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Osteoporosis (OP) is one of the most common bone disorders among the elderly, characterized by abnormally elevated bone
resorption caused by formation and activation of osteoblast (OC). Excessive reactive oxygen species (ROS) accumulation might
contribute to the formation process of OC as an essential role. Although accumulated advanced treatment target on OP have
been proposed in recent years, clinical outcomes remain unexcellence attributed to severe side effects. The purpose of present
study was to explore the underlying mechanisms of GSK 650394 (GSK) on inhibiting formation and activation of OC and
bone resorption in vitro and in vivo. GSK could inhibit receptor activator of nuclear-κB ligand (RANKL-)-mediated Oc
formation via suppressing the activation of NF-κB and MAPK signaling pathways, regulating intracellular redox status, and
downregulate the expression of nuclear factor of activated T cells c1 (NFATc1). In addition, quantitative RT-PCR results show
that GSK could suppress the expression of OC marker gene and antioxidant enzyme genes. Consistent with in vitro cellular
results, GSK treatment improved bone density in the mouse with ovariectomized-induced bone loss according to the results of
CT parameters, HE staining, and Trap staining. Furthermore, GSK treatment could enhance the capacity of antioxidant
enzymes in vivo. In conclusion, this study suggested that GSK could suppress the activation of osteoclasts and therefore maybe
a potential therapeutic reagent for osteoclast activation-related osteoporosis.

1. Introduction

The dynamic process of regulating bone metabolic homeo-
stasis involves a delicate balance between bone mineral syn-
thesis and resorption, which is mediated by osteoblasts (OB)
and osteoclasts (OC) [1]. Abnormal activities of OB and OC
could result in development and progression of various bone
disorders, such as osteoporosis (OP) [2, 3]. OP is a global
skeletal metabolism disorder caused by disruptions in bone
mass formation and resorption. The prevalence of osteopo-

rosis is expected to rise exponentially as the global popula-
tion ages, potentially resulting in an economic and social
burden affecting more than 200 million patients [4, 5]. Given
that osteoclast plays a key role in bone remodeling, thera-
peutic methods or drugs, which focus on inhibiting the
activity and differentiation of OC, are considered major
treatment options for keeping or increasing the bone mass
in osteoporosis patients [6, 7].

OC is the only cell type that can promote skeletal bone
resorption and origins from hematopoietic cells of the
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mononuclear macrophage lineage [7]. The differential pro-
cedures of OCs are under control by 2-key regulators, mac-
rophage colony-stimulating factor (M-CSF), and RANKL
[8, 9]. M-CSF is reponsible for survival and differentiation
of OC precursors when by binding with its receptor, c-
FMS [10], whereas, RANKL is essential for maturation
of OCs and promoting the process of bone resorption
[11]. When RANKL binds to its receptor (RANK), TNF
receptor-associated factor 6 (TRAF6) is directly recruited,
and several intracellular molecular signaling transductions
are activated, including the MAPK, NF-B, and PI3K-Akt
pathways [12, 13]. The activation of these pathways could
directly upregulate the expression of tartrate-resistant
acid phosphatase (TRAP), NFATc1, cathepsin K, and c-
Fos, which are responsible for initiating the transformation
and fusion of OC precursors into mature OCs [14, 15].
Thus, inhibition effects on these pathways may play vital
role in treating osteoporosis.

Reactive oxygen species (ROS) and free radicals, caused
by RANKL stimulation, are essential for biofunction of
OCsy. Antioxidants, such as N-acetylcysteine (NAC), could
attenuate the level of ROS and then reduce the number
of total OCs [16]. Furthermore, the protective effects of
antioxidant molecules, including heme-oxygenase-1 (HO-
1), manganese superoxide dismutase (SOD), and various
mitochondrial oxidant enzymes, on antioxidative stress
have been demonstrated to suppress the osteoclastogene-
sis via enhancing the cytoprotective enzyme activation
[17, 18]. Despite a growing understanding of the down-
stream targets of ROS, their effects on osteoclastogenesis
may be exacerbated by excessive ROS production and
redox imbalance through the activation of NF-κB and
MAPK signaling pathways. In this regard, regulating oxi-
dative stress may be a promising treatment option for
OP [16, 19, 20].

SGK1 (serum- and glucocorticoid-inducible kinase 1)
is transcriptionally stimulated by serum and glucocorti-
coids and belongs to a subfamily of serine/threonine
kinases [21]. SGK1 has been reported that it expresses in
all mammalian tissues and cells and regulates various cel-
lular behaviors, including proliferation, differentiation, and
apoptosis [22–24]. Recently, Zhang et al. [25] showed that
SGK1 could promote the breast cancer bone metastasis by
upregulating the Orail via NF-κB signaling pathway and
was essential for osteoclastogenesis. Consequently, inhibi-
tion of SGK1 could be a potential target of osteoporosis.
GSK 650394 (GSK) was a highly selected inhibitor of
SGK1 according to previous studies [26, 27], and the
application of GSK could suppress the activation of osteo-
clast [25]. However, the underlying antiosteoclastogenesis
mechanisms of GSK remain unclear. Here, we examined
the effects of GSK on osteoclastogenesis, bone resorption,
and osteoclast-related gene expression and investigated
underlying mechanism of GSK on ROS and RANKL-
mediated signaling pathways in vitro. Furthermore, we
found that GSK could prevent bone mass loss and
enhanced the activity of antioxidants in animal osteoporo-
sis model (ovariectomized, OVX) in vivo, which indicated
potential therapeutic application of GSK in osteoporosis.

