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The IARC classified arsenic (As) as “carcinogenic to humans.” Despite the health consequences of arsenic exposure, there is no
molecular signature available yet that can predict when exposure may lead to the development of disease. To understand the
molecular processes underlying arsenic exposure and the risk of disease development, this study investigated the functional
relationship between high arsenic exposure and disease risk using gene expression derived from human exposure. In this study,
a three step analysis was employed: (1) the gene expression profiles obtained from two diverse arsenic-exposed Asian
populations were utilized to identify differentially expressed genes associated with arsenic exposure in human subjects, (2) the
gene expression profiles induced by arsenic exposure in four different myeloma cancer cell lines were used to define common
genes and pathways altered by arsenic exposure, and (3) the genetic profiles of two publicly available human bladder cancer
studies were used to test the significance of the common association of genes, identified in step 1 and step 2, to develop and
validate a predictive model of primary bladder cancer risk associated with arsenic exposure. Our analysis shows that arsenic
exposure to humans is mainly associated with organismal injury and abnormalities, immunological disease, inflammatory
disease, gastrointestinal disease, and increased rates of a wide variety of cancers. In addition, arsenic exerts its toxicity by
generating reactive oxygen species (ROS) and increasing ROS production causing the imbalance that leads to cell and tissue
damage (oxidative stress). Oxidative stress activates inflammatory pathways leading to transformation of a normal cell to
tumor cell specifically; there is significant evidence of the advancing changes in oxidative/nitrative stress during the progression
of bladder cancer. Therefore, we examined the relation of differentially expressed genes due to exposure of arsenic in human
and bladder cancer and developed a bladder cancer risk prediction model. In this study, integrin-linked kinase (ILK) was one
of the most significant pathways identified between both arsenic exposed population which plays a key role in eliciting a
protective response to oxidative damage in epidermal cells. On the other hand, several studies showed that arsenic trioxide
(ATO) is useful for anticancer therapy although the mechanisms underlying its paradoxical effects are still not well
understood. ATO has shown remarkable efficacy for the treatment of multiple myeloma; therefore, it will be helpful to
understand the underlying cancer biology by which ATO exerts its inhibitory effect on the myeloma cells. Our study found
that MAPK is one of the most active network between arsenic gene and ATO cell line which is involved in indicative of
oxidative/nitrosative damage and well associated with the development of bladder cancer. The study identified a unique set of
147 genes associated with arsenic exposure and linked to molecular mechanisms of cancer. The risk prediction model shows
the highest prediction ability for recurrent bladder tumors based on a very small subset (NKIRAS2, AKTIP, and HLA-DQA1)
of the 147 genes resulting in AUC of 0.94 (95% CI: 0.744-0.995) and 0.75 (95% CI: 0.343-0.933) on training and validation
data, respectively.
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1. Introduction

Arsenic (As) is a ubiquitous element in the environment,
ranked the 20th most abundant element on earth. The toxic
impact of arsenic on human health has been documented in
numerous studies leading to arsenic identification as a
known carcinogen by the International Agency Research
on Carcinogens (IARC), the National Toxicity Program
(NTP), and the United States Environmental Protection
Agency (EPA) [1, 2]. In addition to cancer, long-term expo-
sure to arsenic has been associated with developmental
effects, cardiovascular disease, neurotoxicity, and diabetes
(WHO, https://www.who.int/news-room/fact-sheets/detail/
As). Typically, arsenic would only be found in background
levels in soil and groundwater. However, high levels of arse-
nic accumulate in these medians from anthropogenic activi-
ties such as indiscriminate waste disposal from mining,
milling, and smelting of ores [3], raw and spent oil shale
[4], and coal fly ash amendments [5]. The usage pattern in
the 1960s for arsenic compounds in the United States was
77% pesticides, 18% as glass, and 4% industrial chemicals.
The past use of arsenic as a pesticide in agriculture is exem-
plified by New Jersey, where between 1900 and 1960, it is
estimated that approximately 15 million pounds of arsenic
were applied to New Jersey soils alone [6]. Leaching of arse-
nic from soils into the water supply has now resulted in the
significant contamination of drinking water in many areas of
the United States and the world. This past usage of arsenic in
anthropogenic activities has now resulted in exposure to
arsenic being a global public health problem [7–9]. This is
illustrated by the fact that over 120 million people are
affected by arsenic exposure, many of which reside in
Bangladesh and India [8, 10]. A recent study has modeled
the role of atmospheric exposure to arsenic as being additive
to overall exposure levels [11]. Despite the health conse-
quences of arsenic exposure, there is no molecular signature
that might predict the risk of developing cancer or other dis-
eases following exposure to arsenic.

On the other hand, the use of arsenicals as therapeutic
agents in medicine is very well known dating back more
than 2400 years to ancient Greece and Rome [12]. In the
19th century, potassium arsenite was used to treat different
types of disease [13] including diabetes, psoriasis, syphilis,
skin ulcers, and joint diseases. More recently, phase I/II trials
have been conducted in heavily pretreated patients with
relapsed or refractory multiple myeloma shows arsenic tri-
oxide (ATO) is the most active, single agent in acute pro-
myelocytic leukemia (multiple myeloma: types of blood
cancers) [14]. Another study suggested that ATO can be
used as an effective alternative therapeutic for the treatment
of retinoblastoma which is the most common intraocular
cancer in children [15]. The study shows an antitumor activ-
ity of arsenic which mainly targets multiple pathways in
malignant cells, resulting in the promotion of differentiation
or in the induction of apoptosis, which would be very helpful
to understand the molecular mechanism of arsenic-exposed
cancer biology as a reverse engineering approach.

Biomarkers are classified based on exposure, effect, and
susceptibility [16]. For arsenic, biomarkers of exposure have

received the greatest attention and success in defining indi-
vidual exposures [17]. Human susceptibility to arsenic, espe-
cially as it applies to predicting disease states, is probably the
least studied area of biomarkers. A few biomarkers of inter-
est attracting study include clastogenicity in peripheral lym-
phocytes, micronuclei in oral mucosa and bladder cells, and
induction of heme oxygenase [16, 18, 19]. The goal of the
present study was to identify differentially expressed genes
in arsenic exposed humans and determine if a molecular sig-
nature could be developed that would stratify and predict
the risk of urothelial cancer for those with known exposure
to arsenic. Urothelial cancer, which is the most common
type of bladder cancer, was chosen as an initial proof of
principle since epidemiological, and other evidence is strong
for the link between arsenic and the development of urothe-
lial cancer, and there are publicly available databases for data
mining [7, 20–24]. A theme of such studies shows a strong
association at more extreme levels (>150μg/L) whereas there
is uncertainty of health effects that may develop below this
threshold. Suggested mechanisms for arsenic carcinogenesis
include oxidative damage, epigenetic effects, and interfer-
ence with DNA repair. In addition, the development of blad-
der cancer is known to have a strong association with
environmental exposures from mentioned anthropogenic
activities [25]. Overproduction of reactive oxygen species
(ROS) due to arsenic exposure primarily follows direct tox-
icity or the metabolic processes of arsenic products. Inhibit-
ing succinic dehydrogenase activity in mitochondrial
complexes I and III in electron transport chain produces
superoxide radical anion, while monomethylarsonic acid
(MMA) and dimethylarsinic acid (DMA) will form radicals
in the cell and specifically the endoplasmic reticulum [26,
27]. Since inorganic arsenic compounds tend to be more
toxic than organic, ATO is of interest for its global concern
along with its involvement in oxidative and nitrosative stress
properties. Translational damage from reactive species can
regulate MAPK family or induce extended states of inflam-
mation, genetic, and epigenetic mechanisms such as these
are indicative of oxidative/nitrosative damage and well asso-
ciated with the development of bladder cancer [28–30]. ILK
signaling and neuroinflammation signaling pathway were
the most frequent pathways affected by the exposure of arse-
nic, and both of them are highly associated with oxidative
stress. Oxidative stress and neuroinflammation could poten-
tiate each other to promote progression of mental disorders
[31], whereas ILK plays a complex roles in the modulation of
oxidant species production [32].

The strategy used in the present study involved three
steps. The first step was a blood cell gene expression analysis
of two diverse human populations with known levels of
exposure to arsenic. One population was stratified to low
and high exposure, and the second population to low,
medium, and high exposure with correlation to human
global gene expression. After identifying statistically signifi-
cant genes unique to the mentioned test conditions, we
found that cancer was the most significant disease and lipid
metabolism (which is considered as a major metabolic path-
way involved in the progression of cancer) was most signif-
icant molecular and cellular functions associated with genes
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differentially expressed due to different levels of arsenic.
Therefore, the next stage was to compare it with data from
four independent myeloma cell lines that had been treated
with As trioxide (ATO) to understand the molecular mech-
anism of cancer. Many of the genes that were up- and down-
regulated due to arsenic exposure are associated with cancer
biology. There gene lists were then subjected to enrichment
analysis to identify statistically significant pathways and fur-
ther scrutinized for functional relevance. The third step was
to develop a model by examining the ability of the most sig-
nificant genes to predict the progression and possible devel-
opment of bladder cancer using publicly available patient
biopsy samples. Using this approach, we developed a robust
regression model of three significant probes and correspond-
ing gene results with AUC of 0.94 (95% CI: 0.744-0.995) and
0.75 AUC (95% CI: 0.343-0.933) on the training and valida-
tion data, respectively. The most significant pathway identi-
fied is integrin-linked kinase (ILK) which plays a key role in
eliciting a protective response to oxidative damage in epider-
mal cells [32].

