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Diffuse large B-cell lymphoma (DLBCL) is a complex invasive tumour that occurs mainly among the elderly. Therefore, we
analysed the relationship between ageing-related genes (AG) and DLBCL prognosis. Datasets related to DLBCL and human
AGs were downloaded and screened from the Gene Expression Omnibus (GEO) database and HAGR website, respectively.
LASSO and Cox regression were used to analyse AGs in the dataset and construct an AG predictive model related to DLBCL
prognosis. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment were used to analyse the function
of the AG predictive model. The immune microenvironment and immune cell infiltration in DLBCL and their relationship
with the AG prediction model were also analysed. After the analysis, 118 AGs were identified as genes related to DLBCL
prognosis. Using the LASSO and Cox regression analyses, 9 AGs (PLAU, IL7R, MYC, S100B, IGFBP3, NR3C1, PTK2, TBP,
and CLOCK) were used to construct an AG prognostic model. In the training and verification sets, this model exhibited
excellent predictive ability for the prognosis of patients with DLBCL who have different clinical characteristics. Further analysis
revealed that the high- and low-risk groups of the AG prognostic model were significantly correlated with immune cell
infiltration and tumour microenvironment in DLBCL. Functional enrichment analysis also showed that the genes in the AG
model were associated with immune-related functions and pathways. In conclusion, we constructed an AG model with a
strong predictive function in DLBCL, with the ability to predict the prognosis of patients with different clinical features. This
model provides new ideas and potential therapeutic targets for the study of the pathogenesis of DLBCL.

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common
lymphoid neoplasm in adults, accounting for approximately
30% of non-Hodgkin’s lymphomas (NHLs) diagnosed annu-
ally. DLBCL exhibits a striking heterogeneity at the clinical,
genetic, and molecular levels [1]. The standard rituximab,
cyclophosphamide, adriamycin, vincristine, and prednisone
(R-CHOP) regimens are the first-line immunochemotherapy

regimens for patients with DLBCL; however, 30%-40% of
patients remain resistant to R-CHOP and are refractory or
experience relapse [2, 3]. The prognosis of DLBCL has been
developed from International Prognostic Index (IPI) scores,
up to the genetic subtype classification [4]. Considering age,
disease stage, serum lactate dehydrogenase (LDH) level, East-
ern Cooperative Oncology Group (ECOG), performance sta-
tus (PS), and the number of extranodal sites, patients with
newly diagnosed DLBCL can be stratified into three different
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risk groups. Furthermore, while recurrent genetic aberrations
in individual genes have elucidated oncogenic mechanisms
in DLBCL, the progress toward a genetic classification of
DLBCL tumours is characterised by genomic aberrations in
subtype-specific hallmark genes. The potential clinical utility
of this genetic classification is evident from the association of
the subtypes with outcomes following R-CHOP therapy [5].

Considering IPI and NCCN-IPI scores, age > 60 years is
an adverse prognostic factor for DLBCL. Older patients with
DLBCL (≥60 years) are associated with a worse outcome
compared to younger patients (<60 years) [6]. Within 2 years
after the diagnosis of DLBCL, the standard R-CHOP immu-
nochemotherapy drugs can normalise the life expectancy of
young patients, as exhibited by event-free survival rates; how-
ever, elderly patients will still experience high mortality [7].
Moreover, it should be noted that the main age group for
DLBCL is among the elderly. The median age at the time of
diagnosis is 66 years; furthermore, 20.1% of patients are diag-
nosed between 75 and 84 years of age, 25.0% between 65 and
74 years of age, and 21.2% between 55 and 64 years of age. At
present, effective treatment among the elderly remains chal-
lenging owing to the adverse invasive biological characteristics
of DLBCL, the baseline health status of this patient population,
the late toxicity of chemotherapy, and the poor therapeutic
effect of the current treatment scheme on elderly patients [8,
9]. Therefore, interest in the understanding of the molecular
and genetic pathways dysregulated in ageing and DLBCL has
tremendously increased, along with the interest in biomarkers
as a quick and quantitative measure in all areas of biomedical
research.

