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Rationale. Patients with clear cell renal cell cancer (ccRCC) may have completely different treatment choices and prognoses due to
the wide range of heterogeneity of the disease. However, there is a lack of effective models for risk stratification, treatment
decision-making, and prognostic prediction of renal cancer patients. The aim of the present study was to establish a model to
stratify ccRCC patients in terms of prognostic prediction and drug selection based on multiomics data analysis. Methods. This
study was based on the multiomics data (including mRNA, lncRNA, miRNA, methylation, and WES) of 258 ccRCC patients
from TCGA database. Firstly, we screened the feature values that had impact on the prognosis and obtained two subtypes.
Then, we used 10 algorithms to achieve multiomics clustering and conducted pseudotiming analysis to further validate the
robustness of our clustering method, based on which the two subtypes of ccRCC patients were further subtyped. Meanwhile,
the immune infiltration was compared between the two subtypes, and drug sensitivity and potential drugs were analyzed.
Furthermore, to analyze the heterogeneity of patients at the multiomics level, biological functions between two subtypes were
compared. Finally, Boruta and PCA methods were used for dimensionality reduction and cluster analysis to construct a renal
cancer risk model based on mRNA expression. Results. A prognosis predicting model of ccRCC was established by dividing
patients into the high- and low-risk groups. It was found that overall survival (OS) and progression-free interval (PFI) were
significantly different between the two groups (p < 0:01). The area under the OS time-dependent ROC curve for 1, 3, 5, and 10
years in the training set was 0.75, 0.72, 0.71, and 0.68, respectively. Conclusion. The model could precisely predict the
prognosis of ccRCC patients and may have implications for drug selection for ccRCC patients.

1. Introduction

Renal cancer is a malignant tumor derived from the proxi-
mal tubule epithelium in the renal parenchyma [1]. It is
one of the most common tumors of the urinary system
and one of the ten most common tumors in the world [2].
The incidence and mortality of renal cancer are increasing
yearly. The latest world cancer statistics show that the num-

ber of new cases of renal cancer is about 431,288 (2.2%) and
the number of deaths is about 179,368 (1.8%) worldwide
each year. Clear cell renal cell carcinoma (ccRCC) or kidney
renal clear cell carcinoma (KIRC) is the most common path-
ological type of renal cancer, accounting for 70-85% of total
RCC [3]. It is noteworthy that most renal cancer cases are
insidious and lack typical clinical symptoms. Therefore,
about 20-30% renal cancer patients have metastasized at
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the initial diagnosis, and 30% patients may have recurrence
or metastasis. Renal cancer is not sensitive to traditional
radiotherapy and chemotherapy. The current main treat-
ments include surgery, chemotherapy, and immunotherapy,
but about 30% patients will develop primary or secondary
drug resistance. The degree of CD8+ T cell infiltration is pos-
itively correlated with a better prognosis in most solid
tumors, whereas it is often associated with a worse prognosis
in ccRCC [4]. It is therefore urgent to gain a better under-
standing about the heterogeneity of renal cancer patients
and develop an accurate and comprehensive risk model to
stratify renal cancer patients for the sake of designing indi-
vidualized treatment plans in terms of prognostic prediction
and drug selection.

With the advancement of sequencing technology and a
variety of machine learning algorithms, bioomics has
exploded, which has greatly promoted people’s understand-
ing of tumors at the molecular level [5]. At the same time,
with the development of data science, a variety of robust
cluster algorithms have pushed the progression of multio-
mics bioinformatics science. Omics data reflect the various
biological processes of cancer and provide a detailed descrip-
tion of the molecular mechanism of cells. Different levels of
omics data reflect different relationships between the distri-
bution of the whole genome and the occurrence, develop-
ment and prognosis of cancer [6]. Unfortunately, there is a
lack of typing studies based on multiple omics prognostic
indicators in renal cancer omics research. In this study, we
performed a stratification analysis of ccRCC patients by inte-
grating multi omics and advanced cluster algorithms and
found that different subgroups presented different land-
scapes in each single omics dataset [7–16]. Finally, we used
Borta algorithm to reduce the dimension of subtype-
specific signatures and constructed a robust risk stratifica-
tion model.

2. Materials and Methods

2.1. Data Collection and Preprocessing. The workflow of this
study is shown in Figure S1. TCGA database is a
comprehensive database of the American Cancer and
Tumor Project Gene Atlas Project consisting of multiple
omics data of different tumor types. Japan ccRCC database
was included to validate the consistency of cluster analysis
[17]. We downloaded ccRCC-related datasets of 530
ccRCC samples and 71 normal control samples from
TCGA, which contains RNA-seq profiles, miRNA-seq
profiles, the Illumina 450K DNA methylation array, and
WES (Whole Exome Sequencing) data. Patients were
excluded if they (1) missed any single omics data above,
(2) did not have prognostic information, and (3) died
within 30 days. After data filtration, we finally included
258 cases of ccRCC with complete multiomics information
and clinical information into the subsequent study.

2.2. Cluster Analysis. We divided 258 ccRCC patients into
two groups by clustering their multiomics database. Ten
clustering algorithms were included in the clustering
process: SNF, PINSPlus, NEMO, COCA, LRAcluster, Con-

sensusClustering, IntNMF, CLMLR, MoCluster, and iClus-
terBayes. Based on consensus ensembles, the results of
different clustering algorithms were integrated, and the
unified samples were clustered into the same category in
different algorithms, namely, CM=∑t max

t=1 MðtÞ and cmij ∈
½0, 10� [18]. Finally, we calculated the consensus matrix to
represent robust pairwise similarities for samples because it
considers different multiomics integrative clustering algo-
rithms. Then, dimensionality reduction and visualization of
subtype data at multiomics level were performed based on
the idea of t-SNE graph dimensionality reduction using R
“Rtsne” package.

2.3. Comparison between Subgroups. Prognostic analysis of
overall survival (OS) and progression-free interval (PFI)
was performed based on the log-rank test between CS1
(Cancer Subtype 1) and CS2 (Cancer Subtype 2) subtypes
obtained in the cluster analysis above. Differentially
expressed genes (DEGs) between different subgroups were
determined using the R “DEseq2” package and visualized
by R “EnhancedVolcano” package. The screening criterion
for DEGs was set at adjusted p value < 0.01 and abstract
logFC > 1:8. Gene ontology (GO), Kyoto encyclopedia of
genes and genomes (KEGG), and gene set enrichment anal-
ysis (GSEA) were performed to identify enriched GO terms,
pathways, and hallmarks by using the R package with a
screening cutoff value at p value < 0.05 and an adjusted p
value < 0.2 [19]. Gene set variation analysis (GSVA) was
performed to identify cancer-related biological processes
using R “GSVA” package [20]. The cancer-related hallmarks
were downloaded from the MSigDB database (https://www
.gsea-msigdb.org/gsea/msigdb/).