2. Materials and Methods

2.1. Reagents and Materials. GSK was acquired from
MedChemExpress (MCE, USA) and 10mM of it was then
dissolved in DMSO. We obtained M-CSF and RANKL (both
mouse recombinant proteins) from Bio-Techne (USA).
Gibco provided the fetal bovine serum (FBS) and α-minimal
essential medium (α-MEM) (ThermoFisher, USA). We
purchased penicillin and streptomycin from Fushen Biotech
(Shanghai, China). We bought the trap stain kit from Sigma-
Aldrich (USA). Fushen Biotech provided phalloidin that had
been FITC-labeled (Shanghai, China). Invitrogen provided a
LIVE/DEAD (viability/cytotoxicity) kit for mammalian cells
(Carlsbad, CA, USA). All PCR-related equipment, including
the RNA extraction kit, was bought from Takara (Japan).
Primary and secondary antibodies were purchased from Cell
Signaling Technology (MAPK family antibody sampler kit:
#9926; phospho-MAPK family antibody sampler kit:
#9910; NF-κB pathway antibody sampler kit: #9936, USA)
for the following targets: p-ERK, p-JNK, p-p38, p38, p-Ikk,
p65, IkB, NFATc1, and GAPDH. Proteintech was where
the other principal antibodies, such as HO-1, CAT, and
GSR, were bought (Wuhan, China). The test kits for the
antioxidant enzyme activity (T-AOC, SOD, CAT, and
GSSG/GSH) were purchased from Beyotime (Shanghai,
China). Shanghai Fushen Biotech Co., Ltd. provided H&E
staining kit (Shanghai, China). We bought PMSF and RIPA
lysis buffer from Beyotime (Shanghai, China). Additionally,
a kit for measuring reactive oxygen species was acquired
from Beyotime, and the cell lines MC3T3-E1 and HEPG2
were purchased from the Chinese Academy of Science cell
bank (Shanghai, China).

2.2. Mouse Bone Marrow Macrophages (BMMs) Culture and
Osteoclast Differentiation. Mouse bone marrow macro-
phages were extracted from the femur and tibia and cultured
in 10% FBS supplemented to ɑ-MEM (containing 1% peni-
cillin/streptomycin and 50ng/mL M-CSF), as previously
described [28]. The anchorage-dependent cells continued
to develop in an incubator at 37°C and 5% CO2 until they
reached 90% confluence, and the suspension cells were
removed. To start the OC differentiation, BMMs were placed
into twenty-four-well plate with 1:0 × 105 cells in each well
and treated using ɑ-MEM (10% FBS, containing 1% penicil-
lin/streptomycin and 30ng/mLM-CSF, 50 ng/mL RANKL)
with the presence of various doses of GSK (0, 1, 2, and
5μM). BMMs were cultured for five days, and the culture
medium was changed every other day. Furthermore, the
BMMs only treated with M-CSF were considered as negative
controls. Then, plates were washed using PBS for three
times. Paraformaldehyde (4%) was used to fix these cells
for 15mins, and TRAP staining kit was used to label the
OCs. After staining, we randomly chose three images of sep-
arate view fields to count the TRAP-positive cells (mature
OC has more than 3 nuclei) of per fields and analyze the
percentage of OC area.

2.3. Cell Viability. The primary BMMs, osteoblast cell line
(MC3T3-E1), and HEPG2 were used in this section to test
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the cytotoxic effects of GSK using a CCK-8 kit. In brief, each
kind of cell lines were seeded at 1:0 × 104 cells per well in a
96-well plate and cultured in ɑ-MEM (10% FBS, containing
30 ng/mLM-CSF) and different doses of GSK (0.1, 0.2, 0.5, 1,
2, 5, 10, 40, and 80μM). After twelve hours, twenty-four
hours, seventy-two hours, or one hundred and twenty hours,
each well was filled with CCK-8 solution (v/v: 1/10), and the
plates were then incubated at 37°C for two hours. Finally,
using a microplate reader, the OD values were determined
at 450nm (Bio-Tek, USA). Moreover, live/dead staining
was used to determine cell viability, which was treated with
GSK at 5μM. Briefly, the cells were treated with GSK for
48 hours and subsequently washed three times with PBS.
The LIVE/DEAD staining kit was then added to each plate
and incubated for fifteen mins at room temperature. Finally,
results were obtained using a fluorescence microscope
(FluoCa, BioHD, Shanghai, China).