Ageing is a process wherein the adaptability and organ
function of all organisms decline over time, eventually leading
to death [10]. Ageing is often caused by changes in the genome
and cells, including tissue degradation and disintegration
caused by loss of stem cell renewal ability, genomic instability,
telomere wear, metabolic changes, changes in cell communica-
tion, cell ageing, loss of protein homeostasis, and epigenetic
changes [11]. Notably, B cell immune weakness is a sign of sys-
temicweakness, and ageingmay lead to a sharp decline in B cell
diversity with age, which could have an important impact on
the immune health of the elderly [12]. Because the incidence
of DLBCL is mainly among the elderly and considering that
the treatment effect for this patient population is poor, we
speculate that DLBCL incidence is related to body ageing and
cellular immunity. Therefore, becausemultiple molecular path-
ways are involved in the ageing process and can contribute to
the various aspects of DLBCL, a panel of valid ageing genes
(AGs) in DLBCL and its effect on immune function may allow
both diagnosis and follow-up in preclinical and clinical settings.

2. Materials and Methods

2.1. Data Access, Acquisition of AGs, and Setting of Samples.
We searched and screened the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) and
obtained the gene expression matrix and clinical data of three
datasets: GSE10846 (which included tumour specimens and
the clinical data of 414 patients with DLBCL from 10 institu-
tions in North America and Europe) [13], GSE11318 (which

included tumour specimens and the clinical data of 203
patients with DLBCL from the US National Institutes of
Health and theUniversity of NebraskaMedical Center, among
others) [14], and GSE32918 (which included tumour speci-
mens and the clinical data of 172 patients with DLBCL from
the Yorkshire and Humberside Haematology Network) [15].
We used GSE10846 (included tumour specimens and the
clinical data of 414 patients with DLBCL) in the screening of
feature genes and as the training set during model construction,
whereas GSE11318 and GSE32918 were used as the verification
set (details on the original and clinical data of these datasets can
be obtained in the cited references). A total of 307 AGs
were obtained from HAGR (http://genomics.senescence
.info/genes/) [16] (Supplementary Table 1). The expression
matrix of the AGs in the training set was extracted and
sorted out by using the limma package in R (version 4.0.2).

2.2. Screening and Modelling of Prognosis-Related Ageing
Genes. Combined with the overall survival (OS) from the
clinical information of the training set, prognosis-related AGs
were screened using univariate Cox regression analysis. The
“glmnet” package in R (version 4.0.2) was used to analyse the
prognosis-related AGs through the least absolute shrinkage
and selection operator (LASSO) Cox regression analysis, and
a predictivemodel was constructed. The risk score of themodel
was determined according to the standardised expression level
of each gene and the corresponding regression coefficient. The
formula for calculating the risk score was as follows:

Risk score =〠i = 1nCoef ið Þ × x ið Þ: ð1Þ

Patients were divided into high- and low-risk groups
according to the risk values calculated by the model.

2.3. Verification of the Ageing Gene Prognostic Model. The
risk score of the training set samples was scored according
to the AG prognostic model. Then, principal component
analysis (PCA) was performed according to the risk score.
The “survminer” package was used to analyse survival in
the training set samples scored by the model and to evaluate
the prognosis prediction of the samples. The “timeROC”
package was used to analyse the receiver-operating charac-
teristic (ROC) curve of the training set to evaluate the model
efficiency. Then, univariate and multivariate Cox analyses of
the clinical characteristics of the model were performed
according to the clinical characteristics. The AG prognostic
model was used to score the risk in the two verification sets,
and the survival and ROC curve analyses of the validation
set were performed using the “survminer” and “timeROC”
packages, respectively, to test the model reliability.

2.4. GO and KEGG Enrichment Analysis. The genes in the
AG prognostic model were analysed using the Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) through the “clusterProfiler4.0” package [17].

2.5. Prediction of Clinical Features and Nomogram
Construction Using the Ageing Gene Prognostic Model. The
AG prognostic model was used to score and group the patients
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Figure 1: Continued.
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Figure 1: (a) Cross validation for adjusting parameters in the LASSO regression analysis. (b) LASSO regression analysis of the AG
prognostic model (each curve represents each prognostic AG included in the construction of the prognostic model). (c) Gene forest map
of the AG prediction model. (d) PCA cluster analysis of the training set samples.