2. Materials and Methods

2.1. Data. Two publicly available gene expression datasets of
previously conducted experiments were accessed from two
independent populations. The set from Bangladesh (Gene
Expression Omnibus GEO ID: GSE57711) had 29 individ-
uals; 16 were males, and 13 were females. The second dataset
was from Pakistan (GSE110852 ID) and had 57 individuals
composed of 31 males and 26 females. In this report, the
set from Bangladesh is denoted as Data1 and that from Paki-
stan is Data2 and remains unchanged from their original,
respective studies. Data1 samples were part of a clinical trial
in June 2011 [33]. For these samples, “low” exposure levels
correlate to a range of 50-200μg/L, whereas “high” levels
correlate to a range from 232 to 1000μg/L (there were no
samples collected from patients exposed in the range of
201-231μg/L). Data2 samples were from two main districts
of rural Pakistan, Lahore, and Kasur. The study is aimed at
investigating the blood transcriptome profile among the
exposed samples to correlate gene expression to exposure
levels of As [34]. Urine sampling was used to define levels
of arsenic exposure, with “low” being 0-50μg/g creatinine,
“medium” as 51-100μg/g creatinine, and “high” as
>101μg/g creatinine. The general characteristics of both
data sets are detailed in Table 1. The results from 4 multiple

myeloma cell lines treated with ATO were obtained from the
GEO database, series GSE14519 [35]. These cell lines U266,
MM1S, KMS11, and 8226S were exposed to ATO for 6 hr,
28 hr, and 48hr before analysis. Gene expression profiling
was used to determine differences in cell line response to
ATO. This study was used as a reference point in the present
study since it documents the effects of arsenic compounds
on gene expression at different exposure levels.

The two databases of previously conducted experiments
containing biopsies of bladder cancer were obtained from
GEO, GSE13507 [36, 37] and GSE3167 [38]. The GSE13507
contained 165 samples for primary bladder cancer, 23 recur-
rent nonmuscle invasive tumor tissues, 58 normal-looking
bladder mucosa surrounding cancer, and 10 normal bladder
mucosa. This dataset was originally used in microarray anal-
ysis for the identification of genes with prognostic signifi-
cance. GSE3167 contained 28 samples of superficial bladder
tumors, 13 samples of muscle-invasive carcinomas, and 9
normal samples. This dataset was previously used for gene
expression signatures among various stages of carcinomas.
These 2 datasets were used in the present study to obtain a
prognostic gene-based prediction for bladder cancer.

The QC report of the datasets was examined, and only
qualified samples were included. Since the data was gener-
ated using different platforms (such as Affymetrix and Agi-
lent), no single approach would work on those datasets.
Therefore, the raw datasets were preprocessed to extract
expression using the same approach provided within publi-
cation of study, for example, the Affymetrix package in R used
for GSE57711 while an in-house QC pipeline (http://github
.com/BiGCAT-UM/arrayQC_Module) for data GSE110852.
Before applying any statistical test, the distribution of each
data tested and transformed into a normal distribution using
logarithm and pareto scaling (mean-centered and divided by
the square root of the standard deviation of each variable)
transformation. Entire gene expression analyses were per-
formed using R Bioconductor (https://www.r-project.org).
The analysis was performed using Bioconductor packages such
as Stat, Dplyr (https://cran.r-project.org/web/packages/dplyr/
index.html), ggplot2 (https://cran.r-project.org/web/packages/
ggplot2/index.html), randomForest (https://cran.r-project
.org/web/packages/randomForest/), e1071 (https://cran.r-
project.org/web/packages/e1071/index .html), and pvclust
(https://cran.r-project.org/web/packages/pvclust/index.html).

Sample size calculation was performed to determine if
the power is sufficient to detect a biological effect. The

Table 1: Characteristics of arsenic exposed gene expression data. A number of samples with different characteristics such as level of arsenic
exposure and gender together with the GEO ID information are provided in this table.

Total samples
Gender

Low exposure Medium exposure High exposure
Males Females

Data1
Water As

50–200 (μg/L)
—

Water As
232–1000 (μg/L)

GSE57711 29 16 13 15 — 14

Data2
Water As

122:22 ± 86:13 (μg/L)
Water As

130 ± 128:9 (μg/L)
Water As

148 ± 105:01 (μg/L)

GSE110852 57 31 26 18 19 20
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number of samples with categories of arsenic exposure is (1)
GSE57711 (low, n = 15/high, n = 14) and (2) GSE110852
(low, n = 18/medium, n = 19/high, n = 20). The power anal-
ysis of GSE57711 data shows that a minimum of 14 samples
are required to achieve the 80% power with minimum genes
11626 (per-sample), acceptable number of false positives 5,
fold change differences desired of 2, standard deviation of
0.6, and alpha (per-gene) 0.00043. These sample size compu-
tations assume that the expression of each gene is normally
distributed on the log scale and believe that gene expression
measurements are independent [39].

2.2. Machine Learning (ML) Methods. The ML machine
learning-based classification approach was used to under-
stand the population characteristics; partial least squares dis-
criminant analysis (PLS-DA) was used in which the
properties of PLS regression (PLS-R) are combined with
the discrimination power of the classification technique
[40]. The goal here is to determine the distribution of sam-
ples and visualize how the global gene expression profile
scattered in different groups (sex and arsenic exposure) and
which features best describe the differences between them.

A Random Forest (RF) was implemented to understand
further which genes correlate to classification between sex
and categories of arsenic concentration [41], specifically, if
the gene expressions of a combination of genes can correctly
differentiate between categories. This classification provides
insight into which genes are expressed differentially depending
on an individual’s condition, such as sex and/or exposure.

The correction between the samples was calculated using
the Pearson’s coefficient [42, 43] and the heat map method
[44]. These were used to plot the correlation coefficient
values to find the most correlated samples. Hierarchical clus-
tering, an unsupervised learning approach, was then
employed to calculate a dendrogram to determine the closest
related samples. A hierarchical clustering an unsupervised
learning approach was then employed to calculate a dendro-
gram to determine the closest related samples [45, 46].

2.3. Statistical Methods. The statistical significance of each
gene within each dataset was calculated by running t-tests
[47] between the categories for conditions (male/female,
low/high, low/medium, medium/high As exposure levels).
Along with t-tests for pairwise comparison, one-way
ANOVA [48] (Analysis of Variance) with post hoc Tukey
HSD (Honestly Significant Difference) [49] tests was per-
formed for comparing multiple groups, i.e., level of As
together with sex effect. The gene is filtered based on p value
with threshold 0.05 without statistical methods that control
the false discovery rate (fdr) to avoid the loss of a large num-
ber of genes at initial level without further evaluation.

2.4. Pathway Enrichment Analysis. The Ingenuity Pathway
Analysis (IPA) (version 2020; Ingenuity Systems; QIAGEN)
[50] was used for pathway enrichment and functional anal-
ysis of the significant genes among the human arsenic
exposed samples. The KEGG pathways [51], PFAM protein
domains [52], Uniport keywords [53], biological processes,
molecular functions, cellular components, and Reactome

pathways [54] were used to find associated pathways with
statistically significant genes. In addition, we further built a
network of gene-gene associations using STRING [55] that
leads us to the gene subsets corresponding to a part of a par-
ticular function or pathway.

2.5. Prediction Model. Classical univariate AUROC [56]
analysis was performed to find out the prediction ability of
each gene independently using logistic regression [57]
method with 10-fold cross-validation approach; next, all
the genes were ranked according to this AUC value, and
all possible combinations of genes were tested by added
one gene at a time to the logistics model of top gene in a
multivariate. The final model was selected based on the high-
est AUC (with 95% confidence intervals CI) among all possi-
ble combinations of the selected genes, and performance was
tested using the Monte Carlo cross-validation (MCCV).

The flow of the study is demonstrated by two charts
(Supplementary Figure 1A and 1B). The first chart shows the
flow of the analytical approaches used in parallel to analyze
the Data1 and Data2 to find differently expressed genes,
those specific to sex, those specific to arsenic exposure, and
specific to both sex and arsenic exposure. It shows the
differentially expressed genes and pathways with overlapping
significance following statistical methods described and
provided for clarity. The second supplementary flow chart
describes and shows the flow of the next stage of this
study in taking the statistically significant genes to find
commonality with the four cancer cell lines and creating a
bladder cancer risk predictor with high accuracy.

3. Results

3.1. Global Gene Expression Analysis of Two As Exposed Sets
of Human Data. PLS-DA and Pearson correlation were per-
formed together with patient sex and arsenic exposed level
to determine the similarities and differences in global gene
expression patterns between the arsenic exposed cohorts.