2.4. Immunofluorescence Staining for F-Actin Formation.
BMMs were seeded into ninety-six-well plates and incubated
with various doses of GSK while being exposed to m-CSF
and RANKL for a total of 6 days, and the primary cell
concentration was 1 × 104. Additionally, untreated BMMs
(M-CSF was the only treatment) were used as a negative
control. Then, the treated OCs were fixed using 4% parafor-
maldehyde for 15mins. After being washed with PBS for
three times, 0.2% Triton X-100 was used to permeabilized
for 10min. PBS was used to wash triple time, and FITC-
labeled phalloidin (1 : 200) was used to stain these cells at
37°C for 15mins in the dark. Finally, DAPI staining kit
was used to label the nuclei for 5mins. After washed with
PBS for three times, the plates were visualized with a fluores-
cence microscope (FluoCa, BioHD, Shanghai, China).

2.5. Bone Resorption Pit Assay. Bone resorption test was per-
formed according to our previous study [28]. Briefly, 96-well
plates with preloaded bovine bone discs were used to seed
BMMs with 1:0 × 104 cells per well. Cells were treated in
normal culture medium with M-CSF (30ng/mL) and
RANKL (50ng/mL) for three days. At the same time, GSK
was then administered at different dosages of 1, 2, and
5M. In addition, untreated BMMs (only M-CSF treated)
served as negative controls. After OC formation and remov-
ing the adherent cells using ultrasonic cleaner, the bone disc
was fixed with 2.5% glutaraldehyde for 1 hour, and then,
Hitachi scanning electron microscopy (S-4800, Tokyo,
Japan) was used to capture images of pits caused by mature
OCs. The areas of resorption pits were measured by image J
software.

2.6. RNA Isolation and Quantitative RT-PCR. BMMs were
treated with full medium combining with M-CSF, RANKL,
and serial dilutions of GSK (0, 1, 2, and 5μM) for 5 days
or 1, 3, or 5 days. Trizol (Invitrogen) was used to extract
total RNA in a volume of 500μL, and Prime Script RT kit
was used to synthesize the cDNA. The qRT-PCR was per-
formed at least triple times using ABI Prism 7500 (Norwalk,
USA). The 2-ΔΔCT method was performed and calculated to
analyze results in which data were normalized using the

relative expression of GAPDH as control. The primer
sequences used in present study for RT-PCR could be seen
at Table 1.

2.7. Western Blot Analysis. BMMs were placed into six-well
plates with 1 × 106 cells per well, co-treated with/without
GSK, and then stimulated with RANKL to assess the expres-
sion of antioxidant enzymes and signaling proteins impacted
by GSK. To extract the total proteins from the plates, we
used RIPA lysis buffer, 5× loading buffer was diluted to
1× loading buffer with protein lysates. After SDS-PAGE
gel separation, lysates were transferred to PVDF membranes
(Milipore). Following that, the membranes were blocked
using nonfat milk and then incubated with primary anti-
bodies in 2% BSA at 4°C overnight. After that, incubation
with the second HRP-antibody was carried out for 2 hours
after washing the blocked membranes with TBST for 3
times. Antibody reactivity was detected using Bio-Rad imag-
ing system according to the manufacturer’ instructions.

2.8. Measurement of ROS Levels in Cells. The ROS levels in
cells were investigated using DCF-DA according to manu-
facturer recommendations of the kit. In brief, BMMs treated
with only M-CSF were considered as negative control
(-RANKL). Cells treated with M-CSF and RANKL were con-
sidered as positive controls (-GSK), whereas BMMs treated
with RANKL and M-CSF at the presence of GSK (2, 5μM)
were considered as treatment groups. All groups were incu-
bated in 10μM DCF-DA for 1 hour at 37°C. DAPI was used
to stain nucleus. The fluorescence indicating the ROS level
was detected using Leica confocal microscope. The intensity
of ROS-positive cells was analyzed in each view using Image
J software.

2.9. In Vivo Animal Studies for Osteoporosis. Eight-week-old
C57BL/6 mice were randomly divided into 4 groups (n = 5
for each group): Sham (only injected with saline), vehicle
(OVX injected with saline), low-dose GSK (OVX injected
with 10mg/kg GSK), and high-dose GSK (OVX injected
with 30mg/kg GSK injection). Mice were subjected to bilat-
eral OVX or Sham surgery after a one-week adaptation
feeding period. In brief, the skin was dissected bluntly until
it reached the abdominal cavity after a 1-cm dorsal midline
incision. The ovary’s protective adipose tissue in the abdom-
inal cavity was seized and removed. Once the ovary was
located, the uterine horns and vessels 0.5–1 cm in front of
it were tied off. The remainder of the tissue was then rein-
serted into the abdomen after the ovary and ligated adipose
tissue had been removed. On sham-operated mice, the same
surgical technique was carried out, with the exception of
ovaries ligation and removal. GSK supplementation was
based on intraperitoneally administration three times a week
and a total for 8 weeks. At the end of eighth week, all mice
were sacrificed using over dose pentobarbital to collect the
tibial bone for micro-CT, histological analysis, and antioxi-
dant enzyme activity test. Furthermore, the major organs,
such as the heart, liver, spleen, lung, and kidney, were pre-
served for HE staining. All animal experimental procedures
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were reviewed and approved by the Animal Ethical Commit-
tee of Peking University People’s Hospital.