2.4. Immunity Analysis and Immunity-Related Gene
Expression. To quantify the proportion of immune cells in
the two subtypes, several immune-related algorithms were
used to calculate the cellular components or immune cell
enrichment scores in the ccRCC tissue, including TIMER,
CIBERSORT, QUANTISEQ, MCPCOUNTER, XCELL, and
EPIC [21–24]. Single sample gene set enrichment analysis
(ssGSEA) was employed to quantify the relative abundance
of 28 immune cells in the tumor microenvironment (TME)
of ccRCC [20]. Differences in immune cell infiltration in
TME were visualized by Heatmap and boxplot. R “Estimate”
package was used to identify the stromal component and
immune component between the two subgroups. The
Tumor Immune Dysfunction and Exclusion (TIDE)
(http://tide.dfci.harvard.edu) algorithms were applied to pre-
dict the immunotherapy response of each ccRCC patient.

2.5. Copy Number Variation (CNV) Analysis. As the main
analysis tool for somatic mutation data analysis and visuali-
zation, the R “maftools” package provides the possibility to
compare the differences between different subtypes at the
WES level [25]. Through the correlation function of this
package, we analyzed the tumor mutation panorama, base
conversion and transversion, amino acid mutation hotspot,
mutation frequency of mutation alleles, copy number muta-
tion, mutual exclusion or coexistence mutation, and gene
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mutation survival in different subtypes of ccRCC patients.
At the same time, the differences in drug-gene interactions
and carcinogenic signaling pathways were also analyzed in
this function module. Recurrent broad and focal somatic
copy-number alteration (SCNA) analysis was performed by
the GISTIC 2.0 algorithm (https://www.genepattern.org/
modules/docs/GISTIC_2.0) on the basis of Euclidean dis-
tance of threshold copy number at recurring peaks using
Ward’s method [26].

2.6. Drug Sensitivity Analysis. The response of ccRCC
patients to chemotherapy drugs and small-molecule pro-
drugs was predicted based on the public pharmacogenomics
database-Genomics of Drug Sensitivity in Cancer (GDSC;
https://www.cancerrxgene.org) [27]. The half maximal
inhibitory concentration (IC50) was estimated by R “pRRo-
phetic” package [28]. The prediction process was imple-
mented by R “pRRophetic” package, where IC50 of the
samples was estimated by ridge regression and the predic-
tion accuracy was evaluated by 10-fold cross-validation
based on the GDSC training set. Finally, the molecular struc-
ture tomographs of these candidate drugs were obtained
from PubChem (https://pubchem.ncbi. http://nlm.nih.gov/).

2.7. Construction of the Subtype Landscape. To facilitate
visualization and uncover the underlying structural distribu-
tion of individual ccRCC patients, we applied the graph
learning-based dimensionality reduction technique to the
risk-related gene expression profiles in an attempt to visual-
ize the distribution of ccRCC subtypes across individual
patients using reduceDimension function of R “Monocle”
package with a Gaussian distribution [29]. The maximum
number of components was set to 4, and the discriminative
dimensionality reduction with trees was used. p value <
0.05 was considered statistically significant. The subtype
landscape was visualized with the function plot cell trajec-
tory with color-coded ccRCC subtypes.

2.8. External Data Validation. To test the repeatability of
cluster analysis, we utilized two model-free means from R
“MOVICS” package to validate the robustness of our cluster
results [18]. First, MOVICS switches to the nearest template
prediction (NTP) which can be flexibly applied to cross-plat-
form, cross-species, and multiclass predictions without any
optimization of analysis parameters. Then, we compared
the survival outcome of the predicted cancer subtypes in
external cohort and further checked the agreement between
the predicted subtype and AJCC classification. In addition to
NTP, MOVICS provides another model-free approach to
predict subtypes, which first trains a partition around
medoids (PAM) classifier in the discovery (training) cohort
to predict the subtype for patients in the external validation
(testing) cohort, and each sample in the validation cohort
was assigned to a subtype label whose centroid had the high-
est Pearson correlation with the sample. Finally, the in-
group proportion (IGP) statistic was performed to evaluate
the similarity and reproducibility of the acquired subtypes
between discovery and validation cohorts. In the end, we

used Kappa statistics to check the consistency between
different prediction results.

2.9. Dimensionality Reduction and Risk Model Construction.
Based on the multiomics classification, we obtained two sub-
types, CS1 and CS2. In the previous analysis, the DEGs
between the subtypes were obtained and the DEGs that were
positively correlated with the signals of the CS1 and CS2
subtypes were divided into risk score signatures A and B,
respectively [30]. Furthermore, the dimension reduction of
the risk gene signatures A and B was conducted using the
Boruta algorithm, and the Principle Component Analysis
(PCA) algorithm was employed to draw principal compo-
nent 1 as the score [31]. Finally, we ran a previously reported
method to get the risk score of each patient: score =∑PC1
A−∑PC1B [32]. According to the median value of the
patient’s risk score, the patients were divided into a high-
risk group and a low-risk group, and survival differences
between the two groups was analyzed using R “survival”
package.

2.10. Statistical Analysis. Spearman’ or Pearson’ correlation
analysis was used to calculate the correlation coefficient
between two variables. Wilcoxon rank-sum or t-test was
applied to evaluate the difference when comparing between
two continuous variables. Kruskal-Wallis or ANOVA test
was introduced to compare difference among three or more
groups. Also, a chi-squared or Fisher’s test was applied to
compare the difference in categorical variables. The nomo-
gram was developed to assess individual outcome of ccRCC
patients by using rms package. Calibration curves were
calculated by calibrate function implemented in R “rms”
package. Univariate Cox regression and multiple Cox regres-
sion analyses were performed to calculate the hazard ratios
(HRs). The receiver operating characteristic (ROC) curves
were plotted by R “timeROC” package. Area under the
ROC curve (AUC) and Harrell’s concordance index (C
-index) were employed to evaluate the performance of the
risk score in predicting OS and PFI. All operations are in
R 4.0.3 (https://www.r-project.org). p values were two-sided,
and p value < 0.05 was considered statistically significant. If
multiple comparisons were involved, p values were adjusted
using the Benjamini–Hochberg method. Visualization was
achieved by R “ggplot2,” “ggpubr,” and “ComplexHeatmap”
packages. In addition, this work has been preprinted in
Biorxiv [33].