For the Data1 samples, PLS-DA analysis demonstrated a
clear separation between high arsenic exposed females com-
pared to low arsenic exposed males (Figure 1(a)). The global
gene expression profile distribution moves from low to high
for samples of high exposure of arsenic in females (HF), low
exposure of arsenic in females (LF), high exposure of As in
males (HM), and low exposure of As in male (LM). The
analysis did not demonstrate an explicit separation between
low exposure females and high exposed males. The heat
map of Pearson correlation coefficients and the dendro-
gram among the samples show variability within Data1
(Figure 1(c)) with correlation value 0.92 to 1. There was
no clear separation based solely upon arsenic exposure or
sex. This provides evidence that sex and arsenic exposure
has no bias impact on gene expression profile of Data1.
An identical analysis of the samples in Data2 demonstrates
that the distribution of global gene expression is almost
the same for high and low exposure between males and
females, where females with high arsenic exposure have
the lowest expression profile when compared to low As
exposed males (Figure 1(b)). The global gene expression
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Figure 1: Continued.
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profile moves low to high starting lowest in high exposure
of arsenic in female (HF), to high exposure of As in male
(HM), then low exposure of As in female (LF), and low
exposure of As in male (LM); however, the medium expo-
sure of As is mixed with low As exposure. The heat map
of Pearson correlation coefficients and the dendrogram
among the samples show variability within Data2
(Figure 1(d)) with correlation value 0.75 to 1, and there
is no clear separation between either based upon arsenic
exposure or sex. This indicates that this data has no bias
impact for both the factors.

As described in our methodology and shown via supple-
mentary figures, the most significant, common genes were
screened across the two datasets to distinguish difference
among all four scenarios of sex and arsenic exposure in
Data1 (Figure 2(a)) and all six scenarios in Data2
(Figure 2(b)). This analysis showed several probes for the

genes XIST (X inactive specific transcript), MALAT1 (metas-
tasis-associated lung adenocarcinoma transcript 1), XLOC_
008276 (long intergenic nonprotein coding RNA 278), USP9Y
(Ubiquitin Specific Peptidase 9 Y-Linked), SEPTIN6 (Septin
6), DDX3X (DEAD-Box Helicase 3 X-Linked), KDM6A
(Lysine Demethylase 6A), and ZFX (Zinc Finger Protein X-
Linked) as most significant in the RF as well as in the hierar-
chical clustering approach (Figures 2(a)–2(d)).

In addition to the advanced machine learning approach,
the ANOVA test with post hoc test was used to compare dif-
ferent arsenic exposure levels together with sex. This identi-
fied 476 probes (corresponding to 476 unique genes
symbols) (Supp. Table 2) that were differently expressed in
Data1 and 529 probes (corresponding to 439 unique genes
symbols) (Supp. Table 2) that were differently expressed in
Data2 (p value < 0.05). An IPA analysis was performed to
identify the functional relevance of these genes in terms of
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Figure 1: Sample distribution of gene expression profiles: (a) Data1; (B) Data2. The partial least squares discriminant analysis (PLS-DA)
plot showing clusters of samples based on similarity. The first two components of PLS-DA (PC1 and PC2) of gene expression profile and
overall variance between the groups are displayed. Each dot represents a sample color coded by both gender and level of arsenic
exposure level. Pearson correlations were calculated between each sample of total population, and correlation coefficient values were
shown by heat map of Data1 (c) and Data2 (d). The color-coding bar proves the value of correlation-coefficient. The dendrogram
represents the relation between the samples created by using hierarchical clustering approach.
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pathway association, resulting in identifying a total of
145 and 36 significant pathways for Data1 and Data2,
respectively (Supp. Table 3). A total of 7 common genes
and 6 common pathways were found to overlap for the
two populations (Figures 2(e) and 2(f)). The common
genes identified were CNR2 (Cannabinoid Receptor 2),
GPR34 (G Protein-Coupled Receptor 34), DDHD2
(DDHD Domain Containing 2), BACE2 (Beta-Secretase 2),
PRKY (Protein Kinase Y-linked Pseudogene), CST2
(Cystatin SA), and PTGDR2 (Prostaglandin D2 Receptor
2) (Figures 2(e) and 2(f)).

Organismal injury and abnormalities were the only dis-
ease common between two datasets due to combined change
of arsenic level and sex, and cell morphology, cell death and
survival, and cell-to-cell signaling and interaction were com-
mon molecular and cellular functions (Figures 2(g) and 2(h),
Table 1(b)).

3.2. Sex-Specific Gene Expression. PLS-DA analysis was per-
formed on Data1 and Data2 to determine only sex-based
changes in overall gene expression profiles. The PLS-DA
plot for Data1 demonstrated a clear separation among the
17 male and 13 female samples, with females having an over-
all lower gene expression profile (Figure 3(a)). The analysis
of Data2 showed the same pattern among the 31 males
and 26 females, with a relatively low separation because of
the high variability of female gene expression profiles
(Figure 3(b)). A t-test was used to identify the significant dif-
ferentially expressed genes between the sexes (p ≤ 0:05). This
identified 532 and 373 genes for Data1 and Data2, respec-
tively (Supp. Table 4). Volcano plots were generated for
both data sets to demonstrate high statistical significance
as determined by p value together with a fold change
difference of 2 (Figures 3(c) and 3(d)). This analysis
identified 3 biologically significant genes for Data1, and no
significant genes for Data2. Of the 3 genes identified, two
were downregulated, PRKY (protein kinase Y-linked-

pseudogene) and TMSB4Y (thymosin beta 4 Y-linked),
while the one upregulated gene was KI67 (a marker of
proliferation, Ki-67).

The determining overlapping significant genes (p value <
0.05) identified 9 genes that were common among the 532
differentially expressed genes of Data1 and the 373 genes
of Data2 (Figure 3(e)). These 9 genes were FHL3 (Four
And A Half LIM Domains 3), CD99L2 (CD99 Molecule Like
2), CPA3 (Carboxypeptidase A3), PRKY (protein kinase Y-
linked-pseudogene), JAK3 (Janus Kinase 3), ACRBP (Adre-
noceptor Beta 3), SOCS3 (Suppressor Of Cytokine Signaling
3), CCL2 (C-C Motif Chemokine Ligand 2), and PTGDR2
(prostaglandin D2 receptor 2). The genes for PRKY and
PTGDR2 also appeared in the comparisons for unique over-
lapping genes in the global population analysis performed in
the previous section. An IPA pathway analysis demonstrated
that 180 pathways were significantly associated in Data1 as
compared to 50 pathways in Data2 (Figures 3(c) and 3(d),
Supp. Table 5, Figure 3(f)). A comparison of these
pathways demonstrated that there were 17 overlapping
common pathways with respect to sex in the 2 populations.

Immunological disease, inflammatory disease, organis-
mal injury, and abnormalities were the common disease,
and cellular development, cellular movement, cell-to-cell
signaling, and interaction were the common molecular and
cellular functions (Table 1(b)) associated due the sex differ-
ence in both the datasets.

3.3. As-Specific Human Gene Expression. An identical analy-
sis used above for sex was employed to compare the differ-
ences in gene expression due to arsenic exposure for Data1
and Data2. PLS-DA demonstrated a prominent division of
high and low arsenic exposure for those in Data1, where
high exposure showed an overall low gene expression profile
(Figure 4(a)). The analysis of Data2 showed a substantial
division between the high versus medium levels of arsenic
exposure but no separation between medium and low level

4 41

Data1 Data2

Organismal injury and abnormalities

Disease

(g)

Molecular and cellular functions

2 23

Data1 Data2

Cell morphology
Cell death and survival
Cell-to-cell signaling and interaction

(h)

Figure 2: Global gene expression profile analysis. (a, b) A list of top 15 genes are displayed with mean decrease in accuracy value (X-axis)
calculated using Random Forest Approach for Data1 and Data2, respectively. The small box (right side) and color-coding bar represent the
expression value (from low to high) of each gene in different conditions. (c, d) Top 30 genes identified by robust hierarchical clustering
approach for Data1 and Data2, respectively. The heat map represents the gene expression value across different samples. The top line on
the x-axis, each box represents one sample. Two color-bar codes provide the gene expression value and condition of the sample
(ultraright). (e, f) Venn diagram, overlap of most significantly differentially expressed genes and significantly associated pathways (p
value ≤ 0.05) between both cohorts Data1 (blue) and Data2 (red), respectively. The complete lists of significant genes are provided in
supplementary table-2, and significant pathways are in supplementary table-3.
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of exposure (Figure 4(b)). The differentially expressed genes
were identified for Data1 using the t-test with significance at
p < 0:05. For Data2, the differentially expressed genes were
identified using paired t-test and ANOVA between all three
groups with a threshold level of p < 0:05.