Table 1: Risk score of the AGs prediction model.

ID Coef HR HR.95L HR.95H P value

PLAU -0.1877144 0.82885141 0.70623866 0.97275142 0.02155043

IL7R -0.1559483 0.85560339 0.74739094 0.9794836 0.02379409

MYC 0.18640335 1.20490817 1.00234197 1.44841156 0.04715864

S100B -0.0981711 0.90649381 0.80965196 1.01491883 0.08855595

IGFBP3 -0.127716 0.88010325 0.77334383 1.00160072 0.05290174

NR3C1 -0.9042901 0.40482918 0.27603495 0.59371708 3.69E-06

PTK2 -0.2531792 0.77632871 0.63465837 0.94962314 0.0137867

TBP 0.34647524 1.41407449 0.95060454 2.10351051 0.08727396

CLOCK 0.59230219 1.80814633 1.2671264 2.5801634 0.00109444

Table 2: Genes in prediction model.

Symbol Name Gene ID Uniprot

PLAU Plasminogen activator, urokinase 5328 UROK_HUMAN

IL7R Interleukin 7 receptor 3575 IL7RA_HUMAN

MYC v-myc avian myelocytomatosis viral oncogene homolog 4609 MYC_HUMAN

S100B S100 calcium binding protein B 6285 S100B_HUMAN

IGFBP3 Insulin-like growth factor binding protein 3 3486 IBP3_HUMAN

NR3C1 Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) 2908 GCR_HUMAN

PTK2B Protein tyrosine kinase 2 beta 2185 FAK2_HUMAN

TAF1 TAF1 RNA polymerase II, TATA box-binding protein- (TBP-) associated factor, 250 kDa 6872 TAF1_HUMAN

CLOCK Clock circadian regulator 9575 CLOCK_HUMAN

4 Oxidative Medicine and Cellular Longevity



10

8

6

4

2

0

Ri
sk

 sc
or

e

0 100 200 300 400
Patients (increasing risk score)

20

15

10

5

0

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

0 100 200 300 400
Patients (increasing risk score)

High risk
Low risk

Dead
Alive

(a)

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001

0 2 3 4 6 751 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time (years)

Ri
sk High risk
Low risk

206 131 87 64 50 38 30 23 18 15 10 5 3 2 2 2 1 0 0 0 0 0
1111111334710141721274968100139171206

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514 16 17 18 19 20 21
Time (years)

Risk
High risk

Low risk

(b)

Figure 2: Continued.
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with DLBCL who have different clinical characteristics (age,
treatment, ECOG grade, subtype, gender, and stage) and to test
the reliability of the grouping. A nomogram was constructed to
predict the prognosis of these patients according to the various
clinical characteristics.

2.6. Relationship between the Ageing Gene Prognostic Model
and the Tumour Microenvironment. ESTIMATE [18] was used
to score the tumour microenvironment (including tumour
purity, immune score, stroma score, and ESTIMATE score)
of the training set samples. Differences in the microenviron-
ment between the high- and low-risk groups distinguished
through the AG prognostic model were analysed, and survival
analysis was performed using the survival time.

2.7. Relationship between the Ageing Gene Prognostic Model
and the Immune Cell Infiltration and Immune Checkpoint.
CIBERSORT [19] was used to score 22 types of immune cell
infiltration in the training set samples. The difference in the
high- and low-risk groups distinguished through the AG
prognostic model was analysed, and survival analysis was
performed using the survival time. We also analysed the
relationship between the high- and low-risk groups and the
37 immune checkpoints as well as the relationship between
immune checkpoints and prognosis.

2.8. Statistical Analysis. Survival analysis was performed using
the “survminer” package. The ROC curve and ROC analysis
were completed using the “timeROC” package. The Cox pro-
portional hazard regressionmodel was used for univariate and
multivariate analyses. P < 0:05 was considered to have statisti-
cal significance, whereas P < 0:01 was significant.