3. Results

3.1. Multiomics Landscapes of the Two ccRCC Subgroups.
The most important parameter in any clustering study is
the optimal number for cluster, where k needs to be small
enough to reduce noise but on the other hand large enough
to retain important information. Herein, we referred to
Clustering Prediction Index (CPI) and Gaps-statistics to
estimate the optimal number of clusters in this study, which
turned out to be 2 [12, 34]. The number of data clusters was
estimated using CPI and Gap statistics in combination with
the aforementioned 10 algorithms. Both the correlation
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matrix heatmap and the silhouette map showed good inter-
group heterogeneity and intragroup consistency between the
two subgroups, indicating that our classification not only
preserved the heterogeneity of different types of ccRCC but
reduced unnecessary redundancy (Figure S2). The two
types of ccRCC subtypes presented different landscapes in
different omics including mRNA, lncRNA, miRNA,
methylation, and somatic mutation levels. REG1A, KRT19,
SLPI, SLC5A1, SLC22A6, CYP4A11, SLC22A12, ALDOB,
FOSB, and REN were mRNAs that showed significant
differences between the two subgroups; RP4-764022.1,
AC079630.2, AC147651.5, RP11-397G17.1, AP000439.3,
LINC00671, RP11-133F8.2, RP11-14C10.5, and LINC01426
were differential lncRNAs; has-let-7f-1, has-let-7f-2,
has-mir-126,has-mir-139, has-mir-1468, has-mir-138-1,
has-mir-138-2,has-mir-1269a, has-mir-1293, and has-mir-
135b were differential miRNAs; cg01413054, cg23557926,
cg07912922, cg06879394, cg05232694, cg19836199,
cg08443845, cg04915566, cg05514299, and cg07388969
were differential methylation sites; VHL, PBRM1, KDM5C,
MTOR, TTN, BAP1, MUC16, HMCN1, ATM, and SETD2
were differential genes related to CNV (Figure 1(a)). The
differences between the two tumor types were observed in
the t-distributed stochastic neighbor embedding (t-SNE)
dimensionality reduction distribution maps of each omics
(Figure 1(b)). Prognostic analysis showed that the CS2
subtype was better than the CS1 subtype in terms of OS and
PFI (Figure 1(c)). Finally, the classification of this study
maintained a certain degree of consistency with the
traditional AJCC classification and TNM stage classification
was able to provide more accurate classification information
for ccRCC patients (Figure 1(d) and Table 1).

3.2. Pseudotiming Analysis. This analysis cast individual
patients into a manifold with sparse tree structures and
defined the risk landscape of ccRCC. Consistent with our
previously defined subtypes, many patients were segregated
into two distinct clusters and presented different states
(Figure 2(a)). The location of individual patients in the risk
landscape represents the overall characteristics of the tumor
immune microenvironment in the corresponding subtype.
For instance, the high-risk subtype CS1 and low-risk subtype
CS2 were distributed at the opposite end of the horizontal
axis in the risk landscape (Figure 2(b)). Therefore, we
hypothesized that the horizontal axis in the risk landscape
represented the overall risk score. However, the vertical
coordinate of the developmental trajectory appeared to be
more complex and may reflect several characteristics. The
risk landscape further revealed significant intracluster
heterogeneity within each subtype. We observed that certain
subtypes appeared to be more diverse and heterogeneous
than others. For instance, CS1 could be further divided
into three subgroups based on their location in the risk
landscape, which showed different risk gene expression
profiles in specific modules (Figure 2(c)). Interestingly,
the three subgroups of patients in CS2 as stratified by
the risk landscape were associated with distinct prognoses
(Figures 2(e) and 2(f)). Similar results were obtained for CS2
(Figure 2(d)). The result of prognosis analysis showed two

distinct subtypes in the risk landscape within CS2, in which
2B showed poorer prognosis than other types in terms of
OS and PFI (Figure 2(g) and 2(h)). These results indicate that
our risk landscape analysis can provide a complementary
value to previously identified risk subtypes.

3.3. Functional Enrichment Analysis. Through differential
analysis, we identified a total of 950 DEGs, which are shown
in volcano plot (Figure 3(a), Figure S3), including 907
upregulated genes and 43 downregulated genes, and
biomarke signatures of each subtype are provided in
Supplement Table 1. GO analysis showed that the differ-
ential genes between CS1 and CS2 subgroups were enriched
in cornification, epidermis development, keratinocyte
differentiation, skin development, and negative regulation of
endopeptidase activity in Biological Process (BP) module.
In Cellular Compartment (CC) module, DEGs were
enriched in the collagen-containing extracellular matrix,
intermediate filament, intermediate filament cytoskeleton,
high-density lipoprotein particle, and plasma lipoprotein
particle, as well as peptidase inhibitor, endopeptidase
regulator, endopeptidase inhibitor, serine-type endopeptidase
inhibitor, and peptidase regulator activities in Molecular
Function (MF) module (Figure 3(b)). KEGG pathway
analysis revealed differential pathways between CS1 and CS2
were mainly enriched in complement and coagulation
cascades, ECM receptor interaction, protein digestion, and
absorption (Figure 3(c)). Through GSEA analysis, we found
that extracellular matrix organization, formation of the
cornified envelope, keratinization, SLC-mediated trans-
membrane transport, and transport of small molecules were
significantly enriched in the CS1 subgroup (Figure 3(d)).
GSVA analysis showed that hypoxia, peroxisome, KRAS
signaling pathway, myogenesis, and coagulation were
significantly enriched in CS1, while G2M checkpoint, fatty
acid metabolism, heme metabolism, and mitotic spindle
were significantly enriched in CS2 (Figure 3(e)).