This analysis identified 232 genes from Data1 and 424
genes from Data2 that were significant with 6 genes being
common between the datasets (Supp. Table 6, Figure 4(c)).
These 6 genes were ATP6V0D1 (ATPase H+ Transporting
V0 Subunit D1), HS3ST1 (Heparan Sulfate-Glucosamine 3-
Sulfotransferase 1), DDHD2 (DDHD Domain Containing 2),
ZDHHC23 (Zinc Finger DHHC-Type Palmitoyltransferase

23), C9orf40 (chromosome 9 Open Reading Frame 4), and
PSPH (Phosphoserine Phosphatase). All common genes
were between all possible pairwise combinations of different
arsenic levels of Data2 together with those of Data1 (Supp.
Table 8, Figure 4(d)). The total number of significant
pathways was 180 and 50, for Data1 and Data2, with 15
pathways common between them (Supp. Table 7,
Figure 4(e)). The interaction of significant pathways identified
by the paired analysis was also determined (Supp. Table 9,
Figure 4(f)). ILK signaling and neuroinflammation signaling
pathway are the most frequent pathways identified through
the comparative analysis of pathways (Supp. Table 9).
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Figure 3: Sex-dependent genetic variations. (a, b) PLS-DA plot showing the gene expression profile distribution of each sample between
females (red) and males (green) for Data1 and Data2, respectively. The first two components of PLS-DA (PC1 and PC2) of gene
expression profile and overall variance between the groups are displayed. Each dot represents a sample color coded by gender. (c, d)
Volcano plot displays the log2 fold change and -log10 (p value) of gene expression differentiating due to gender effect for Data1 and
Data2, respectively. Genes with higher than two-fold (p value ≤ 0.05) are highlighted in red. (e, f) Venn diagram, overlap of most
significantly differentially expressed genes and significantly associated pathways (p value ≤ 0.05) between both cohorts Data1 (blue) and
Data2 (red), respectively. The names of common genes are provided in a table (underneath). The complete lists of significant genes are
provided in supplementary table-4, and significant pathways are in supplementary table-5.
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Cancer, organismal injury and abnormalities, and gas-
trointestinal disease were the common disease, and lipid
metabolism, cell-to-cell signaling, and interaction were the
common molecular and cellular functions (Figures 4(c)
and 4(d), Table 1(b)) associated due the sex difference in
both the datasets.

3.4. Myeloma Cancer Cell Lines Exposed to As Trioxide
(ATO). The Methodsprovided time course and ATO expo-
sure details for the U266, MM.1s, KMS11, and 8226/S mul-

tiple myeloma cell lines used to generate genomic data
obtained from GEO. The gene expression results from Data1
and Data2 were compared with the global gene expression
results from the 4 myeloma cancer cell lines exposed to
ATO. The results of this comparison demonstrated that 58,
78, 59, and 38 genes were found to be commonly expressed
in the arsenic exposed population and the 4 cell lines
(Figures 5(a)–5(d)). An examination of this data demon-
strated that there were a total of 147 unique genes (Supp.
Table 10) that appeared common in the 4 cell lines and the
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Figure 4: Arsenic-level dependent genetic variations. (a, b) PLS-DA plot showing the gene expression profile distribution of each sample
between different levels of arsenic exposure (red, high; purple, medium; and green, low) for Data1 and Data2, respectively. The first two
components of PLS-DA (PC1 and PC2) of gene expression profile and overall variance between the groups are displayed. Each dot
represents a sample color coded by As-level. (c) Venn diagram, overlap of most significantly differentially expressed genes when
comparing the low vs. high for Data1 and low-medium-high (p value ≤ 0.05) for Data2 and represented by blue (Data1) and red
(Data2), respectively. The names of common genes are provided in a table (underneath). (d) Venn diagram, overlap of most significantly
differentially expressed gene when compared the low vs. high for Data1 and pairwise comparison between low-medium-high with (p
value ≤ 0.05) and represented as Data1 (yellow) and Data2 (blue, low vs. high; red, low vs. medium; green, medium vs. high),
respectively. (e, f) Venn diagram, associated pathways for the genes identified in figure (c, d) with same classification and color coding
described. The names of common genes are provided in a table (underneath). The complete lists of significant genes are provided in
supplementary table-6 and table-8, and significant pathways are in supplementary table-7 and table-9.
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Figure 5: Identification of previously known arsenic exposed gene association with cancer progression. (a–d) The common arsenic exposed
gene-set from Data1 and Data2 compared with differentially expressed genes within four arsenic trioxide (ATO) cell lines. Venn diagram,
showing total number of common genes, (a) U266, (b) MM1S, (c) KMS11, and (d) 8226S. Interaction network functional enrichment
analysis plots using STRING were demonstrated (underneath). The plots were generated with common genes identified between each
cell-line and arsenic exposed gene list; the connected lines represent the degree of interconnectivity and enrichment in characteristic
molecular functions.
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arsenic exposed populations (Data1 and Data2). This set of
147 unique genes was used to predict urothelial cancer
development and progression in the next section of results.

The functional association of common genes and inter-
action networks were determined by functional enrichment
analysis using the STRING for each cell line (Figures 5(a)–
5(d)). The gene interaction networks for each myeloma cell
line identified 6 genes that were central to the interaction
of the networks. These 6 genes were important transcription
factors or second messengers. The EGR1 gene encodes a zinc
finger protein that is a transcriptional regulator that plays a
major role in cell survival, proliferation, and cell death. Its
activation of p53/TP53 and TGFB1 suppresses tumor forma-
tion. MAPK8 and 9 genes are integration points for multiple
biochemical signals and can influence a wide variety of
cellular processes such as proliferation, differentiation, tran-
scription regulation, and development. The FOXO3 gene
functions as a transcriptional activator that regulates apo-
ptosis and autophagy. The MYC gene is a proto-oncogene
that plays a major role in cell cycle progression, apoptosis,
and cellular transformation. The AKT1 gene is activated by
platelet-derived growth factor and is looked upon as a
survival factor that can inhibit apoptosis. The STK17B gene
is a kinase involved in the regulation of apoptosis and
autophagy.

The gene set enrichment shows various functional
aspects in all four cell lines (Figure 6). The gene functions
significant for U266 were associated with cellular response
to the metal ion cadmium, external stimulus, and cytokine.
The gene sets were also a part of pathways related to colorec-
tal cancer, choline metabolism in cancer, HTLV-1 infection,
TNF (tumor necrosis factor) signaling factor, and prolactin
signaling pathway. The gene functions significant in MM1S
were associated with mitotic/meiotic chromosome conden-
sation, cellular response to Zn ion, nuclear-transcribed
mRNA catabolic process, and SRP-dependent cotransla-
tional protein targeting to the membrane. Among these
genes, the pathways associated with this comparison are
mineral absorption and the ribosome pathway. The biologi-
cal functions related to KMS11 that are significant are a
cellular response to Zn ion, mRNA polyadenylation, termi-
nation of RNA polymerase II transcription, positive regula-
tion of viral life cycle, and viral release from the host cell.
And the pathways related to these gene sets are a component
of mineral absorption and mRNA surveillance. While look-
ing at the gene sets from 8226S, the significant biological
functions include TOR (target of rapamycin) signaling,
response to amino acid starvation, and nutrient levels. The
pathways that were related in these gene sets were mTOR
signaling and autophagy pathways.

When including sex factor to identify the arsenic
exposed sex specific gene association with ATO, we find an
overlap of total 18 genes (BTG2, CXCR4, BACE2, EGR1,
PHACTR1, CRIM1, TRIB1, TNFRSF12A, TSPAN5, RGS1,
CD24, DDIT4, OLFM4, DDX3Y, PMAIP1, SLC29A1,
SMAD5, and MYB) between the differentially expressed
genes in arsenic exposed male/female (from Sex-Specific
Gene Expression) and differently expressed genes within
ATO (Supp. Table 11).

3.5. Bladder Cancer Prediction Model. The 147 genes gener-
ated from the previous results section (Myeloma Cancer Cell
Lines Exposed to As Trioxide) were utilized to develop a
bladder cancer prediction model for the purpose of early
diagnosis and prevention. Two publicly available human
datasets were used as a training and validation data to test
the prediction ability of those genes using the prediction
model approach described in Methods. The first (GSE13507
[36, 37]) was used as a training dataset. The logistic model
shows that primary tumor with three genes NKIRAS2,
AKTIP, and HLA-DQA1, out of 147 with AUC 0.96 (0.82-
0.99) (Figure 7(a)). The equations for the logistic model are
given below with probe ID together with gene name in
brackets.

GSE13507 data modeling is as follows:

(a) Normal vs primary tumor (GSE13507):

logit Pð Þ = 12:664 + 9:057 ∗ ILMN 1677481 ðNKIRAS2
− 6:497 ∗ ILMN 1665982 AKTIPð Þ − 2:201
∗ ILMN 1808405 HLA −DQA1ð Þ

ð1Þ

Outcome Area under the curve ðAUCÞ = 0:94ð95%CI :
0:744 − 0:995Þ (Figure 7(a))

The same three genes were used with another set of
bladder cancer data (GSE3167 [38]) to validate the pri-
mary bladder tumor predictor. It was seen that the genes
(NKIRAS2, AKTIP, HLA-DQA1) show the prediction
ability of AUC 0.75 (95% CI: 0.34-0.93) on this dataset
(Figure 7(b)).