3. Results

3.1. Screening andModelling of Prognosis-Related Ageing Genes.
Supplementary Figure 1 shows the flow chart of the work. We

obtained the expression of 296 AGs using the “limma”
package to extract the AGs from the training set GSE10847.
Moreover, we obtained 118 AGs related to the prognosis of
DLBCL (Supplementary Figure 2) using univariate Cox
regression analysis combined with the total survival time in
the training set. A model of the AGs related to prognosis was
constructed using LASSO regression analysis (Figures 1(a)
and 1(b)). A predictive model was also constructed using nine
AGs: PLAU, IL7R, MYC, S100B, IGFBP3, NR3C1, PTK2,
TBP, and CLOCK (Figure 1(c)). The risk score of the AG
prediction model is shown in Table 1. The description of the
nine model genes is shown in Table 2.

3.2. Verification of the Ageing Gene Prognostic Model. The
AG prognostic model was used to score the training set
and divide the patients into the high- and low-risk groups.
Then, PCA was used to analyse the training set samples,
with the results showing that the samples could be well
distinguished (Figure 1(d)). The survival and ROC analyses
of the high- and low-risk groups in the training set showed
that the survival characteristics of the high-risk group were
significantly lower than those of the low-risk group
(Figures 2(a) and 2(b)). Moreover, the ROC analysis showed
that the area under curve (AUC) value of the model for 1, 3,
and 5 years was 0.772, 0.792, and 0.79 (Figure 2(c)), respec-
tively, which indicates that the AG prognostic model had
high prediction accuracy. The two other DLBCL datasets
(GSE11318 and GSE32918) were used as independent
validation datasets to verify the performance of the AG prog-
nostic model. Consistent with the results of the training set, the
survival characteristics of the high-risk group were significantly
lower than those of the low-risk group in both verification sets
(Supplementary Figures 3A, 3B, 3D, and 3E). Furthermore, the
AUC value of the model in both verification sets was
satisfactory (Supplementary Figures 3C and 3F). Univariate
and multivariate regression analyses were also performed on
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Figure 2: (a) The model divides patients in the training set into low-risk and high-risk groups, and the number of survival and deaths was
compared between these two groups. (b) Kaplan-Meier curve between the high-risk and low-risk groups. (c) The subject working curve of
the model in the training set.
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the AG prognostic model combined with clinical
characteristics. The clinical characteristics of the training set
and the heatmaps of the 9 AG expression profiles are shown
in Figure 3(a). The univariate and multivariate analyses
shown in Figures 3(b) and 3(c) also demonstrate that the
model could be used as independent prognostic factors in
patients with DLBCL. The clinical features of the verification
sets and the heatmaps of the nine AG expression profiles are
shown in Supplementary Figures 4A and 4D. Similarly, the
univariate and multivariate regression analyses demonstrated
that the AG prognostic model could also be used as an
independent prognostic factor for patients with DLBCL in
both validation sets (Supplementary Figures 4B, 4C, 4E and 4F).

3.3. GO and KEGG Enrichment Analyses. The AG prognostic
model genes were analysed through GO and KEGG enrich-
ment analyses. Figures 4(a)–4(c) show that the model gene is
related to the development of lymph nodes, the regulation of

lymphocyte apoptosis, and the regulation of immune cells.
Figures 4(d)–4(f) show that model genes are involved in
transcriptional disorders, cell senescence, the PI3K-Akt sig-
nal pathway, and the JAK-STAT signal pathway in cancer.