3.4. Comparison of Somatic Mutations. We had previously
analyzed the differences between patients with different sub-
types at the transcriptome level, and in the present study, we
tried to analyze the differences between the subtypes at the
genome level and further determine whether there was evi-
dence of the disparity between CS1 and CS2 subgroups of
patients at the genomic level. It was found that CS1 and
CS2 presented different mutation landscapes. The top 20
most common mutation genes are shown in Figure 4(a).
Among them, the mutation rate of VHL, PBRM1, and
ARID1A in the CS1 subgroup was significantly lower than
that in the CS2 group (41% vs. 54%; 26% vs. 54%; and 1%
vs. 7%), while the mutation rate of TTN, BAP1, and SETD2
in the CS1 subgroup was significantly higher than that in the
CS2 subgroup (15% vs. 21%; 4% vs. 17%; and 10% vs. 16%)
(Figure 4(b)). To be noted, PBRM1 and BAP1 were the
most significantly different mutant genes between the two
subgroups (Figure S4A). Some previous studies [35, 36]
identified VHL, PBRM1, and TTN as the top three
mutations in the two subtypes of patients, and they were
involved in the occurrence and progression of ccRCC.
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Figure 1: The landscape of multiomics differences in ccRCC. (a) Comprehensive heatmap of multiomics integrative clustering with
dendrogram for samples. (b) Dot plot for two distinct clusters identified by the t-SNE algorithm based on mRNA, lncRNA, miRNA, and
methylation profiles. (c) Kaplan-Meier survival curve of OS and PFI of the two identified subtypes of renal cancer in TCGA-KIRC
cohort. (d) Agreement of the two identified subtypes of renal cancer with AJCC classification and pathological stage in TCGA-KIRC
cohort. OS: overall survival; PFI: progression-free interval.
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However, it was found in the present study that the mutation
frequencies of the above genes were not consistent between
the two subgroups of patients, suggesting that the classic
ccRCC mutations play totally different roles in the CS1 and
CS2 subtypes of ccRCC. For instance, PBRM1 is the second
largest mutation gene in renal cancer, while the mutation
event of PBRM1 in the two renal cancer subtypes described
herein presented inconsistent survival benefits for the
patients. PBRM1 mutation was identified as a protective
factor in CS2 subgroup (Figure 4(c)). Similarly, the
mutation sites were not consistent between the two
subgroups of ccRCC (Figure 4(b)). Next, we investigated
the cooccurring and exclusive mutations of the top 25 most
frequently mutated genes using the CoMEt algorithm and
found that there existed some specific comutations in CS1
subtype such as PBRM1-VHL, PBRM1-NOTCH2, and
PBRM1-KMT2C, and also there were specific comutations
such as ARID1A-ATRX5, SETD2-THSD7B, and ARID1A-
DNAH9 in the CS2 group, suggesting that they probably
played a redundant role in the same pathway and harbored
the selective advantages between them to keep more than

one copy of the mutations (Figure 4(d)). However, the ratio
between transversion (Tv) and transition (Ti) in all SNVs
was approximately 1 : 1 and remained stable in both cohorts
(Figure S4B). The distribution of variant allele frequency
(VAF) in different genes was found to be inconsistent
between the two subtypes. Among them, the genes with the
highest VAF in the CS1 group were KDM5C, VHL, and
PBRM1, while the first three VAF genes in the CS2 group
were VHL, PBRM1, and ATM (Figure S4C). Finally, there
were differences in the sudden change landscape between
the two subgroups. The different gene mutations showed
distinct clinical outcomes for patients in the CS1 and CS2
subgroups (Figure S3D). For example, PBRM1 was a
typical example to demonstrate the different mutation
spots between the two cohorts and the plausible chain
reaction of the differences took place in prognostic impact
(Figure S4E). At the same time, based on the differences
in CNV data between the two subgroups, we explored
possible treatments based on the mutation data of the two
subtypes using the drug-Interactions function in the
maftools package and the DGIdb database (https://www
.dgidb.org/). Among them, the possible therapeutic targets
in CS1 group mainly included BAP1, COL24A1, DST,
HMCN1, and KDM5C. The potential therapeutic targets
in the CS2 group mainly included ATM, COL6A6, DST,
ERBB4, and HMCN1 (Figure S4F).

3.5. CNV Differences between CS1 and CS2 Subgroups of
ccRCC. CNV differences were compared between patients
with different subtypes of KIRC. The incidence of the rate of
copy number variation in CS2 was higher than that in CS1
(Figure S5A). GISTIC2.0 was used to define recurrently
amplified and deleted regions in the two subgroups
(Supplement Table 2). The results showed that the two
subtypes had frequent CNVs in the region containing
oncogenes, tumor suppressor genes (e.g., VHL and PBRM1)
and metabolism regulator (e.g., COL4A3 and COL4A4),
indicating that CNVs might play a significant role in the
tumorigenesis and progression of ccRCC. We found
recurrent focal CNVs in CS1 including amplifications
containing 5q35.1 (ADRA1B) and 3q26.33 (PIK3CA) and
deletion of 9p21.3 (CDKN2A) and 3p21.31 (KIF9).
Recurring focal CNVs in CS2 included amplifications of
5q33.2 (KIF4B) and deletion of 3p11.1 (HTR1F). These
specific CNVs might contribute to the formation of the two
subtypes (Figure S5B).

3.6. Carcinogenic Pathway Differences between CS1 and CS2
Subtypes of ccRCC. Through CNV data, we found that onco-
pathways were not completely consistent between the two
subgroups. Among them, the most critical carcinogenic
pathways in CS1 subgroup were RTK_Ras, Notch, PI3K,
Hippo, WNT, TP53, MYC, NRF2, and Cell Cycle vs. RTK_
Ras, Notch, Hippo, WNT, PI3K, TP53, MYC, Cell Cycle,
NRF2, TGF_β, and other pathways in the CS2 subgroup
(Figures 5(a) and 5(b)). At the same time, GSVA analysis
was exploited to verify the difference in oncopathways
between the two subgroups (Figure S6).

Table 1: Summary descriptive table by groups of “cluster.”.

CS1 CS2 p.overall
N = 122 N = 136

fustat: <0.001∗

0 80 (65.6%) 117 (86.0%)

1 42 (34.4%) 19 (14.0%)

futime 1212 (984) 1506 (1131) 0.026

AJCC: 0.083

I 58 (47.5%) 86 (63.2%)

II 12 (9.84%) 13 (9.56%)

III 29 (23.8%) 22 (16.2%)

IV 22 (18.0%) 14 (10.3%)

X 1 (0.82%) 1 (0.74%)

Age 60.7 (11.7) 60.8 (12.2) 0.970

PFI: 0.005

0 79 (64.8%) 110 (80.9%)

1 43 (35.2%) 26 (19.1%)

PFI.time 1038 (970) 1290 (1041) 0.045

Gender: 0.214

FEMALE 41 (33.6%) 57 (41.9%)

MALE 81 (66.4%) 79 (58.1%)

Grade: <0.001∗

G1 2 (1.64%) 7 (5.22%)

G2 50 (41.0%) 68 (50.7%)

G3 41 (33.6%) 51 (38.1%)

G4 28 (23.0%) 8 (5.97%)

GX 1 (0.82%) 0 (0.00%)

Laterality: 0.658

Bilateral 1 (0.82%) 0 (0.00%)

Left 55 (45.1%) 59 (43.4%)

Right 66 (54.1%) 77 (56.6%)
∗p value < 0.05 is considered statistically significant.

7Oxidative Medicine and Cellular Longevity

https://www.dgidb.org/
https://www.dgidb.org/


−10 −5 0 5 10 15

−4

−2

0

C
om

po
ne

nt
 2

Component 1

2

4

11

2

3
4

5

State
1
2
3
4
5

6
8
9
10
11

(a)

−10 −5 0 5 10 15

−4

−2

0

C
om

po
ne

nt
 2

Component 1

2

4

Cluster
1C
1C

(b)

−10 −5 0 5 10 15

−4

−2

0

C
om

po
ne

nt
 2

Component 1

2

4

Cluster
1A
1B

1C
Other

(c)

−10 −5 0 5 10 15

−4

−2

0

C
om

po
ne

nt
 2

Component 1

2

4

Cluster
2A
2B
Other

(d)

Figure 2: Continued.