GSE3167 data modeling:

(b) Normal vs. primary bladder tumor model:

logit Pð Þ = 2:265 + 13:24 ∗ 276 218240 at NKIRAS2ð Þ
− 4:20 ∗ 218373 at AKTIPð Þ − 1:55
∗ 203290 at HLA −DQA1ð Þ

ð2Þ

Outcome Area under the curve ðAUCÞ = 0:75 ð95%CI :
0:343 − 0:933Þ (Figure 7(b))

To measure the effect of the sex on this model, we
wanted to include this parameter to the model, but the sex
information of normal samples was not provided with data
GSE13507, and therefore, we have used the intersection of
arsenic exposed sex differentiated genes to find if any above
gene is significantly different between male and female.
We found none of those three genes were the part of 18
gene common between the sex sepecific arsenic exposed
cancer gene. The human protein atlas data [58] shows that
two out of three genes, i.e., NKIRAS2 (unfavorable) and
AKTIP (favorable), are prognostic marker in renal cancer
(Figure 7(c)).
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Figure 6: Continued.
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4. Discussion

The major goal of the present study was to test a novel
approach to elucidate genes and pathways that are associated

with arsenic exposure. As we found that cancer was the top
disease pathway associated with arsenic exposure, we use
this list of genes and pathways to explore molecular mecha-
nism of cancer biology with the help of ATO cell line data.
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Figure 6: Functional analysis of arsenic exposed and cancer associated genes. To visualize the enriched terms, dot plots are generated using
significantly associated pathways with arsenic exposed and cancer progression. It depicts the enrichment scores (p values), gene ratio as bar
height, and color. The pathway databases used for significance are (a) Reactome, local STRING network clusters, (b) KEGG pathways,
PFAM protein domains, Uniprot keywords, (c) biological processes, molecular functions, and cellular components.
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Figure 7: Continued.
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We identified the major differences between male and
female at gene expression level due to arsenic exposure and
their role in risk prediction modeling. Studies employing
other approaches have also searched for target genes associ-
ated with arsenic compounds using various cancers; for
example, total arsenic concentration was related to the risk
of upper tract urothelial carcinoma (UTUC), and the inde-
pendent polymorphisms of the AS3MT gene were related
to the risk of UTUC and bladder cancer [59]. Another study
reported 19 ATO target genes associated with multiple can-
cer types (the most common association being pancreatic

cancer) [60]. Six of these genes (AKT1, CCND1, CDKN2A,
IKBKB, MAPK1, and MAPK3) were strongly associated and
were used to find further mutation information. In addition,
20 ATO interacting genes were also related to other diseases
such as hepatitis B, leukemia, and prostate cancer. And
finally, CCND1 and MAPK1 were found to be prognostic
factors in patients with pancreatic cancer. The genes respon-
sible for metabolizing arsenic (AS3MT, GSTOs, and PNP)
are of interest due to their variation in populations across
different regions. Another study targeted gene associated
with lung cancer and found four key genes that may affect
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Figure 7: Bladder cancer prediction model. (a, b) Plot of the ROC curve as an outcome of logistic regression prediction model in
multivariate fashion, by AUC ROCs. The 95% confidence intervals (CI) are shown. (a) Prediction outcome of primary tumor on
GSE13507 dataset. (b) Reevaluation of prediction ability of 3 genes previously identified on GSE3167 dataset. (c) Survival outcome of
three genes using the Human Protein Atlas data. Best expression cut off: based on the FPKM value of each gene, patients were classified
into two groups and association between prognosis (survival), and gene expression (FPKM) was examined. The best expression cut-off
refers the FPKM value that yields maximal difference with regard to survival between the two groups at the lowest log-rank p value. Best
expression cut-off was selected based on survival analysis. Median expression refers to the median FPKM value calculated based on the
gene expression (FPKM) data from all patients in this dataset. When clicking on this number, the vertical dashed line indicating cut-off,
the interactive survival plot, and the Kaplan-Meier curve will be adjusted to show results based on the median expression. Median
follow-up time refers to the median time (years) after diagnosis with this type of cancer, based on clinical data from all patients in this
dataset. Pscore: Log-rank p value for Kaplan-Meier plot showing results from analysis of correlation between mRNA expression level and
patient survival. 5-year survival for patients with higher expression than the expression cutoff. 5-year survival for patients with lower
expression than the expression cutoff.
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lung cancer prognosis: MTIF2, ACOX1, CAV1, and
MRPL17 [61]. This study also predicted quinostatin as a
reversal to As-induced lung cell malignancy. For urothelial
cancer, WNT7B, SFRP1, DNAJB2, and ATF3 were reported
as target genes with cantharidin predicted as a reversal drug
[62]. Some genes captured in this study have been previously
identified for an association with cancer to include CNR2
that is associated with bladder cancer cell growth and motil-
ity which is linked to the cannabinoid 2 receptor-mediated
modifications [63], GRR34 knockdown was shown to impair
proliferation and migration of HGC-27 gastric cancer cells
[64], DDHD2 as a potential cancer marker in human urine
[65], and BACE2 as a prognostic marker in cervical cancer
[66]. The significance of MAPK signaling, integrin-linked
kinase, growth inhibitor family member 2, and NRF2-
mediated oxidative stress response pathways provides an
important linkage of involvement of oxidative stress and
DNA damage after arsenic exposure in human which lead
to carcinogenesis through dysregulation of these signaling
pathways.

The key difference between these closely related studies
and the current study is the process followed for capturing
significant genes, where independent population data was
used to generate a gene set, which was then compared to a
reference dataset. In the initial analysis, two Asian popula-
tions exposed to arsenite were used to determine the com-
mon genes and pathways between the two populations
based on sex and level of arsenic exposure among the
1,183 As-exposed genes. The 1,183 As-exposed genes were
then correlated with the gene expression profiles of 4
multiple myeloma cell lines exposed over time to varying
exposures of arsenic to generate common set of arsenic asso-
ciated genes involved in canner biology, which resulted in a
set of overlapping genes and relevant pathways. These genes
were then examined on the patients with bladder cancer to
test the cancer association with the help of developing risk
prediction model. For the first time, we developed a risk pre-
diction model for bladder cancer using an innovative new
method by combining genetic data of bladder cancer risk
with genetic data of arsenic exposed cancer risk factors.
Importantly, we validated our model in an independent
group of patients to ensure the reliability of our risk predic-
tion, a vital step for clinical implementation.

The above process resulted in identifying 3 genes:
NKIRAS2 (NFKB Inhibitor Interacting Ras Like 2), AKTIP
(AKT-interacting protein), and HLA-DQA1 (Major histo-
compatibility complex, class II, DQ alpha 1), able to
distinguish between normal urothelium and the primary
urothelial carcinoma with a predictive ability of 94% using
a preexisting public patient dataset. The three genes have
seen only limited study as regards arsenic exposure and
urothelial cancer, with the majority of information available
from literature searches with bladder cancer and urothelial
cancer as key words, and from web-based resources such
as the Human Protein Atlas (HPA), Gene Cards (GC),
NCBI, and My Cancer Genome (MCG). In most cases, the
Human Protein Atlas was an excellent source of informa-
tion. None of the three genes were found to be prognostic
for bladder cancer (HPA). The expression of the 3 genes in

urothelial cancer ranges from moderate for NKIRAS2
(NCBI), variable for AKTIP (HPA), and variable for HLA-
DQA1 as determined by an immune transcriptome analysis
in bladder cancer [67]. Moreover, the same genes (NKIRAS2,
AKTIP, and HLA-DQA1) were also found to make a predic-
tion ability of 75% using a validation dataset. The predictive
nature of these genes clearly supports additional study to
define their roles in urothelial cancer independent of sex in
general and with exposure to arsenic in particular.

The studies leading up to the above prediction model
also identified several interesting genes and pathways in
the two populations exposed to arsenic. Three genes were
identified that distinguished differences among all four sce-
narios of sex and arsenic exposure for the Data1 population
and all six scenarios for the Data2 population. Two of these
genes were noteworthy due to reports of their involvement
in important biological processes. The XIST gene (X inactive
specific transcript) is a noncoding RNA on the X chromo-
some that transcriptionally silences one of the pairs of X
chromosomes for dosage equivalence between sexes. This
gene is reported to be associated with several cancer types
[68, 69] and has potential prognosis capabilities [70]. The
expression of MALAT1 (metastasis-associated lung adeno-
carcinoma transcript 1) has also been associated with carci-
nogenesis and is a prognostic marker for lung cancer
metastasis [71]. The XLOC_008276 (long intergenic non-
protein coding RNA 278) is not strongly linked to any bio-
logical process. Previous research has also found several of
these genes to be significance genes in cancer progression,
such as the high expression of XIST association with tumor
progression and poor prognosis in bladder cancer patients
[72], and high expression of MALAT1 as a possible indepen-
dent prognostic factor for overall survival in patients with
bladder cancer [73]. Seven common genes and six common
pathways were found to overlap between the 2 populations.
The CNR2 protein, while not prognostic for urothelial can-
cer (HPA), has been shown to modify growth and motility
of human urothelial cancer cell lines [63]. The gene and pro-
tein are expressed in approximately 33% of urothelial
tumors. Four of the genes, BACE2, PRKY, CST2, and
PTGDR2, were reported to have no expression in urothelial
cancer (HPA, GC). The remaining 2 genes, GPR34 and
DDHD2, were expressed in urothelial cancer at 50% and
15%, respectively (HPA).