2.10. Micro-CT Scanning. The micro-CT was used to analyze
the microstructure changes in the tibial bone according to
previous study [28]. In brief, the fixed tibias were scanned
using μCT (Bruker micro-CT; 80Kv, 112mA, equidistant
resolution 20μm, exposure time 300ms). The quantitative
assessment and parameters, like bone volume/tissue volume
(BV/TV), bone mineral density (BMD), trabecular number
(Tb.N), trabecular thickness (Tb.Th), trabecular separation
(Tb.Sp), connectivity density (Conn.Dn), and structure
model index (SMI), were calculated using a scanner software
according to the software’s instructions.

2.11. Histological Analysis. The histological detection was
performed according to previous study [28]. All fixed tibias
were decalcified and embedded into paraffin, and sections
were obtained via a 4μm microtome. Subsequently, the sec-
tions were stained with hematoxylin and eosin (HE) and
TRAP assay kit. Finally, the quantitative parameters include
the ratio of osteoclast surface to bone surface (Oc.S/BS).

2.12. Measurement of Antioxidant Enzymes in Tibia. The
fresh tibia tissue was ground at the presence of liquid nitro-
gen and made into protein homogenate, followed with
centrifuging at 3000g for 15min. The antioxidant enzyme
activity kits were used to test the activities of total antioxi-
dants (T-AOC), catalase (CAT), superoxide dismutase
(SOD), oxidized glutathione (GSSG), and glutathione
(GSH). All procedures were performed according to the
manufacturer’s instructions.

2.13. Statistical Analysis. Data are displayed as means ± stan-
dard deviation (SD) of three or more independent replicates.
Differences between groups were assessed by one-way anal-
ysis of variance (ANOVA). P values <0.05 (P < 0:05) were
considered statistically significant.

3. Results

3.1. The Concentrations of GSK Used in This Research Are
Safe for Mammalian Cells (BMMs, HEPG2, and MC3T3-
E1). The cytotoxicity of GSK was detected using CCK-8

and LIVE/DEAD staining methods. The viability of cell lines
(BMMs, HEPG2, and MC3T3-E1) was cultured in different
concentrations of GSK. As shown in Figures 1(b) and 1(c),
the range of cytotoxic responses is various for these three cell
lines. GSK at a dosage of 5M did not have any discernible
cytotoxic effects on any of the three types of cells, even after
treatment extended to 5 days. For BMMs, GSK cytotoxic was
obvious at the concentration up to 80μM at 12 and 24 hours
and 40μM at 72 and 120 hours. As for HEPG2 and MC3T3-
E1, there were no obvious differences in cellular viability
compared to the control group. Furthermore, LIVE/DEAD
staining was used to determine the viability of the three kind
mammalian cells treated with GSK at concentration of 5μM.
As shown in Figure 1(e), low level of cell death is determined
in the treatment groups and is similar with that in control
groups. Taken together, these results demonstrated that the
doses of GSK we used in vitro were in the safe range for
mammalian cells.

3.2. GSK Inhibits RANKL-Mediated OCs Formation and OC-
Associated Bone Resorption. To analyze whether GSK could
inhibit RANKL-mediated OC differentiation, TRAP staining
(specific-characteristic of OC) was adopted to study the sup-
pression effects of GSK on RANKL-mediated OC formation
at a range of concentrations (1, 2, 5μM). As shown in
Figures 2(a)–2(c), the BMMs differentiation is significantly
suppressed by GSK. Furthermore, the ratio of multinuclear
mature OCs was reduced in a dose-dependent manner com-
pared to the -GSK group and -RANKL group.

As shown in Figures 2(d)–2(f), FITC-labeled phalloidin
is used to mark the mature OCs. The -GSK group exhibited
clearly defined rings, and GSK suppressed osteoclastic and
actin rings formation. In addition, bone resorption was an
important function of mature OCs during the trabecular
and cortical mineral remodeling process. Therefore, we use
bovine bone discs to determine the resorption capacity of
mature OCs. As seen in Figures 2(g) and 2(h), obvious bone
resorption pits could be seen in the group treated without
GSK. The resorption pits decreased markedly with GSK
treatment, especially when it was applied at a concentration
of 5μM. Collectively, these data demonstrated that GSK sig-
nificantly suppressed the osteoclastogenesis induced by

Table 1: Primer sequences for real-time PCR.