8 Oxidative Medicine and Cellular Longevity



1.00

0.75

0.50

0.25O
ve

ra
ll 

su
rv

iv
al

0.00

Number at risk

C1

Time (years)

13
33
76
136

0 2

89

4 6 8 10 12

1
0
0
0

8
2
2
0

14
4
3
0

39
10
8
2

67
31
11
4

46
19
6

0

Log-rank
p = 0.00027

2 4 6
Time (years)

8 10 12

1A
1B

C1
1C
Other

(e)

1.00

0.75

0.50

0.25

Pr
og

re
ss

io
n 

fre
e s

ur
vi

va
l

0.00

Number at risk

C1
Time (years)

13
33
76

135

0 2

79

4 6 8 10 12

0
0
0
0

4
1
2
0

9
3
3
0

28
7
7
2

57
23
10
4

37
15
5

0

Log-rank
p = 0.0054

2 4 6
Time (years)

8 10 12

1A
1B

C1
1C
Other

(f)

1.00

0.75

0.50

0.25O
ve

ra
ll 

su
rv

iv
al

0.00

0

p = 0.0001
Log-rank

2 4 6
Time (years)

8 10 12

C2
2A
2B
Other

Number at risk

C2

Time (years)

79

57
122

0 2

71

4 6 8 10 12

0
0

1

4
3

5

7
4

10

20
13

26

46
25

42

39

50

(g)

1.00

0.75

0.50

0.25

Pr
og

re
ss

io
n 

fre
e s

ur
vi

va
l

0.00

0

p = 0.0032
Log-rank

2 4 6
Time (years)

8 10 12

Number at risk

C2

Time (years)

79

56
122

0 2

57

4 6 8 10 12

0
0

0

3
1

3

6
2

7

16
8

20

37
21

36

36

43

2A
2B

C2

Other

(h)

Figure 2: The risk landscape of ccRCC and the intracluster heterogeneity within subtypes. (a) The subtype of ccRCC clustered by state. (b) The
risk-related mRNA landscape of ccRCC: each point represents a patient with colors corresponding to the subtype defined previously. (c) Patients
of CS1 subtype could be further stratified into three subgroups based on their location in the risk-related mRNA landscape. (d) Patients of CS2
subtype could be further stratified into two subgroups based on their location in the risk related mRNA landscape. (e, f) The three subgroups
of patients in CS1 as stratified by the risk-related mRNA landscape were associated with distinct prognoses of OS and PFI. Log-rank p value
was calculated among subgroup stratification. (g, h) The two subgroups of patients in CS2 as stratified by the risk-related mRNA landscape
were associated with distinct prognoses of OS and PFI. Log-rank p value was calculated among subgroup stratification.
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3.7. Immune Infiltration Analysis. The result of our immune
infiltration analysis showed a significant difference in the
immune landscape between the CS1 and CS2 subgroups.
The algorithms showed fewer infiltrating cells in the CS2 sub-
group as compared with the CS1 subgroup (Figure 6(a)), and
the expression of marker genes related to the immune micro-
environment was also significantly different between the two
groups (Figure S5). Among them, the chemokine family,
costimulatory factors, coinhibitory molecules, interferon, and
MHC molecules were included in the CS1 subgroup. GSVA
analysis showed that differences in specific immune cell
infiltration between the two groups were calculated, and the
result showed a higher degree of multiple immune cell
infiltration in the CS1 group than in the CS2 group
(Figure 6(b)). GSVA analysis showed that more
significantly immunity-related pathways were activated in
CS1 subtype as compared with CS2 subtype, including
interleukins, cytokines, B cell functions, and T cell
functions (Figure 6(c)). However, there was no significant
difference in tumor mutation burden (TMB) between the
two subgroups (Figure 6(d)). However, the TIDE
algorithm showed a significantly higher immune check
inhibitor response rate in CS2 patients compared with CS1
patients (p < 0:01) (Figure 6(e)). Finally, with respect to
differentially expressed common immune reverse regulator
makers between the two groups, the expression of PD1 in
the CS2 subgroup was higher than that in the subgroup
(p = 0:083), while PDL1 in the CS2 subgroup was
significantly lower than that in the CS1 subgroup (p < 0:01).
But other common immunosuppressive markers including
TIGIT, LAG3, CTLA4, and KLRB1 were not significantly
different between the two subgroups (Figure S7A). The
ESTIMATE results showed that the immune scores and

estimate scores in the CS1 group were lower than those in
the CS2 group (Figure S7B).

3.8. Drug Sensitivity Analysis. In this section, we compared
the sensitivity to Saracatinib, Lisitinib, Imatinib, Gefitinib,
Erlotinib, Dasatinib, Crizobinib, and Sunitinib between the
two subgroups of ccRCC and found no significant difference
in sensitivity to Sunitinib and Erlotinib between the CS1 and
CS2 subgroups, but patients in the CS2 subgroup were more
sensitive to Sorafenib, Lisitinib, Gefitinib, and Dasatinib
than those in the CS1 subgroup (Figure7A). The previous
prognosis analysis showed that the prognosis of the CS1 sub-
group was poorer than that of the CS2 subgroup. Therefore,
based on the GDSC database, we explored whether there
were any other sensitive drugs for CS1 subgroup and finally
discovered 53 kinds of small-molecule drugs that could be
used as potential drugs for the treatment of CS1 patients
(Supplement Table3). The top 10 molecular drugs with the
most significant differences were CGP.082996, CMK,
JNJ.26854164, ZM.447439, GNF.2, LAM. A13, RO.3306,
WO2009093972, CGP.60474, and VX.680 (Figure 7(b)).
The detailed structures of the above molecules are provided
in Figure S8.