Nine genes were found to be overlapping when the two
populations were assessed for only sex-based changes. Two
of these genes, PRKY and PTGDR2, were also found in the
above analysis of overlap between the two populations.
Two additional genes, JAK3 and ACRBP, were reported to
have no expression in urothelial cancer (HPA, NCBI,
MCC). The CPA3 gene is expressed in 90% of urothelial
cancers (PHA) and can induce urothelial injury but other-
wise has not been studied in urothelial cancer. The remain-
ing genes were of substantial interest for urothelial cancer
and arsenic exposure. The FHL gene has been studied in a
variety of cancers [74] and is prognostic for breast (favorable),
renal (unfavorable), and liver (unfavorable) (HPA). The gene
and protein have not been studied in urothelial cancer. The
CD99L2 gene has been reported to be prognostic for urothelial
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cancer (unfavorable), pancreatic cancer (favorable), and lung
cancer (favorable). The gene is expressed in 40% of urothelial
cancers. The gene is reported to be active in a variety of tumors
[75]. The SOCS3 gene is prognostic for renal cancer (unfavor-
able) and breast cancer (favorable) and reported to not be
expressed in urothelial cancer (HPA). However, studies have
reported its expression in the T24 urothelial cancer cell line
[76]. The CCL2 gene is expressed in 50% of urothelial cancers
and has been implicated in the growth and metastasis of
urothelial cancer [77, 78]. Additionally, the 18 genes are
important sex dependent genomic markers which were differ-
ently express between male and female exposed to As and
associated with likelihood of cancer. Most of the genes are
prognostic marker of renal cancer, whereas some of them such
as BTG2, CD24, OLFM4, and BACE2 are specific to females,
i.e., breast cancer and cervical cancer, and MYB specific to
males, i.e., prostate cancer (Supp. Table 11).

Six genes were found to be overlapping when the two
populations were assessed for level of arsenic exposure.
The DDHD2 gene was also present in the above analysis of
common genes between the populations in Data1 and Data2.
Searching the Human Protein Atlas, ATP6V0D1 gene was
prognostic for renal cancer (favorable) and pancreatic can-
cer (favorable); the PSPH gene was prognostic for liver
cancer (unfavorable), breast cancer (unfavorable), and pan-
creatic cancer (favorable); and ZDHHC23 was prognostic
for renal cancer (favorable), endometrial cancer (unfavor-
able), and thyroid cancer (unfavorable). Only the ZDHHC23
gene had confirmed expression in urothelial cancer (20%).
Detailed studies in the literature for these genes in urothelial
cancer were not found. The HS3ST1 gene was reported as a
favorable prognostic marker for urothelial cancer, renal can-
cer, and endometrial cancer. Literature-based studies of
these genes in urothelial cancer were not found.

5. Limitation

A major limitation in the current study was the lack of
patient-level clinical-pathological information such as age,
smoking status, and disease history, on the two populations
exposed to As. Since datasets were developed on different
platforms, not all the genes were present on different data-
sets. Therefore, to find the highest possible number of genes
between those dataset, multiple testing correction was not
performed which controls the Type I and Type II errors.
However, the robustness of outcome was tested using differ-
ent machine learning approaches such as the bladder cancer
model was tested using MCCV. We did not find any geno-
mic dataset which could provide the direct relationship
between arsenic exposure and cancer in humans; therefore,
we utilized the best possible option to combine the As
exposed humans and cell-line to establish the relationship.

6. Conclusion

This study identified significant genes and pathways of inter-
est associated with arsenic exposure in humans as well as
their linkage with myeloma cancer cell lines. Oxidative stress
in terms of identified genes and associated pathways shows

as one of the major components associated with disease
development after exposure of arsenic. To test the prediction
power of those genes, we developed a regression model for
urothelial carcinoma that defined a set of 3 genes: NKIRAS2,
AKTIP, and HLA-DQA1, which provides the likelihood of
development of primary urothelial carcinoma with same
estimation for male and female.

Data Availability

Previously reported microarray data were used to support
this study and are available on GEO with IDs GSE13507,
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prior studies (and datasets) are cited at relevant places
within the text as references [35–38].

Disclosure

The abstract of this paper was accepted for the ASCO 2021
conference and published in Journal of Clinical oncology
(JCO: doi:10.1200/JCO.2021.39.15_suppl.e16523).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

S.S.∗ and S.K.S. performed the project designing, bioinfor-
matic analysis, and manuscript writing. D.A.S. provided
guidance to design study, analyzed the data, and contributed
to the writing of the manuscript. N.A.R performed some of
the analysis data and assisted in the writing of the manu-
script. K.T. and K.G assisted in the writing of the manuscript.

Acknowledgments

The research described was supported by funds provided by
the Department of Pathology and the School of Medicine
and Health Sciences and School of Electrical Engineering
and Computer Science, University of North Dakota, ND.
Graduate student mentoring and the core facility for bioin-
formatics were supported by the ND INBRE IDeA program
P20 GM103442 from the National Institute of General Med-
ical Sciences (NIGMS). SKG is a Basic Science Scholar of the
IDeA DaCCoTA CTR program. The work is also support by
U54GM128729, from NIGMS, NIH. This work used high
performance computing resources provided by the Univer-
sity of North Dakota Computational Research Center.

Supplementary Materials

Supplementary 1. Figure S1: study flow chart part. (A) As
exposed significant gene selection. (B) Find association with
multiple melanoma and predictive modeling of bladder cancer.

Supplementary 2. Table S1: disease as well as molecular and
cellular functions associated with statistically significant dif-
ferentially expressed genes (p < 0:05) selected in different
phenotypic conditions.

23Oxidative Medicine and Cellular Longevity

https://doi.org/10.1200/JCO.2021.39.15_suppl.e16523
https://downloads.hindawi.com/journals/omcl/2022/3459855.f1.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f2.pdf


Supplementary 3. Table S2: significant pathways in Data1
and Data2 and the overlap between two (highlighted in
green).

Supplementary 4. Table S3: significant pathways in Data1
and Data2 (male and female sex) and the overlap between
two (highlighted in pink).

Supplementary 5. Table S4: significant pathways in Data1
and Data2 (low, medium, and high concentrations) and
the overlap between various combinations (highlighted in
green).

Supplementary 6. Table S5: significant pathways in Data1
(low, high concentration) and Data2 (low, medium, and high
concentrations) and the overlap between two (highlighted in
pink).

Supplementary 7. Table S6: significant genes in Data1 (low
and high concentrations) and Data2 (low, medium, and high
concentrations) and the overlap between two (highlighted in
green).

Supplementary 8. Table S7: significant pathways in Data1
(low and high concentrations) and Data2 (low, medium,
and high concentrations) and the overlap between two
(highlighted in pink).

Supplementary 9. Table S8: significant genes in Data1 (low
vs. high) and Data2 (low, medium, and high concentrations)
and the overlap between various combinations.

Supplementary 10. Table S9: significant pathways in Data1
and Data2 (low, medium, and high concentrations) and
the overlap between various combinations.

Supplementary 11. Table S10: list of 147 unique genes.

Supplementary 12. Table S11: survival information of 18
genes differentially expressed between sex and common
between ATO and arsenic exposed human.

References

[1] Humans, IARCWorking Group on the Evaluation of Carcino-
genic Risks to, Arsenic, metals, fibres, and dusts. A review of
human carcinogens, The International Agency for Research
on Cancer, 2012.

[2] Services, U S Department of Health and Human, Report on Car-
cinogens, Twelfth Edition, National Toxicology Program, 2011.

[3] L. Lindau, “Emissions of arsenic in Sweden and their reduction,”
Environmental Health Perspectives, vol. 19, pp. 25–29, 1977.

[4] A. D. Shendrikar and G. B. Faudel, “Distribution of trace
metals during oil shale retorting,” Environmental Science &
Technology, vol. 12, no. 3, pp. 332–334, 1978.

[5] L. D. Hansen, D. Silberman, G. L. Fisher, and D. J. Eatough,
“Chemical speciation of elements in stack-collected, respira-
ble-size, coal fly ash,” Environmental Science & Technology,
vol. 18, no. 3, pp. 181–186, 1984.

[6] E. A. Murphy and M. Aucott, “An assessment of the amounts of
arsenical pesticides used historically in a geographical area,” Sci-
ence of the Total Environment, vol. 218, no. 2-3, pp. 89–101, 1998.

[7] A. H. Smith, M. Goycolea, R. Haque, and M. L. Biggs, “Marked
increase in bladder and lung cancer mortality in a region of

Northern Chile due to arsenic in drinking water,” American
Journal of Epidemiology, vol. 147, no. 7, pp. 660–669, 1998.