3.4. Prediction of Clinical Features and Nomogram Construction
Using the Ageing Gene Prognostic Model.We tested the stability
of the AG prognostic model, and the results show that the
model has high accuracy in distinguishing the prognosis of
patients with different clinical characteristics, including age
(>65 years, ≤65 years), treatment (CHOP, R-CHOP), ECOG
grade (0-2 points, 3-4 points), subtype (ABC, GCB), sex
(female, male), and grade (G1-2, G3-4) (Figures 5(a)–5(h) and
6(a)–6(d)). Notably, the IPI (International Prognostic Index)
score is currently recognised as a prognostic indicator of
lymphoma. It scores patients with DLBCL according to
age, sites of involvement, clinical stage, ECOG grade, and
LDH. The scores are divided into low (0-1), medium (2-3),
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Figure 3: (a) The heatmap of clinical characteristics of the high- and low-risk group in the training focus. (b) Univariate analysis of the
clinical characteristics of the training set (which shows whether these clinical features and prognostic models are related to the survival
time of patients). (c) Multivariate analysis of the clinical characteristics of the training set (which shows whether these characteristics are
still related to the survival time of patients, considering the mutual influence of these clinical features and the prognostic models).
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and high (4-5) risk. However, our model can further distin-
guish the prognosis of low-, medium-, and high-risk patients
(Figures 6(e)–6(g)), suggesting that the AG prognostic model
that we constructed has high reliability and accuracy for pre-
dicting the prognosis of patients with DLBCL who have dif-
ferent clinical characteristics, and can be combined with the
IPI score for more accurate predictions. Combined with the
survival analysis, we constructed a nomogram that includes
the risk score and other clinicopathological information to
predict the survival time of patients in the training set, as
shown in Figures 6(h) and 6(i).

3.5. Relationship between the Ageing Gene Prognostic Model
and the Tumour Microenvironment. Because the ageing of
the body is usually accompanied by the decline of immune
function and the GO and KEGG enrichment analyses
showed that model genes are involved in immune-related
functions and pathways, we used the ESTIMATE algorithm
to determine stroma and immune scores and to explore the
tumour microenvironment differences between the high-
and low-risk groups. Figure 7(a) shows a heatmap of tumour
purity, immune score, stroma score, and ESTIMATE score
as well as the nine AG expression profiles. Consistent with
our initial hypothesis, compared to the low-risk group, the
high-risk group had significantly lower immunity, stroma,
and ESTIMATE scores. Moreover, the survival analysis also

showed that low scores in these three areas predicted a poor
prognosis (Figures 7(b)–7(d)). Furthermore, the high-risk
group had a high tumour purity score, which also predicted
a poor prognosis (Figure 7(e)).

3.6. Relationship between the Ageing Gene Prognostic Model
and Immune Cell Infiltration.We used the CIBERSORT algo-
rithm to further analyse the difference in immune cell infiltra-
tion between the high- and low-risk groups. Figure 8(a) shows
the infiltration of 22 immune cells in the high- and low-risk
group. As demonstrated in Figure 8(b), there is a strong nega-
tive correlation between macrophage M1 and activated
dendritic cells, immature B cells and memory B cells and mac-
rophageM0 andmacrophageM2. Figure 8(c) shows that there
is an increased expression of immature B cells, resting NK
cells, macrophage M2, eosinophils, and neutrophils in the
high-risk group, whereas the expression of delta T cells, mac-
rophages M0, dormant dendritic cells, and resting mast cells
increased in the low-risk group. High M2 expression in eosin-
ophils, monocytes, and macrophages was associated with poor
prognosis (Figures 8(d)–8(f)), whereas high expression of
macrophages M0, dormant dendritic cells, and delta T cells
was related with good prognosis (Figures 8(g)–8(i)). This find-
ing suggests that AGs affect the immune function of the body
and ultimately affect the prognosis of patients with DLBCL by
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Figure 4: (a) Bubble map of the GO and KEGG enrichment analyses of prognostic model genes. (b) Scatter plot of the GO enrichment
analysis of the prognostic model genes. (c) Scatter plot of the KEGG enrichment analysis of the prognostic model genes.
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altering the infiltration of eosinophils, M2 macrophages, delta
T cells, M0 macrophages, and dormant dendritic cells.