3.9. External Data Verification for the Subtyping Method of
ccRCC. In this part, we aimed to predict the possible sub-
types of each sample in the external dataset. In most cases,
this multiclassification issue is tricky for the simple reason
that it is nearly impossible to entirely match recognized
markers in the external cohort, so the reliability of model-
based predicting methods might be low. To verify whether
the subtype-specific signature could accurately classify renal
cancer into CS1 and CS2 subtypes in an external dataset, we
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Figure 3: Functional enrichment analysis of DEGs between CS1 and CS2 subtypes. (a) Volcano map of different expression genes. (b) GO
enrichment analysis. (c) KEGG pathway analysis. (d) Gene set enrichment analysis (GSEA): hallmarks in the subgroups. (e) GSVA:
differences in enrichment between the subgroups.
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used the remaining 273 renal cancer datasets in TCGA as a
validation set to evaluate the robustness of the subtype sig-
nature classier. It was found that the subtype signature could

accurately verify the outer data into two subgroups
(Figure 8(a)). The classification of the outer dataset was con-
sistent with the classic AJCC classification in some extent
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Figure 4: Landscape of somatic mutation in the CS1 and CS2 subgroups. (a, b) Waterfall plot shows the mutation distribution of the top
20 most frequently mutated genes. The central panel shows the type of mutation in each ccRCC sample. The upper panel shows the
mutation frequency of each ccRCC sample. The bar plots on the left show the frequency and mutation type of genes mutated in 258
ccRCC samples. The lower part shows different subgroups including CS1 and CS2. (c) Forest plot displays the top 6 most significantly
differentially mutated genes between the two subgroups. (d) Heatmap illustrates the mutually cooccurring and exclusive mutations of
the top 25 frequently mutated genes. The color and symbol in each cell represent the statistical significance of the exclusivity or
cooccurrence for each pair of genes.
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(Figure 8(b)). Among the validation datasets, OS and PFI in
the CS2 group were poorer than those in the CS1 group
(p < 0:01) (Figure 8(c)). Finally, we used Kappa statistics
for consistency evaluation, and we compared the consistency
between NTP-predicted subtype and COMIC in discovery
TCGA-KIRC (scores = 0:743, p < 0:001), between PAM-
predicted subtype and COMIC in discovery TCGA-KIRC
(scores = 0:899, p < 0:001), and between NTP and PAM-
predicted subtype in validation ICGC-KIRC (scores = 0:75,
p < 0:001) (Figure 8(d)). In addition, we obtained integrated
data of Japanese ccRCC cohort and valid verification of
our subtyping method was done in this cohort as well
(Figure S9). The results demonstrated that our typing
research was robust and reliable.

3.10. Dimensionality Reduction Clustering and Risk Model.
To clarify the subtype signatures of the CS1 and CS2 sub-
types, we used the DESeq2 package to perform differential
analysis to determine the transcriptome differences between
these subtypes, and then, we performed unsupervised clus-
tering based on the differential genes and set the genes that

were positively related to CS1 as signature B, and the genes
positively related to CS2 as signature A (Figure S10A). Next,
to reduce noise or redundant genes, we used the Boruta
algorithm to reduce the dimensionality of the signature
genes of CS1 and CS2 subtypes (Figure S10B). At the same
time, we chose the most critical signatures according to the
degree of contribution (Figure S10C). Furthermore, a
method similar to Gene expression grade index was
applied to define the risk score of each patient [37]. Based
on the risk scores obtained, the patients were divided into
a high-risk group and a low-risk group (Figure S10D).
Prognosis analysis showed that the prognosis of the
patients in the high-risk group was significantly poorer
than that of the patients in the low-risk group in terms of
OS and PFI (p < 0:01), and the ROC curve showed that the
risk score could more accurately assess the long-term
survival rate of the patients (Figures 9(a)–9(h)). To develop a
clinically relevant quantitative method for predicting the
probability of patient mortality, we constructed a nomogram
by integrating the risk score and other clinical prognostic
factors (Figure S10E). The calibration plot indicated that the
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Figure 6: Identification of immune status. (a) Heatmap of tumor-related infiltrating immune cells based on TIMER, CIBERSORT,
CIBERSORT-ABS, QUANTISEQ, MCPcounter, XCELL, and EPIC algorithms in the CS1 and CS2 subgroups. (b) Different normalized
enrichment scores of immune cells between the subgroups. (c) Heatmap of different immune-related pathway enrichment scores between
the subgroups. (d) Difference in TMB between the CS1 and CS2 subgroups. (e) Difference in response of immune check point inhibitor
treatment based on the TIDE algorithm.
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Figure 7: Difference of drug sensitivity. (a) Differences in estimated IC50 of the molecular targeted drugs (Saracatinib, Lisitinib, Imatinib,
Gefitinib, Erlotinib, Dasatinib, Crizobinib, and Sunitinib) between the CS1 and CS2 subgroups. (b) Differences in response to 10
chemotherapy drugs between the two prognostic subtypes.

20 Oxidative Medicine and Cellular Longevity



CS1
Class predictions

Te
m

pl
at

e f
ea

tu
re

s

CS2
10p − value

(a)

1.00

0.75

0.50

0.25

0.00
RI

Sc
al

ar

AMI JI

CS1

CS2

I

II

III

IV
X

FM Subtype AJCC
AJCC CS1

CS2

(b)

Figure 8: Continued.

21Oxidative Medicine and Cellular Longevity



derived nomogram had better performance than that of an
ideal model (Figure S10F).

4. Discussion

ccRCC is significantly different from many other solid
tumors. Firstly, it has a special metabolic pattern and
immune microenvironment as represent by its lipophilic,
transparent, and metabolic pattern [38]. Although the
TME of ccRCC is infiltrated with large numbers of immune
cells, a typical feature is that patients with high-degree CD4+

and CD8+ T cell infiltration have a poorer prognosis [39].
Secondly, the heterogeneity of renal cancer is reflected by
the fact that ccRCC patients with a similar stage and grade

may present completely different therapeutic response and
OS after receiving the same treatment. They may present
distinctive genetic and molecular alterations, experience dif-
ferent clinical courses, and exhibit different responses to the
same therapy [40]. However, there are few studies trying to
establish a model based on integrated data in the purpose
of predicting both prognosis and drug selection in ccRCC
patients. Hence, it is absolutely critical to develop a compre-
hensive and robust ccRCC prognosis and drug selection
model based on integrated multiomics data and advanced
strategies to help make prognosis prediction and specific
personalized treatment plans.