[8] M. M. Rahman, R. Naidu, and P. Bhattacharya, “Arsenic con-
tamination in groundwater in the Southeast Asia region,”
Environmental Geochemistry and Health, vol. 31, Suppl 1,
pp. 9–21, 2009.

[9] P. Singh, W. Zhang, R. Robins, and D. Muir, “Arsenic in the
Asia-Pacific region: managing arsenic for our future,” in 1st
International Workshop on Arsenic in the Asia-Pacific region:
Managing arsenic for our future, Adelaide, South Australia,
2001.

[10] M. Vahter, “Effects of arsenic on maternal and fetal health,”
Annual Review of Nutrition, vol. 29, no. 1, pp. 381–399,
2009.

[11] L. Zhang, Y. Gao, S. Wu et al., “Global impact of atmospheric
arsenic on health risk: 2005 to 2015,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 117, no. 25, pp. 13975–13982, 2020.

[12] M. M. Jones, “Antagonists for toxic heavy metals,” Proceedings
of the Western Pharmacology Society, vol. 27, pp. 163–167,
1984.

[13] J. S. Haller, “Therapeutic mule: the use of arsenic in the nine-
teenth century materia medica,” Pharmacy in History,
vol. 17, no. 3, pp. 87–100, 1975.

[14] X. He, K. Yang, P. Chen et al., “Arsenic trioxide-based therapy
in relapsed/refractory multiple myeloma patients: a meta-
analysis and systematic review,” Oncotargets and Therapy,
vol. 7, pp. 1593–1599, 2014.

[15] J. H. Kim, J. H. Kim, Y. S. Yu, D. H. Kim, C. J. Kim, and K. W.
Kim, “Antitumor activity of arsenic trioxide on retinoblas-
toma: cell differentiation and apoptosis depending on arsenic
trioxide concentration,” Investigative Ophthalmology & Visual
Science, vol. 50, no. 4, pp. 1819–1823, 2009.

[16] M. F. Hughes, “Biomarkers of exposure: a case study with inor-
ganic arsenic,” Environmental Health Perspectives, vol. 114,
no. 11, pp. 1790–1796, 2006.

[17] P. A. Bommarito, R. Beck, C. Douillet et al., “Evaluation of
plasma arsenicals as potential biomarkers of exposure to inor-
ganic arsenic,” Journal of Exposure Science & Environmental
Epidemiology, vol. 29, no. 5, pp. 718–729, 2019.

[18] J. Maki-Paakkanen, P. Kurttio, A. Paldy, and J. Pekkanen,
“Association between the clastogenic effect in peripheral lym-
phocytes and human exposure to arsenic through drinking
water,” Environmental and Molecular Mutagenesis, vol. 32,
no. 4, pp. 301–313, 1998.

[19] M. K. Sardana, G. S. Drummond, S. Sassa, and A. Kappas, “The
potent heme oxygenase inducing action of arsenic and parasit-
icidal arsenicals,” Pharmacology, vol. 23, no. 5, pp. 247–253,
1981.

[20] K. P. Cantor and J. H. Lubin, “Arsenic, internal cancers, and
issues in inference from studies of low-level exposures in
human populations,” Toxicology and Applied Pharmacology,
vol. 222, no. 3, pp. 252–257, 2007.

[21] H. Y. Chiou, Y. M. Hsueh, K. F. Liaw et al., “Incidence of inter-
nal cancers and ingested inorganic arsenic: a seven-year
follow-up study in Taiwan,” Cancer Research, vol. 55, no. 6,
pp. 1296–1300, 1995.

[22] M. I. Luster and P. P. Simeonova, “Arsenic and urinary bladder
cell proliferation,” Toxicology and Applied Pharmacology,
vol. 198, no. 3, pp. 419–423, 2004.

24 Oxidative Medicine and Cellular Longevity

https://downloads.hindawi.com/journals/omcl/2022/3459855.f3.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f4.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f5.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f6.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f7.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f8.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f9.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f10.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f11.pdf
https://downloads.hindawi.com/journals/omcl/2022/3459855.f12.pdf


[23] C. Steinmaus, L. Moore, C. Hopenhayn-Rich, M. L. Biggs, and
A. H. Smith, “Arsenic in drinking water and bladder cancer,”
Cancer Investigation, vol. 18, no. 2, pp. 174–182, 2000.

[24] T. Tsuda, A. Babazono, E. Yamamoto et al., “Ingested arsenic
and internal cancer: a historical cohort study followed for 33
years,” American Journal of Epidemiology, vol. 141, no. 3,
pp. 198–209, 1995.

[25] A. T. Lenis, P. M. Lec, K. Chamie, and M. MSHS, “Bladder
Cancer,” JAMA, vol. 324, no. 19, pp. 1980–1991, 2020.

[26] Y. Hu, J. Li, B. Lou et al., “The role of reactive oxygen species in
arsenic toxicity,” Biomolecules, vol. 10, no. 2, p. 240, 2020.

[27] K. Jomova, Z. Jenisova, M. Feszterova et al., “Arsenic: toxicity,
oxidative stress and human disease,” Journal of Applied Toxi-
cology, vol. 31, no. 2, pp. 95–107, 2011.

[28] E. Sawicka, A. Lisowska, P. Kowal, and A. Dlugosz, “The role
of oxidative stress in bladder cancer,” Postȩpy Higieny i Medy-
cyny Doświadczalnej (Online), vol. 69, pp. 744–752, 2015.

[29] P. Wigner, B. Szymanska, M. Bijak et al., “Oxidative stress
parameters as biomarkers of bladder cancer development
and progression,” Scientific Reports, vol. 11, no. 1, article
15134, 2021.

[30] C. Boonla, “Oxidative stress, epigenetics, and bladder cancer,”
in Cancer (Second Edition), pp. 67–75, Academic Press, 2021.

[31] J. He, G. Zhu, G. Wang, and F. Zhang, “Oxidative stress and
neuroinflammation potentiate each other to promote progres-
sion of dopamine neurodegeneration,” Oxidative Medicine
and Cellular Longevity, vol. 2020, Article ID 6137521, 12 pages,
2020.

[32] M. Im and L. Dagnino, “Protective role of integrin-linked
kinase against oxidative stress and in maintenance of genomic
integrity,” Oncotarget, vol. 9, no. 17, pp. 13637–13651, 2018.

[33] A. Munoz, Y. Chervona, M. Hall, T. Kluz, M. V. Gamble, and
M. Costa, “Sex-specific patterns and deregulation of endo-
crine pathways in the gene expression profiles of Bangladeshi
adults exposed to arsenic contaminated drinking water,” Tox-
icology and Applied Pharmacology, vol. 284, no. 3, pp. 330–
338, 2015.

[34] M. Y. A. Rehman, M. van Herwijnen, J. Krauskopf et al.,
“Transcriptome responses in blood reveal distinct biological
pathways associated with arsenic exposure through drinking
water in rural settings of Punjab, Pakistan,” Environment
International, vol. 135, article 105403, 2020.

[35] S. M. Matulis, A. A. Morales, L. Yehiayan et al., “Darinaparsin
induces a unique cellular response and is active in an arsenic
trioxide-resistant myeloma cell line,”Molecular Cancer Thera-
peutics, vol. 8, no. 5, pp. 1197–1206, 2009.

[36] J. S. Lee, S. H. Leem, S. Y. Lee et al., “Expression signature of
E2f1 and its associated genes predict superficial to invasive
progression of bladder tumors,” Journal of Clinical Oncology,
vol. 28, no. 16, pp. 2660–2667, 2010.

[37] W. J. Kim, E. J. Kim, S. K. Kim et al., “Predictive value of
progression-related gene classifier in primary non-muscle
invasive bladder cancer,” Molecular Cancer, vol. 9, no. 1, p. 3,
2010.

[38] L. Dyrskjot, M. Kruhoffer, T. Thykjaer et al., “Gene expression
in the urinary bladder: a common carcinoma in situ gene
expression signature exists disregarding histopathological classi-
fication,” Cancer Research, vol. 64, no. 11, pp. 4040–4048, 2004.

[39] W. J. Lin, H. M. Hsueh, and J. J. Chen, “Power and sample size
estimation in microarray studies,” BMC Bioinformatics,
vol. 11, no. 1, p. 48, 2010.

[40] P. S. Gromski, H. Muhamadali, D. I. Ellis et al., “A tutorial
review: Metabolomics and partial least squares-discriminant
analysis - a marriage of convenience or a shotgun wedding,”
Analytica Chimica Acta, vol. 879, pp. 10–23, 2015.

[41] A. Cutler and J. R. Stevens, “[23] Random Forests for Microar-
rays,” Methods in Enzymology, vol. 411, pp. 422–432, 2006.

[42] E. C. Fieller and E. S. Pearson, “Tests for rank correlation coef-
ficients: Ii,” Biometrika, vol. 48, no. 1-2, pp. 29–40, 1961.

[43] S. J. Devlin, R. Gnanadesikan, and J. R. Kettenring, “Robust
estimation and outlier detection with correlation coefficients,”
Biometrika, vol. 62, no. 3, pp. 531–545, 1975.