3.7. Relationship between the Ageing Gene Prognostic Model
and Immune Checkpoint. Immune checkpoint blockers,
which are at the forefront of immunotherapy, are effective
in the treatment of many human cancers, especially malig-
nant cancers and chemotherapy-tolerant cancers. Therefore,
we analysed the differences in 37 immune checkpoints in
DLBCL between the high- and low-risk groups. The results
showed that the expression of TNFRSF9, SIGLEC15, PTPRC,
PDCD1LG2, LDHA, JAK1, IL23A, ICOS, CD8A, CD86,
CD40LG, CD28, and B2Mwas increased in the low-risk group
(Figure 9(a)). The high expression of ICOS, IL23A, SIGLEC15,
PTPRC, LDHA, B2M, TNFRSF9, and CD40LG was also asso-
ciated with a good prognosis (Figures 9(b)–9(g) and 10(a) and
10(b)). Furthermore, the expression of YTHDF1, VTCN1,
TNFSF9, TNFSF18, PVR, LGALS9, LDHC, LDHB, LAMA3,
IL12A, FGL1, and CD274 was increased in the high-risk group
(Figure 9(a)), and the high expression of YTHDF1, IL12A,
LGALS9, TNFSF9, and PVRwas associated with poor progno-
sis (Figures 10(c)–10(g)).

4. Discussion

The extreme genetic and phenotypic heterogeneity of DLBCL
presents a challenge in terms of subtype classification, prognosis
prediction, and precision treatment. Ageing is an unavoidable
physiological process at present, and the accompanying high-
risk disease probability remains an unchangeable fact. In this
study, we constructed and verified a new AG prediction model
that can well distinguish between the prognosis of patients with
high- and low-risk DLBCL. To the best of our knowledge, this
study is the first to predict the prognosis of patients with
DLBCL characterised by AGs. In addition, we constructed a

prognostic nomogram, which can be used to individually esti-
mate the OS probability in patients with DLBCL, help to
improve clinical monitoring, and guide the duration of adjuvant
chemotherapy and treatment.

In the present study, we determined that the nine central
AGs, namely, PLAU, IL7R, MYC, S100B, IGFBP3, NR3C1,
PTK2, TBP, and CLOCK, were risk factors related to the prog-
nosis of patients with DLBCL. These AGs were reportedly
associated with the underlying mechanisms to facilitate
DLBCL or lymphoblastic leukaemia formation and progres-
sion. Among them, only MYC is the star protein in DLBCL.
Approximately 20%-30% of patients with DLBCL harbour
the MYC rearrangement or translocation, which functions as
an independent high-risk factor. MYC is also closely related
to BCL2, andmost patients with refractory DLBCL will exhibit
double-hit lymphoma (MYC-BCL2 rearrangement) or double
protein expression lymphoma (MYC-BCL2 high expression).
The clinical manifestations of this kind of DLBCL are also
more aggressive [20–22].MYC binds to DHX33 and promotes
PLAU transcription by directly binding to their promoters,
thus promoting cancer cell migration [23]. IL-7R expression
in non-GCB-type lymphoma is also significantly higher com-
pared to that in GCB lymphoma [24]. S100B reportedly inter-
acts with p53 involved in many tumours, and S100B (beta)
sterically blocks sites of phosphorylation and acetylation on
p53 that are important for transcription activation [25]. High
S100B expression in antigen-presenting cells is associated with
a good prognosis [26]. IGFBP-3 has been proven to play an
important role in a variety of tumours. Zhou et al. reported
that miR-196b/miR-1290 participates in the antitumour effect
of resveratrol by regulating IGFBP3 expression in acute lym-
phoblastic leukaemia [27]. In in vitro experiments, IGFBP-3
enhancement can induce the apoptosis of breast cancer cells,
and the low expression of IGFBP-3 indicates a poor prognosis
[28]. In a previous study, high IGFBP-3 expression improved
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Figure 5: (a–h) Kaplan-Meier curves showing the relationship between age (>65 years, ≤65 years), treatment (CHOP, R-CHOP), ECOG
grade (G1-2, G3-4), subtype (ABC, GCB), and survival time of patients with DLBCL in the high- and low-risk groups.
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the survival rate of patients with oral squamous cell carci-
noma, achieved through NF- κB/IL-6/ROS signalling to pro-
mote radiosensitivity [29]. Chan et al. identified the products
of NR3C1 as one of the central effectors of the B-lymphoid
restriction of glucose and the energy supply, functioning as
metabolic gatekeepers by limiting the amount of cellular
ATP to levels that are insufficient for malignant transforma-
tion [30]. NR3C1 also plays an important role in acute lym-
phoblastic leukaemia. Studies have confirmed that the
deletion of NR3C1 is one of the reasons for the failure of acute
lymphoblastic leukaemia induction. In addition, the mutation
of NR3C1 may lead to glucocorticoid resistance and lead to
treatment failure and recurrence of acute lymphoblastic leukae-
mia. TBP, a TATA binding protein, is closely related to metab-
olism. The increased expression of TBP-2 can lead to impaired
insulin sensitivity and glucose-induced insulin secretion, as
well as β-cell apoptosis, leading to diabetes. Furthermore, a
transfection experiment showed that TBP-2 expression induces
apoptosis in IL-2-independent ATL cells [31]. TBP can directly
interact with MYC and regulate the transcriptional process
[32–34]. The biological clock has always been thought to be
associated with cancer, as in non-Hodgkin’s lymphoma. Hoff-
man et al. have shown that the clock circadian regulator gene
can affect the susceptibility to non-Hodgkin’s lymphoma by
affecting immune regulation, and the overexpression of MYC
in U2OS cells (osteosarcoma cells) weakens the clock and in