With the rapid advance of high-throughput sequencing
technology and fulfillment of The Cancer Genome Atlas,
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Figure 8: Verification in external dataset. (a) Heatmap of NTP in outer KIRC cohort using subtype-specific upregulated biomarkers
identified from the TCGA-KIRC cohort. (b) Agreement of the two predicted subtypes of renal cancer with AJCC classification in outer
KIRC cohort. (c) Kaplan-Meier survival curve of the two predicted subtypes of renal cancer in outer KIRC cohort. (d) Consistency
heatmap using Kappa statistics.
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the explosive growth of multiple omics has significantly
contributed to researchers’ understanding of cancer at
molecular level. The new challenges presented by massive
amounts of omics data are data processing and analysis. In
the present study, we made a comprehensive exploration of
multiple omics including mRNA profiles, lncRNA profiles,
miRNA profiles, DNA methylation profiles, and simple
somatic mutation to construct a subtyping tool to help

address this important clinical issue. Omics data is complex,
multilayered, and complementary so that a key goal of ana-
lyzing multiple omics data is to build effective models that
predict phenotypic characteristics and elucidate the biologi-
cal significance of important biomarkers. Another main goal
of deciphering omics data is to reduce dimension and
decrease inherent noise while at the same time to select rel-
evant features and avoid overfit. As the purpose of this study
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Figure 9: Construction of the risk scores. (a–d) ROC curve of OS and PFI, as well as Kaplan-Meier survival curve of OS and PFI of the two
identified subtypes of renal cancer in train cohort. (e–h) ROC curve of OS and PFI, as well as Kaplan-Meier survival curve of OS and PFI of
the two identified subtypes of renal cancer in train cohort.
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was to conduct a stratification model through multiomics
data, we firstly used the Cox Proportional Typing model
by R “Survival” package to screen the signatures in each set
of omics data that are closely related to the prognosis of
KIRC patients for subsequent analysis, then utilized ten
robust machine learning algorithms to perform cross-
validation and finally identified subtypes numbers. Through
clustering the multiomics data of 258 ccRCC patients after
filtration, we generated two subtypes of ccRCC and found
significantly different landscapes of mRNA, lncRNA,
miRNA, DNA methylation, somatic mutation, and CNVs
between two subtypes of ccRCC patients. It was found that
ccRCC patients in the CS2 subtype group showed better
prognosis than those in the CS1 subtype group. In addition,
pseudotiming analysis further validated the robustness of
our subtyping method by two distinct clusters, and each of
them was further stratified into four subtypes by the risk-
related mRNA landscape. With the maturation of sequenc-
ing technology and the improvement of tumor atlas plans
in recent years, more molecular typing studies on renal can-
cer have emerged. TCGA team remodeled ccRCC through a
stratification remodeling study from the levels of genomic
alterations, DNA methylation profiles, RNA, and proteomic
signature and finally found that the PI3K/AKT pathway was
recurrently mutated, suggesting that this pathway is a poten-
tial therapeutic target [41]. On this basis, numerous ccRCC
typing studies have emerged by using a single omics profile
or specific gene set. Although these classification studies
have to some extent provided new directions for the classifi-
cation and precise treatment of renal cancer to some extent,
they have their respective shortcomings. For example, Chen
et al. integrated multiple-omics data of all RCC cases only
based on one algorithm (COCA) without incorporating the
lncRNA profile into the typing study [42]. Besides, the clas-
sification methods used in these studies were relatively sim-
ple. Ricketts et al. integrated 843 RCC multiple-omics data
and then categorized the data from each omics data alone,
which did not achieve the true sense of multiple sets of data
[43]. The methods used in these classification studies can
hardly be applied to clinical practice because they lack accu-
racy. In contrast, the current study used a variety of main-
stream clustering algorithms to integrate multiple profiles
at the same time to perform a classification study on ccRCC
patients by paying special attention to analysis at each omics
level one by one and the heterogeneity of the two groups of
patients in TME. Surprisingly, our ccRCC subtyping model
constructed according to differential biomarkers showed
good survival prediction in both training and validation sets.

Importantly, our study extended previous studies in
patient subtyping based on sample clustering analysis. The
discrete subtype information is unable to capture inter-
and intracluster relationships and provide the overall struc-
ture of patient distribution. To remedy these shortcomings,
we applied graph learning approaches to uncover the tree
structures of expression profiles among patients, believing
that they can provide complementary information for clus-
tering analysis and offer new insight into the complex land-
scape of ccRCC. Based on the pseudochronological analysis,
we found that there may be a certain evolutionary relation-

ship between CS1 and CS2. As the prognosis of the two sub-
types is completely different, we performed a pseudotime
analysis and found that the CS2 subtype was located at the
beginning of the differentiation axis, while the CS1 subtype
was in evolution. At the end of the axis, combined with the
results of the prognostic analysis in previous studies, we
speculate that the evolution of profiles between CS1 and
CS2 can be used to explain the progressive condition of
ccRCC patients. Among them, the up- and downregulated
genes that participated in the progression from the CS2 state
to the S1 state may be the hub genes and potential therapeu-
tic targets for ccRCC patients.

Enrichment analysis showed that extracellular matrix
organization, cornification, keratinocyte differentiation, and
keratinization were distinctly enriched in the CS1 subgroup,
which is in line with the following immune cell infiltration
analysis. In GSVA analysis, we found that hypoxia, coagula-
tion, and myogenesis pathways were upregulated in CS1
subtype, while G2_M checkpoint, fatty acid metabolism,
and TGF_β signaling oncopathways were unregulated in
CS2 subtype. All the GSVA results are consistent with the
findings in the previously reported studies. Hypoxia is a typ-
ical character of RCC, which plays a crucial role in the devel-
opment and progression of RCC together with angiogenesis
and glucose metabolism, like a loop that is self-feeding [44].
In this study, we found significant differences in PBRM1 and
BAP1 mutation between the two subgroups. PBRM1 is the
second most common mutated gene in ccRCC after VHL,
as well as a component of the SWI/SNF chromatin remodel-
ing complex. Different studies investigated the biological
consequences and the potential role of PBRM1 alteration
in RCC prognosis and identified it as a drug response mod-
ulator, although some results are controversial [45]. The
BAP1 gene has emerged as a major tumor suppressor
mutated with various frequencies in numerous human
malignancies, including uveal melanoma, malignant pleural
mesothelioma, ccRCC, intrahepatic cholangiocarcinoma,
hepatocellular carcinoma, and thymic epithelial tumor
[46]. BAP1 orchestrates chromatin-associated processes
including gene expression, DNA replication, and DNA
repair [47]. BAP1 also exerts cytoplasmic functions, notably
in regulating Ca2+ signaling at the endoplasmic reticulum
[48]. Taken together, we speculate that the CS1 subtype of
ccRCC tends to be infiltrated with more immune cells with
apparent fibrosis or more mesenchyma as compared with
the CS2 subtype, which seems to be a more “clear cell-like”
classic renal carcinoma.