Gene Forward primer, 5′-3′ Reverse primer, 5′-3′
CTSK CTTCCAATACGTGCAGCAGA TCTTCAGGGCTTTCTCGTTC

c-Fos CGGGTTTCAACGCCGACTA TGGCACTAGAGACGGACAGAT

TRAP CTGGAGTGCACGATGCCAGCGACA TCCGTGCTCGGCGATGGACCAGA

VATPs-d2 AAGCCTTTGTTTGACGCTGT TTCGATGCCTCTGTGAGATG

DC-STAMP AAAACCCTTGGGCTGTTCTT AATCATGGACGACTCCTTGG

NFATc1 CCGTTGCTTCCAGAAAATAACA TGTGGGATGTGAACTCGGAA

Hmox1 AAGCCGAGAATGCTGAGTTCA GCCGTGTAGATATGGTACAAGGA

Cat AGCGACCAGATGAAGCAGTG TCCGCTCTCTGTCAAAGTGTG

Gsr GACACCTCTTCCTTCGACTACC CCCAGCTTGTGACTCTCCAC

GAPDH ACCCAGAAGACTGTGGATGG CACATTGGGGGTAGGAACAC
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Figure 1: Continued.
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RANKL and inhibited OC-related bone resorption activity
in vitro.

3.3. GSK Inhibited ROS Levels by Promoting Antioxidant
Enzymes Expression In Vitro. The DCFH-DA fluorescence
probe reagent was used to evaluate the ROS level in BMMs
treated with RANKL and/or GSK. Intracellular ROS level
was the highest in the -GSK-treated group compared to
-RANKL group and GSK groups (Figures 3(a) and 3(b)).
With the presence of GSK, the dichlorodihydrofluorescein
(DCF) intensity was significantly decreased at the concentra-
tion of GSK at 5μM. Furthermore, several antioxidant
enzymes were tested as well to determine if GSK could
decrease intracellular ROS levels by regulating antioxidant
enzymes. As a result of RANKL stimulation, HO-1 and
catalase (CAT) expression were partially reduced, but
glutathione-disulfide reductase (GSR) expression was
significantly increased. Furthermore, GSK could promote
the genes expression of these three antioxidant enzymes
(Figures 3(g)–3(l)). Taken together, GSK treatment could
enhance the expression of these enzymes at the concentra-
tion of 5μM, and our data demonstrated that GSK sup-
pressed RANKL-mediated intracellular ROS levels via
promoting antioxidant enzymes expression.

3.4. GSK Inhibited OC-Specific Gene Expression. Stimulation
of RANKL was known to upregulate several specific
osteoclatogenesis-related genes. Hence, we tested several
key genes, including CTSK, c-Fos, VATPs-d2, NFATc1,
and TRAP via qPCR method. As shown in Figure 4, treat-
ment with GSK obviously suppresses the expression level
of osteoclastogenesis-related gene induced by RANKL.

3.5. GSK Suppressed NF-κB, MAPK, and NFATc1 Activation.
The activation of RANKL-mediated signal transductions is

essential for the OC differentiation process, and NF-κB
pathway is one of the several cascades activated by RANKL
on BMMs precursors during the osteoclastogenesis proce-
dures [7, 12]. Therefore, western blotting was employed to
analyze the effects of GSK on the NF-κB signaling pathway
activated by RANKL in this study. Here, we found that
GSK could attenuate phosphorylation of Ikkβ and p65
induced by RANKL and furthermore delay degradation of
IκB-α (Figure 5). The activation phosphorylation of Ikkβ
could lead to the degradation of IκB-α. As soon as the deg-
radation happened, the phosphorylation of p65 was acti-
vated and then translocated from cytoplasm to the nucleus,
where p-p65 could target on several OC-related specific
genes and exerted the transcriptional function. Treatment
with GSK (5μM) suppressed the degradation of IκB-α and
attenuated the phosphorylation of Ikkβ and p65. The MAPK
transduction signal is another important pathway for the
OCs differentiation [7, 16]. In line with NF-κB signaling,
RANKL-mediated cascades also contained all 3 members
of the MAPK signal (ERK, JNK, and p38). The activation
of phosphorylation ERK, JNK, and p38 also resulted in the
activation of downstream OC-related genes. Here, pretreat-
ment of BMMs with GSK significantly suppressed the phos-
phorylation of ERK, JNK, and p38. NFATc1 was the master
transcriptional activator for OC formation [29]. The activity
of NFATc1 not only depends on NF-κB signaling pathway,
but also is regulated by MAPK signal transduction. As
shown in Figure 5, the expression level of NFATc1 was sig-
nificantly decreased after treating with GSK at a dose of
5μM. Collectively, present results showed that GSK could
inhibited RANKL-stimulated NF-κB, MAPK, and NFATc1
activation.