turn promotes cell proliferation [35]. Patients with DLBCL
who have high CLOCK expression also show poor overall
survival [36].

In our study, the relationship between AG and DLBCL
prognosis was initially established, and nine AGs were then
used to construct a risk score through the LASSO Cox regres-
sion model. This classification breaks DLBCL into two genetic
subtypes that exhibit good performance in predicting progno-
sis both in the training and two validation sets. Compared
with patients in the low-risk group, those in the high-risk
group typically presented with more aggressive characteristics,
advanced stages, and higher mortality (all P < 0:05). Further-
more, the ageing risk score exhibited better predictive capabil-
ity in further distinguishing the low- and high-risk patients as
having low, medium, and high risk when the IPI score was
considered to predict the prognosis of patients with DLBCL
more accurately. It is worth noting that this model was built
from large sample datasets and was successfully verified in
two small sample datasets, which shows that the performance
of this model is very robust and effective.

Results of the GO and KEGG analyses showed that the
nine AGs were related to the development of lymph nodes,
the process of lymphocyte apoptosis, the regulation of
immune cells, and the immune pathway. Ageing is often
accompanied by a change in immune function. Therefore,
we analysed the relationship between the AG model and
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high- and low-risk groups. (h) Nomogram constructed according to the prognostic model of patients with DLBCL. (i) The calibration curve
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Figure 7: (a) Heatmap of the tumour microenvironment characteristics in the high- and low-risk groups. (b) Immune score map of the
high- and low-risk groups and the Kaplan-Meier survival curve of the high- and low-immune score groups (blue represents the high-
immune score group, whereas red represents the low-immune score group). (c) The matrix score map of the high- and low-risk groups
and the Kaplan-Meier survival curve of the high- and low-matrix groups (blue represents the high matrix score, and red represents the
low matrix score). (d) ESTIMATE score chart of the high- and low-risk groups and the Kaplan-Meier survival curve of high and low
ESTIMATE scores (blue represents the high ESTIMATE score, and red represents the low ESTIMATE score). (e) Tumour purity score
map of the high- and low-risk groups and the Kaplan-Meier survival curve of the high- and low-tumour purity score groups (blue
represents the high tumour purity score, whereas red represents the low tumour purity immune score).
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Figure 8: (a) The proportion of cell infiltration in 22 types of immune cells in the high- and low-risk groups. (b) The correlation diagram of
the immune cells. (c) The scores of 22 types of immune cells in the high- and low-risk groups (∗P < 0:05, 0.01, ∗P < 0:001). (d–i) Kaplan-
Meier survival curves of eosinophils, monocytes, M2 macrophages, M0 macrophages, dormant dendritic cells, and delta T cells.
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Figure 9: (a) Box chart of the difference distribution of immune checkpoints between the high- and low-risk groups (∗P < 0:05, ∗∗P < 0:01,
∗∗∗P < 0:001). (b–g) Kaplan-Meier survival curves of ICOS, IL23A, SIGLEC15, PTPRC, and LDHA.
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Figure 10: Continued.
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immune cell infiltration. The high-risk group had significantly
lower immune and matrix scores and a significant increase in
the number of dormant NK cells, M2macrophages, and eosin-
ophils, which represented a low survival rate. NK cells play a
key role in preventing haematological malignancies; however,
they may enter a state of dysfunction, thus limiting antitu-
mour immunity. Studies have shown that NK cells participate
in a large number of metabolic-related transcriptional repro-
gramming, whereas exposure to fatty acid lymphoma can
effectively inhibit NK cell response and cell metabolism [37].
TBP is closely related to the metabolism of the body, and the
two can interact with each other and affect DLBCL develop-
ment. Marchesi et al. have confirmed that the M2macrophage
phenotype is associated with adverse outcomes in patients
treated with R-CHOP. Eosinophils are more common in hae-
matological tumours, such as non-Hodgkin’s disease and
some lymphomas, and may contribute to tumorigenesis and
development by promoting angiogenesis and connective tissue
formation in adjacent tumours [38–40], which is consistent
with our immune cell survival analysis.