In recent years, immunotherapy has become one of the
mainstays of treatment for renal cancer and been recom-
mended by the American Food and Drug Administration
(FDA) as the first-line treatment for advanced renal cancer
[49, 50]. However, there is still a lack of targeted markers
for predicting the benefit of immunotherapy in RCC
patients. The TME contains a variety of components such
as vascular interstitial components, chemokines, and inflam-
matory factors [51]. The composition and proportion of
these components integrally determine the effectiveness of
immunotherapy and directly determine the efficacy of anti-
tumor immunity in renal cancer [52]. In the present study,
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it was obvious that the proportion of different types of T
cells in CS1 subtype was higher than that in CS2 subtype.
They included activated CD4+ T cells, activated CD8+ T
cells, regulatory T cells, T follicular helper cells, and type 1
T helper cells. Subsequent GSVA analysis also demonstrated
that immune cell functions were mainly enriched in the CS1
subtype of ccRCC. However, although the infiltration scores
of various immune cells in the CS1 group were relatively
higher, the prognosis of patients in the CS1 group was
poorer than that in the CS2 group. In addition, the TIDE
algorithm revealed that the immunotherapy benefit rate in
the CS2 group was significantly higher than that in CS1
group. Besides, the expression of immune checkpoints was
significantly upregulated in CS1 subtype. All these results
indicate that immune cell infiltration in CS1 subtype of
ccRCC may play a coinhibitory role, while the immune
microenvironment in CS2 subtype demonstrated a better
antitumor effect. This hypothesis is in line with previous
studies. ccRCC is generally recognized as an immunogenic
tumor, but it is also known for its immune escaping through
regulatory T cells by upregulating a variety of inhibitory
functions [53]. Although patients with advanced renal can-
cer have more immune cell infiltration, these tumors often
have immune escape. It is also proved that the degree of
CD8+ T cell infiltration in renal cancer is inversely propor-
tional to the patient’s prognosis, meaning that a higher
degree of CD8+ T cell infiltration predicts a worse prognosis
of patients with renal cancer [54].

It was found in our study that ccRCC patients of the two
subtypes exhibited a significantly different sensitivity to
molecular targeted drugs: patients in the CS1 high-risk sub-
group showed a higher sensitivity to Imatinib and Crizotinib
as compared with those in the CS2 subgroup, while patients
in the CS2 subgroup showed a higher sensitivity to Saracati-
nib, Lisitinib, Gefitinib, and Dasatinib. To be noted, the
response rate to immune checkpoint agents in ccRCC
patients of CS2 subtype was higher than that in those of
CS1 subtype. However, these immunotherapy markers are
commonly used in other tumor types (such as PD1 and
LAG3), and TMB was not identified as sensitive potential
therapeutical target in ccRCC patients. Over the past 20
years, medical treatments for RCC have transitioned from
nonspecific immune approaches to targeted therapy against
vascular endothelia growth factor (VEGF) and today’s novel
immunotherapies. There are multiple targets, including
platelet-derived growth factor and related receptors, and
other inhibitors including mammalian target of rapamycin
and the EMT and AXL tyrosine-protein kinase receptors.
Nowadays, several immune-checkpoint inhibitors have been
approved based on their significant curative effects in
advanced RCC patients.

However, most other studies have focused on exploiting
biomarkers for predicting the sensitivity of patients to
immunotherapy and the optimal combination or selection
of the existing agents. In the present study, we surprisingly
noticed that CS1 subtype was insensitive to most molecular
targeted drugs and immune inhibitory agents, which urged
us to explore new potential drugs that could more effectively
treat CS1 subtype. Also amazingly, we discovered a variety of

potential drugs specific to this high-risk subtype. Among
them, compound CGP.082996 was found to be associated
with the MYC locus, suggesting that it is a potent antiprolif-
erative agent against retinoblastoma- (Rb-) positive tumor
cells by exclusively arresting cells at G1 and reducing
phospho-Ser 780/Ser 795 on the Rb protein [55]. CMK
could inhibit the proliferation of lung adenocarcinoma cells
both in vivo and vitro by targeting the RSK family members
[56]. JNJ-26854165 could induce wild-type p53- and E2F1-
mediated apoptosis in acute myeloid and lymphoid leukemia
[57]. ZM 447439 is a novel promising aurora kinase inhibi-
tor which can provoke antiproliferative and proapoptotic
effects against gastroenteropancreatic neuroendocrine tumor
diseases either alone or in combination with bio- and che-
motherapeutic agents [58]. GNF-2 can affect structural
dynamics of the ATP-binding site by binding to the
myristate-binding site of Abl [59]. LFM-A13 exhibited a
favorable pharmacokinetic behavior that was not adversely
affected by the standard chemotherapy drugs vincristine,
methylprednisolone, or l-asparaginase (when used as combi-
nation treatment, VPL) and significantly improved the che-
motherapy response and survival outcome of mice
challenged with BCL-1 leukemia cells [60]. RO.3306 could
enhance p53-mediated Bax activation and mitochondrial
apoptosis in AML by inhibiting cyclin-dependent kinase 1
[61]. AZD-6482 is a specific PI3Kβ inhibitor that exerts an
antitumor effect by inhibiting proliferation and inducing
apoptosis of human glioma cells [62]. Some of the potential
drugs explored in the current study have not yet been
reported before, such as AZD-6482, which is an intravenous
platelet aggregation inhibitor which was reported to be used
for the treatment of thrombosis but not cancer. It is worth
noting that CGP-60474, an inhibitor of cyclin-dependent
kinase, has proved to be the most potential drug in that it
alleviated tumor necrosis factor-α (TNF-α) and
interleukin-6 (IL-6) in activated macrophages by downregu-
lating the NF_κB activity and reducing the mortality rate in
LPS-induced endotoxemia mice [63]. In addition, VX.680, a
highly potent and selective small-molecule inhibitor of
Aurora kinases, could block cell-cycle progression and
induce apoptosis in a diverse range of human tumor types
including leukemia and colon and pancreatic tumors [64].
Given that CS1 was more sensitive to the above-mentioned
drugs and some drugs have achieved certain effects in clini-
cal trials of some solid tumors, the above-mentioned drugs
may provide new potential therapeutic targets for the high-
risk subgroup of RCC.

As we discussed above, this study provides new insights
into molecular subtyping of ccRCC and, at the same time,
constructs a molecular prognostic model based on mRNA
expression. Innovatively, this is the first study ever that
established a robust prognosis and drug selection model by
exploiting data at each omics level with several algorithms.
Typically, we combined pseudochronological analysis into
clustering analysis for better understanding of inter-/
intracluster relationship as compared with previous studies.
However, this study still has some limitations. Firstly, all
the classification data used in this study include multiomics
data. In real clinical work, obtaining so many omics data
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from patients is expensive and time-consuming, so it is not
easy to be applied in clinical practice. Secondly, although
we compared drug sensitivities between different subgroups,
specific experiments are still in need for further validation.
As the current clinical multiomics panels are not yet popu-
lar, a risk model based on mRNA expression and the charac-
teristics of subgroups needs to offer implications for the
clinical work.

In summary, this is an innovative study on ccRCC
molecular typing based on multiple omics, which describes
differences between subgroups at multiple omics levels. As
this prognostic model could efficiently predict the long-
term survival and drug selection of ccRCC patients, it
might bring new hope to the diagnosis and treatment of
ccRCC.
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