3.6. GSK Prevented Ovariectomy-Induced (OVX) Bone Loss
via Regulating the Redox Balance In Vivo. To explore

Control GSK 650394

Live

BMMs

HEPG2

MC3T3-E1

Dead Merge Live Dead Merge

(e)

Figure 1: The cytotoxicity of GSK at determined concentrations did not suppress the viability of osteoclast precursor cells. (a) The structure
of GSK. (b–d) The viability of BMMs, HEPG2, and MC3T3 E1 treated with different levels of GSK for 12 hours, 24 hours, 48 hours,
72 hours, and 120 hours, as tested by CCK-8 assay. (e) Fluorescence microscopy images of BMMs, HEPG2, and MC3T3-E1 cells stained by
LIVE/DEAD Kit after 3 days treatment with GSK. Calcine-AM (green) is used to stain live cells, while ethidium homodimer is used to stain
dead cells (red color) scale bar: 50 μm. Data are presented as means ± SD, n = 3 (∗P < 0:05, ∗∗P < 0:01).
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Figure 2: Continued.
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whether GSK possess the therapeutic ability on bone mass
remodeling, OVX mice model treated with 10mg/kg as low
dose and 30mg/kg as high dose was used. After 8-week
supplementation of GSK, mouse tibias were collected and
analyzed bone mass using micro-CT (Figure 6(a)). As
expected, OVX caused trabecular bone loss in OVX mice
when compared to the Sham group. The bone density-
related parameters (BV/TV, Tb.N, Tb.Th, BMD, and
Conn.Dn) were significantly decreased, and the parameters
of Tb. Sp and SMI were increased in the OVX group
(Figures 6(b)–6(g)), while these trends were dose-
dependently reversed by GSK supplementation. Histologic
and histomorphometric analyses were conducted to study
GSK’s protective effects on bone mass loss. In accordance
with micro-CT results, GSK prevented bone mass loss when
compared to OVX group (Figure 6(h)). The improvements
after GSK treatment were due to decreased OC activity
around the bone surface and a significant decrease in the
total number of TRAP-positive OCs at the tibial bone
(Figures 6(i) and 6(j)). The redox balance of bone tissue
could be disturbed by the reduction of estradiol level in
OVX mice. To identify the effects of GSK on the redox status
of tibia, we tested several protein markers of redox enzymes,
such as T-AOC, SOD, CAT, GSH, and GSSG. T-AOC, SOD,
and CAT capacity were all reduced as a direct result of OVX
(Figure 7). Upon treatment with GSK, T-AOC and SOD
capacity could be reversed, dose-dependently. Redox balance
of tissue was determined by the level of oxidized glutathione

(GSSG) and reduced glutathione (GSH). Here, in OVX mice,
there was an obvious consumption of GSSG and a significant
accumulation of GSH, demonstrating that OVX led to redox
unbalance compared to Sham group, while GSK could
restore the redox balance (Figure 7). Simultaneously, no vis-
ible damage to major organs such as the heart, liver, spleen,
lung, or kidney was observed (Figure S1), indicating that
GSK exhibited no apparent toxicity in vivo. Based on these
findings, GSK could potentially be a potential osteoporosis
therapeutic molecule by restoring the redox balance and
preventing bone loss.

4. Discussion

Loss of bone mass, deterioration of bone microstructure, and
an increase in bone fragility and fracture are all symptoms of
the bone metabolism condition osteoporosis [30]. As the
world’s aging population keeps growing, osteoporosis-
related fractures have emerged as a common cause of illness
and mortality [4]. Excessive activation of OCs differentiation
is the major contributor for age-related osteoporosis [7].
Until now, several drugs, such as hormone replacement
therapy, bisphosphonates, RANKL inhibitors, and teripara-
tide, have been developed to treat osteoporosis via prevent-
ing OC-mediated bone resorption [31–34]. However, side
effects of these commercialized drugs also have been
reported, such as embolism, breast tenderness, and jaw
osteonecrosis [34–37]. Thus, it is important to explore new

SE
M

-RANKL -GSK GSK 1𝜇M

RANKL (50 ng/ml)

GSK 2𝜇M GSK 5𝜇M

(g)

-R
A

N
KL

-G
SK

G
SK

 1
𝜇

M

G
SK

 2
𝜇

M

G
SK

 5
𝜇

M

0

20

40

60

80

100

Re
so

rp
tio

n 
re

la
tiv

e
to

 -G
SK

 (%
)

⁎

⁎⁎⁎

⁎⁎⁎

(h)

Figure 2: GSK inhibited osteoclast differentiation in vitro in a concentration-dependent manner. BMMs were given m-CSF (50 ng/mL) and
RANKL (50 ng/mL) in combination with various GSK concentrations (0, 1, 2, and 5M). Furthermore, BMMs treated only with m-CSF
served as a negative control group. (a) TRAP staining. Scale bar: 200 μm. (b–c) Quantitative on the number of multinuclear cells
and area of mature osteoclast. (d) F-actin staining using FITC-phalloidin and cell nuclei staining with DAPI. Scale bar: 200μm (e–f).
(g) Bone disc resorption pits scanned using SEM. Scale bar: 200μm. (h) Quantitative areas of bone resorption were analyzed using
Image J software. Data are presented as means ± SD, n = 5 (∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001).
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Figure 3: Continued.
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tolerable and multifunctional therapeutic agents. Here, we
showed that the GSK dose used in vitro by the experimental
group is within the safe range of mammalian cells and has
no obvious side effects, and GSK could prevent OVX-
mediated bone mass loss by suppressing the formation of
OCs via classical signaling pathways stimulated by RANKL,
such as redox balance, NF-κB, and MAPK, both in vivo and
in vitro (Figure 8).