The ageing process is inevitably accompanied by changes
in the immune system, such as changes in molecular subtypes
or expression levels on the surface of immune cells and
enhancement or suppression of immune cell function, and
these changes may affect the immune monitoring process,
including the immune checkpoint [41–43]. At present,
immune checkpoint therapy has provided a huge break-
through for the treatment of lymphomas. Finding reliable pre-
dictive biomarkers and potential targets can hence help reduce
the side effects of immunosuppressive therapy and expand its
applicability to patients with DLBCL. Therefore, we further
investigated the relationship between the AG model and the
immune checkpoint. The expression of TNFSF9, CD274,
and PVR increased in the high-risk group of the AG model.
Moreover, the blockers of CD274 (PD-L1) have been widely
tested in patients with a variety of lymphomas, and the
blockers of PD-L1, nivolumab, and pembrolizumab have been

proven effective for the treatment of recurrent or refractory
lymphomas [44]. Furthermore, repeated deletions of TNFSF9
have been detected in patients with DLBCL and Burkett’s lym-
phoma [45]. PVR is a member of the laminin-like family,
which not only promotes tumour progression and metastasis
but also involves immunomodulation. It is also highly upreg-
ulated in the tumour cells of many cancer types and is associ-
ated with poor prognosis. In addition, the current PVR
immune checkpoint inhibitors have been supported by a large
number of experiments in preclinical cancermodels, including
colon cancer, liver cancer, and melanoma, with satisfactory
results [46–50]. Our immune checkpoint survival analysis also
showed that the high expression of TNFSF9 and PVR was
associated with poor prognosis.

Although our study provides new ideas and potential ther-
apeutic targets for the study of the pathogenesis of DLBCL.
However, this study has some limitations. This is a retrospec-
tive study; therefore, designing a prospective study or obtain-
ing clinical samples and evaluating them with Western blot
or immunohistochemistry will be more convincing.

5. Conclusion

In conclusion, our study constructed an AG model that can
predict the prognosis of patients with DLBCL who have differ-
ent clinical features. We provide an ageing genetic framework
from which to understand its pronounced genetic and clinical
heterogeneity as well as the therapeutic responses in subsets of
DLBCL tumours defined by shared pathogenesis. This classifi-
cation breaks DLBCL into two genetic subtypes that differ
with respect to gene expression phenotype, oncogenic path-
way engagement, tumour microenvironment, and survival
rates. In addition, we also explored the relationship between
the AG and immune checkpoints in DLBCL and screened
out potential immune checkpoints for treatment. This taxon-
omy provides a roadmap for the prediction and understanding
of AGs involving the biological diversity encompassed within
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Figure 10: (a–g) Kaplan-Meier survival curves of B2M, TNFRSF9, CD40LG, YTHDF1, IL12A, LGALS9, TNFSF9, and PVR.
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the pathological mechanisms of the disease and will likely shed
light on the heterogeneous responses of DLBCL to cytotoxic
and molecular-targeted therapies.
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