0.001.

12 Oxidative Medicine and Cellular Longevity



SO
X9

PQControl PQ+25 mg/kg ISO PQ+50 mg/kg ISO

(a)

TO
LL

IP

PQControl PQ+25 mg/kg ISO PQ+50 mg/kg ISO

(b)

kDa

SOX9

Actin

Contro
l

PQ

PQ+25
 m

g/k
g I

SO

PQ+50
 m

g/k
g I

SO

56

42

(c)

kDa

TOLLIP

Actin

Contro
l

PQ

PQ+25
 m

g/k
g I

SO

PQ+50
 m

g/k
g I

SO

30

42

(d)

SOX9

TOLLIP

5

4

3

2

1

0

Re
la

tiv
e

m
RN

A
 ex

pr
es

sio
n

Contro
l

PQ

PQ+25
 m

g/k
g I

SO

PQ+50
 m

g/k
g I

SO
Contro

l
PQ

PQ+25
 m

g/k
g I

SO

PQ+50
 m

g/k
g I

SO

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎

(e)

Figure 7: Isorhapontigenin (ISO) upregulates expression levels of SRY-box transcription factor 9 (SOX9) and Toll-interacting protein
(TOLLIP) in the renal cortex of paraquat- (PQ-) acute kidney injury (AKI) rats. Immunohistochemistry staining for (a) SOX9 and (b)
TOLLIP in the renal cortex. The scale bar represents 50μm; 400x magnification. Expression levels of SOX9 and TOLLIP in the renal
cortex were determined at (c, d) protein and (e) mRNA levels using Western blot and quantitative real-time PCR (qPCR). Error bars
represent standard deviations. Eight rats in each group. ∗∗P values < 0.01; ∗∗∗P values < 0.001.
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via increasing the expression of YAP1 [14], and YAP1 could
mediate the upregulation of SOX9 levels [57]. Therefore, the
upregulated SOX9 might contribute to the ISO-mediated
attenuation of kidney injuries and preservation of renal func-
tions, and YAP1 might be involved in the ISO-mediated
modulation of the SOX9 expression, but more experimental
results were required for uncovering the molecular traits of
the pharmacological effects of ISO.

5. Conclusions

In summary, our work uncovered the therapeutic effects of a
natural bioactive polyphenol ISO on PQ-induced AKI and
demonstrated that ISO modulated SOX9/TOLLIP expres-
sion to attenuate PQ-induced cell apoptosis and oxidative
stress.
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