[44] L. Wilkinson and M. Friendly, “The history of the cluster heat
map,” American Statistician, vol. 63, no. 2, pp. 179–184, 2009.

[45] F. Nielsen, Introduction to Hpc with Mpi for Data Science,
Springer, 2016.

[46] L. Rokach and O. Maimon, Lustering Methods, Springer, Data
Mining and Knowledge Discovery Handbook, 2005.

[47] D. S. Moore and S. Kirkland, The basic practice of statistics,
vol. 2, WH Freeman New York, 2007.

[48] B. G. Tabachnick and L. S. Fidell, Experimental Designs Using
Anova, Thomson/Brooks/Cole Belmont, CA, 2007.

[49] H. Abdi and L. J. Williams, “Tukey’s honestly significant dif-
ference (Hsd) test,” Encyclopedia of Research Design, vol. 3,
no. 1, pp. 1–5, 2010.

[50] A. Kramer, J. Green, J. Pollard Jr., and S. Tugendreich, “Causal
analysis approaches in ingenuity pathway analysis,” Bioinfor-
matics, vol. 30, no. 4, pp. 523–530, 2014.

[51] M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe,
“KEGG for integration and interpretation of large-scale molec-
ular data sets,” Nucleic Acids Research, vol. 40, no. D1,
pp. D109–D114, 2012.

[52] R. D. Finn, A. Bateman, J. Clements et al., “Pfam: the protein
families database,” Nucleic Acids Research, vol. 42, no. D1,
pp. D222–D230, 2014.

[53] UniProt, Consortium, “Uniprot: a worldwide hub of protein
knowledge,” Nucleic Acids Research, vol. 47, no. D1,
pp. D506–D515, 2019.

[54] G. Joshi-Tope, M. Gillespie, I. Vastrik et al., “Reactome: a
knowledgebase of biological pathways,” Nucleic Acids
Research, vol. 33, no. Database issue, pp. D428–D432, 2005.

[55] D. Szklarczyk, A. L. Gable, D. Lyon et al., “String V11: protein-
protein association networks with increased coverage, sup-
porting functional discovery in genome-wide experimental
datasets,” Nucleic Acids Research, vol. 47, no. D1, pp. D607–
D613, 2019.

[56] J. S. Philo, “A critical review of methods for size characteriza-
tion of non-particulate protein aggregates,” Current Pharma-
ceutical Biotechnology, vol. 10, no. 4, pp. 359–372, 2009.

[57] J. Tolles andW. J. Meurer, “Logistic regression: relating patient
characteristics to outcomes,” JAMA, vol. 316, no. 5, pp. 533-
534, 2016.

[58] M. Uhlen, C. Zhang, S. Lee et al., “A pathology atlas of the
human cancer transcriptome,” Science, vol. 357, no. 6352,
2017.

[59] C. Y. Huang, Y. C. Lin, H. S. Shiue et al., “Comparison of arse-
nic methylation capacity and polymorphisms of arsenic meth-
ylation genes between bladder cancer and upper tract
urothelial carcinoma,” Toxicology Letters, vol. 295, pp. 64–73,
2018.

[60] C. Y. Zhou, L. Y. Gong, R. Liao et al., “Evaluation of the target
genes of arsenic trioxide in pancreatic cancer by

25Oxidative Medicine and Cellular Longevity



bioinformatics analysis,” Oncology Letters, vol. 18, no. 5,
pp. 5163–5172, 2019.

[61] L. Zhang, Y. Huang, J. Ling, Y. Xiang, and W. Zhuo, “Screen-
ing of key genes and prediction of therapeutic agents in
arsenic-induced lung carcinoma,” Cancer Biomarkers,
vol. 25, no. 4, pp. 351–360, 2019.

[62] L. Zhang, Y. Zhou, J. Zhang, A. Chang, and X. Zhuo, “Screen-
ing of hub genes and prediction of putative drugs in arsenic-
related bladder carcinoma: an in silico study,” Journal of Trace
Elements in Medicine and Biology, vol. 62, article 126609, 2020.

[63] A. Bettiga, M. Aureli, G. Colciago et al., “Bladder cancer cell
growth and motility implicate cannabinoid 2 receptor- medi-
ated modifications of sphingolipids metabolism,” Scientific
Reports, vol. 7, no. 1, article 42157, 2017.

[64] Z. T. Jin, K. Li, M. Li et al., “G-protein coupled receptor 34
knockdown impairs the proliferation and migration of Hgc-
27 gastric cancer cells in vitro,” Chinese Medical Journal,
vol. 128, no. 4, pp. 545–549, 2015.

[65] H. Husi, R. J. Skipworth, A. Cronshaw, K. C. Fearon, and J. A.
Ross, “Proteomic identification of potential cancer markers in
human urine using subtractive analysis,” International Journal
of Oncology, vol. 48, no. 5, pp. 1921–1932, 2016.

[66] M. Uhlen, P. Oksvold, L. Fagerberg et al., “Towards a
knowledge-based human protein atlas,” Nature Biotechnology,
vol. 28, no. 12, pp. 1248–1250, 2010.

[67] R. Ren, K. Tyryshkin, C. H. Graham, M. Koti, and D. R. Sie-
mens, “Comprehensive immune transcriptomic analysis in
bladder cancer reveals subtype specific immune gene expres-
sion patterns of prognostic relevance,” Oncotarget, vol. 8,
no. 41, pp. 70982–71001, 2017.

[68] S. M. Weakley, H. Wang, Q. Yao, and C. Chen, “Expression
and function of a large non-coding RNA gene XIST in human
cancer,” World Journal of Surgery, vol. 35, no. 8, pp. 1751–
1756, 2011.

[69] J. Zhu, F. Kong, L. Xing, Z. Jin, and Z. Li, “Prognostic and clin-
icopathological value of long noncoding RNA XIST in cancer,”
Clinica Chimica Acta, vol. 479, pp. 43–47, 2018.

[70] W. Wei, Y. Liu, Y. Lu, B. Yang, and L. Tang, “LncRNA XIST
promotes pancreatic cancer proliferation through miR-133a/
EGFR,” Journal of Cellular Biochemistry, vol. 118, no. 10,
pp. 3349–3358, 2017.

[71] T. Gutschner, M. Hammerle, and S. Diederichs, “Malat1– a
paradigm for long noncoding RNA function in cancer,” Jour-
nal of Molecular Medicine, vol. 91, no. 7, pp. 791–801, 2013.

[72] K. Zhou, J. Yang, X. Li, and W. Chen, “Long non-coding RNA
XIST promotes cell proliferation and migration through tar-
geting miR-133a in bladder cancer,” Experimental and Thera-
peutic Medicine, vol. 18, no. 5, pp. 3475–3483, 2019.

[73] C. Li, Y. Cui, L. F. Liu et al., “High expression of long noncod-
ing RNAMalat1 indicates a poor prognosis and promotes clin-
ical progression and metastasis in bladder cancer,” Clinical
Genitourinary Cancer, vol. 15, no. 5, pp. 570–576, 2017.

[74] X. Cai, J. Wang, X. Huang et al., “Identification and character-
ization of MT-1X as a novel FHL3-binding partner,” PLoS
One, vol. 9, no. 4, article e93723, 2014.

[75] M. C. Manara, M. Pasello, and K. Scotlandi, “Cd99: a cell sur-
face protein with an oncojanus role in tumors,” Genes, vol. 9,
no. 3, p. 159, 2018.

[76] M. Z. Li, Y. Zhang, Q. Liu et al., “SOCS3 overexpression
enhances ADM resistance in bladder cancer T24 cells,” Euro-
pean Review for Medical and Pharmacological Sciences,
vol. 21, no. 13, pp. 3005–3011, 2017.

[77] C. Chen, W. He, J. Huang et al., “LNMAT1 promotes lym-
phatic metastasis of bladder cancer via CCL2 dependent mac-
rophage recruitment,” Nature Communications, vol. 9, no. 1,
p. 3826, 2018.

[78] N. Mukherjee, N. Ji, Z.-J. Shu, T. J. Curiel, and R. S. Svatek,
“CCL2/CCR2 signaling protects against bladder cancer growth
in a T cell dependent manner,” The Journal of Immunology,
vol. 204, p. 90.1, 2020.

26 Oxidative Medicine and Cellular Longevity


	Association between Arsenic Level, Gene Expression in Asian Population, and In Vitro Carcinogenic Bladder Tumor
	1. Introduction
	2. Materials and Methods
	2.1. Data
	2.2. Machine Learning (ML) Methods
	2.3. Statistical Methods
	2.4. Pathway Enrichment Analysis
	2.5. Prediction Model

	3. Results
	3.1. Global Gene Expression Analysis of Two As Exposed Sets of Human Data
	3.2. Sex-Specific Gene Expression
	3.3. As-Specific Human Gene Expression
	3.4. Myeloma Cancer Cell Lines Exposed to As Trioxide (ATO)
	3.5. Bladder Cancer Prediction Model

	4. Discussion
	5. Limitation
	6. Conclusion
	Data Availability
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