At the presence of RANKL stimulation, GSK may greatly
reduce ROS levels and inhibit activities of NF-κB and MAPK
signaling pathways, thereby reducing the activity of
NFATc1. Several factors affect intracellular redox states,
including ROS levels and antioxidant enzyme levels [38].
ROS often accumulated during the procedure of OC forma-
tion induced by RANKL signals [39], and antioxidant
enzymes are the important instruments of cells to scavenge
excess ROS. For instance, HO-1 acted as a suppressive factor
of OC differentiation via regulating the redox balance [40].
In addition, downregulation of GSR was found to activate
the NF-κB signaling pathway [41]. Furthermore, promoting
the activity of GSR was reported to reduce the formation of

OC mediated by estradiol [42]. Also CAT, a kind of antiox-
idant enzymes, led to the detoxification of hydrogen perox-
ide and block the ROS generation stimulated by RANKL
[43]. Here, our data showed that GSK could attenuate the
intracellular accumulation of ROS and increase the activity
of antioxidant enzymes during the maturation of OCs. In
summary, GSK suppressed ROS levels in OC differentiation
via promoting intracellular capacity of antioxidant enzymes.

Accumulated evidence has shown that stimulation with
RANKL could increase intracellular ROS levels that directly
activate signal cascades of NF-κB and MAPK signal trans-
duction. NF-κB signaling is crucial for the early differentia-
tion of OC and sequentially activates downstream effector
genes like c-Fos and NFATc1 [19, 39]. In transgenic mice,
the loss of NF-κB proteins directly impairs osteogenic effects
and OC maturation [44, 45]. ROS could regulate the IκB
kinase degradation via oxidizing redox-dependent regula-
tion of dynein light chain, followed by releasing of NF-κB
dimer and then allowing NFATc1 transfer into nucleus to
initiate the differentiation of OCs [46]. In the present study,
GSK could significantly prevent the degradation of IκB-α
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Figure 3: GSK regulates level of reactive oxygen species (ROS) and activities of antioxidant enzymes in vitro. (a) ROS levels in BMMs using
DCF-DA. Scale bar: 20 μm. (b) Quantitative analysis of DCF fluorescence intensity. (c) Representative images protein expression of HO-1,
GSR, and CAT. (d–f) Quantitative analysis of protein intensity of HO-1, GSR, and CAT relative to β-actin. (g–i) Antioxidant enzyme genes
of BMMs treated with M-CSF and RANKL with/without different GSK concentrations (0, 1, 2, or 5μM) for 5 days. (j–l) Antioxidant enzyme
genes of BMMs treated with or without 5 μM GSK, for 1, 3, or 5 days, respectively. Data are expressed as the mean ± SD, n = 3. ∗P < 0:05,
∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001 versus -GSK group. Abbreviations: CAT (Cat): catalase; GSR (Gsr): glutathione-disulfide reductase;
HO-1 (Homx1): heme oxygenase; ROS: reactive oxygen species; BMMs: bone marrow macrophages.
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Figure 4: Osteoclastic marker genes could be inhibited by GSK. (a) Osteoclastic marker genes of BMMs treated with M-CSF and RANKL
with/without different GSK concentrations (0, 1, 2, or 5μM) for 5 days. (b) Osteoclastic marker genes of BMMs treated with or without
5μM GSK, for 1, 3, or 5 days, respectively. Data are expressed as the mean ± SD (n = 3), ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001 versus -GSK
group.
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Figure 5: Continued.

12 Oxidative Medicine and Cellular Longevity



induced by RNAKL and inhibit the phosphorylation of
NF-κB, suggesting a critical role in the suppression effect
of GSK on the OC formation. MAPK signal proteins, such
as ERK, JNK, and p38, have also been demonstrated a key
role in osteoclastogenic function [47, 48]. Phosphorylation
of ERK could promote the transcription of c-Fos, which
leads to prolonging OC survival. Both stimulation of
JNK and p38 also has been reported to induce the activa-
tion, differentiation, and fusion of OCs. Suppressing the
activation of p-JNK and p-p38 could suspend OC forma-
tion and bone resorption induced by RANKL [49–51].
Moreover, high level of ROS, induced by RANKL, is
reported to oxidize the MAPK signaling and lower the
MAPK phosphatases [52]. Here, the present data demon-
strated that GSK could suppress the phosphorylation of
MAPK to prevent OCs formation. In addition, NFATc1
is the key signal transducer induced by RANKL and
plays a critical role in OCs differentiation and proliferation

[53, 54]. Furthermore, several multiple specific promoters
are driven by NFATc1, such as cathepsin K, c-Fos, and DC-
STAMP, which were essential for the OC maturation
[55–57]. In the present study, our data demonstrated that
NFATc1 activated by RANKL were significantly suppressed
by GSK treatment. Taken together, GSK treatment could
suppress the expression and activation of NFATc1 through
NF-κB and MAPK signaling pathways, thus downregulating
specific promoter gene expression of TRAP, DC-STAMP,
VATPs-D2, c-Fos, and CTSK in vitro.

Given that our in vitro data suggested the potential
effects of GSK, we further studied the anti-OC effects of
GSK on preventing bone loss and restoring the redox bal-
ance in OVX mice model. Ovariectomy female mouse model
is widely used in studies focused on osteoporosis, because
OVX could simulate the postmenopausal bone mass loss or
osteoporosis. As expect, GSK attenuated OVX-mediated
bone mass loss induced by low estradiol levels according to
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Figure 5: GSK inhibited the activation of NF-κB, MAPK, and NFATc1 signaling pathways during the procedure of osteoclastic
differentiation. (a) Average intensity ratio of phosphorated-Ikkβ to Ikkβ, phosphorated-p65 to p65, and IkBα to GAPDH in BMMs
pretreated with/without 5 μM GSK and stimulated by RANKL after 10, 20, 40, and 60 mins. (b–d) Quantitative of protein intensity.
(e) Average intensity ratio of phosphorated-ERK to total ERK, phosphorated-JNK to total JNK, and phosphorated-p38 to total p38
in BMMs at the presence of 5μM GSK or not and stimulated by RANKL after 10, 20, 40, and 60 mins. (f–h) Protein intensity was
analyzed using Image J software. (i) Expression level of NFATc1 in BMMs at the presence of 5 μM GSK for 1, 3, or 5 days. (j) Protein
intensity for NFATc1 was quantified using Image J software. n = 3, ∗P < 0:01 vs control.
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Figure 6: Continued.
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the results micro-CT and histological analysis. GSK treat-
ment could suppress the number of TRAP-positive OCs in
tibial bone which was consistent with in vitro results, while
OVX-mediated oxidative stress, characterized by redox
imbalance, could lead to osteopenia and further to osteopo-
rosis [58]. Moreover, deficiency of estradiol could degrade
the activities of antioxidant enzymes of tibial bone tissue in
OVX [59]. The ratio of GSSG/GSH could suggest the status
of redox balance, and normal ratio is essential for the sur-
vival of cells [60], as well as T-AOC, SOD, and CAT are
the major effectors to act as free radical scavengers [41]. In

the present study, our data showed that GSK could promote
the activities of antioxidant enzymes in tibial bone and then
attenuated the bone mass loss in vivo.

This study attempted to detect the precise inhibitory
mechanisms by which GSK abrogated osteoclast-related
osteoporosis. The present study revealed that GSK sup-
pressed OCs formation by (1) downregulating ROS levels
and (2) suppressing NFATc1, NF-κB, and MAPK signaling
pathways in vitro and inhibited OVX-induced bone loss
in vivo. These findings suggested that GSK could be a
potential therapeutic chemical molecule for treating the
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Figure 6: GSK suppresses bone loss of the ovariectomy mice in vivo. (a) Reconstruction of tibia using μCT for the sham mice, OVX with
saline (vehicle), OVX with 10mg/kg GSK (low dose), and with 30mg/kg GSK (high dose) (b–g) Quantitative analysis of bone volume/tissue
volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), connectivity density (Conn.Dn),
and structure model index (SMI). (h) HE and TRAP staining were used to determine bone architecture and osteoclast activity, respectively
(the black arrows represent osteoclasts), scale bar: 500/200μm. (i–j) The counted number of osteoclasts per sections (N.Oc/BS) and the
ratio of osteoclast surface/bone surface (Oc.S/BS). Data are presented as the mean ± SD (n = 5), ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001;
∗∗∗∗P < 0:0001.
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osteoclast-related osteoporosis especially postmenopausal
osteoporosis. However, another goal for new osteoporosis
drugs is to promote bone formation, and SGK1 was reported

associated with osteoblastic formation according to previous
studies [61, 62]. Thus, investigating the effects of GSK on the
osteoblastic formation might be an interesting research area
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Figure 7: GSK alleviates oxidative stress associated with OVX in vivo. (a) Total antioxidants (T-AOC), (b) catalase (CAT), (c) superoxide
dismutase (SOD), (d) oxidized glutathione (GSSG), (e) glutathione (GSH), and (f) ratio of GSSG/GSH, (n = 5), ∗P < 0:05; ∗∗P < 0:01;
∗∗∗P < 0:001; ∗∗∗∗P < 0:0001.
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in the future. In addition, given that GSK is not the only
selective inhibitor of SGK1, it is necessary to compare the
effects of other kinds of SGK1 inhibitors on osteoclast differ-
entiation in future studies.

In conclusion, the data of our study suggested that
GSK inhibits osteoclastogenesis via suppressing multiple
RANKL-induced signaling pathways at cellular level and
improved the bone mass in an OVX animal model. These
findings indicate that GSK might be a candidate therapeu-
tic agent in treating bone loss-related diseases such as
osteoporosis.
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