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The continuous development of antineoplastic therapy has significantly reduced the mortality of patients with malignant tumors,
but its induced cardiotoxicity has become the primary cause of long-term death in patients with malignant tumors. However, the
pathogenesis of cardiotoxicity of antineoplastic therapy is currently unknown, and practical means of prevention and treatment
are lacking in clinical practice. Therefore, how to effectively prevent and treat cardiotoxicity while treating tumors is a major
challenge. Animal models are important tools for studying cardiotoxicity in antitumor therapy and are of great importance in
elucidating pathophysiological mechanisms and developing and evaluating modality drugs. In this paper, we summarize the
existing animal models in antitumor therapeutic cardiotoxicity studies and evaluate the models by observing the macroscopic
signs, echocardiography, and pathological morphology of the animals, aiming to provide a reference for subsequent
experimental development and clinical application.

1. Introduction

With the advancement of science and technology, modali-
ties such as surgery, chemotherapy, radiotherapy, and tar-
geted immunotherapy for the treatment of malignant
tumors have been developed, which have greatly improved
the survival rate of patients with malignant tumors. Statis-
tics released by the American Cancer Society (ACS) show
that the mortality rate of patients with malignant tumors
has decreased by 31% since 1991 [1]. Although the sur-
vival rate of patients with malignancies has improved, car-
diotoxicity associated with antineoplastic therapy has also
become apparent. Studies have shown that the risk of car-
diovascular death increases 1.6 to 3.6 times in patients
after antineoplastic therapy, and the risk of cardiovascular
risk factors such as hypertension, diabetes mellitus, and

lipid metabolism disorders increases 1.7 to 18.5 times
compared to the nononcology population [2]. Cardiotoxi-
city has become the leading cause of long-term death in
patients with malignancies [3]. At this point, the emerging
interdisciplinary discipline of oncology cardiology was
born [4]. Oncologic cardiology focuses on cardiotoxicity
caused by oncology treatment and oncology-combined
cardiac diseases, aiming at the comprehensive, effective,
and scientific management of patients with oncology-
cardiology comorbidities and prevention of antitumor
therapy cardiotoxicity [5]. Antineoplastic cardiotoxicity
includes arrhythmias, arterial vascular disease, hyperten-
sion, and myocardial infarction (Figure 1), and the most
common and serious ones are left ventricular dysfunction
and heart failure [6]. Currently, for the prevention and
treatment of antineoplastic therapy cardiotoxicity, some
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studies have proposed the use of cardioprotective agents to
prevent antineoplastic therapy cardiotoxicities, such as
dexrazoxane, coenzyme Q10, glutathione, antioxidants,
leucovorin, N-acetylcysteine, and iron chelators, but the
safety and efficacy of the above drugs are highly contro-
versial. Dexrazoxane is the only cardioprotective agent
approved by the Food and Drug Administration (FDA),
and although many guidelines recommend its use for the
prevention of anthracycline cardiotoxicity, some studies
have found serious adverse effects, such as bone marrow
suppression and neurotoxicity, in the use of dexrazoxane.
Meanwhile, the 2008 U.S. oncology clinical practice guide-
line points out that dexrazoxane may reduce the antitumor
efficacy of anthracyclines, thus limiting its clinical applica-
tion and promotion [3, 7, 8]. In addition, there is a lack of
evidence-based medical evidence for the role of other car-
dioprotective agents [9]. For the treatment of antitumor
cardiotoxicity, the standard treatment for cardiac disease
in nononcology patients is mainly followed, but this
approach may not achieve the expected clinical efficacy
because the cardiotoxic response in oncology patients with
different disease processes and treatment regimens is clin-
ically different from that in nononcology patients. For
example, in an analysis of heart failure patients with ven-
tricular assist devices, it was shown that patients with
chemotherapy-related heart failure require more ventricu-
lar assist support devices than patients with other etiolo-
gies because chemotherapy causes secondary ventricular
injury and triggers more severe heart failure [10, 11].

In conclusion, there is still a lack of practical measures to
prevent and treat cardiotoxicity in antineoplastic therapy.
The development of drugs that combine cardioprotective

and anticancer effects has become a focus of research and a
hot spot in recent years. Experimental research is insepara-
ble from the replication of animal models, which can simu-
late the disease state, further explore the pathogenesis and
pathological process, and provide a more scientific and reli-
able theoretical basis for the development of relevant drugs
and clinical treatment. Therefore, it is important to establish
animal models that are close to human cardiotoxicity in
antitumor therapy. However, there are many uncertainties
in the preparation of animal models, such as ambiguous
modeling dose and preparation period. Therefore, this paper
summarizes and evaluates the preparation methods of ani-
mal models for cardiotoxicity caused by antitumor therapy,
aimed at establishing a clear and feasible animal model for
cardiotoxicity of antitumor therapy and providing a basis
for subsequent experiments and clinical applications.

2. Single-Factor-Induced Cardiotoxicity
Animal Model

A single-factor-induced cardiotoxicity animal model refers
to an animal model of cardiotoxicity replicated by an
intervention factor, mostly established by injection of
doxorubicin, trastuzumab, 5-fluorouracil (5-FU), cisplatin,
immunosuppressive drugs, and radiation. And the model
consistent with the clinical antitumor treatment cardio-
toxicity was replicated and evaluated by observing the
general state of the animal, cardiac ultrasound, and patho-
logical morphology.

2.1. Animal Model of Doxorubicin Cardiotoxicity. Doxorubi-
cin (DOX) is a highly effective, broad-spectrum anthracycline
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Figure 1: Diagram of the relationship between antineoplastic therapy and cardiotoxicity. The blue area on the left represents organ tumors
treated with antineoplastic therapy, and the yellow area on the right represents cardiotoxicity resulting from antineoplastic therapy.
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anticancer drug with very definite efficacy in the treatment of
leukemia and many solid tumors, but time- and dose-
dependent cardiotoxicity has limited its clinical application
[12–17]. The pathogenesis of doxorubicin cardiotoxicity is still
unclear, and current studies have only suggested its possible
mechanisms, including the toxic effects of doxorubicin topo-
isomerase II, oxidative stress, and mitochondrial damage,
and the lack of clarity on the mechanism also hinders the
development of relevant preventive and curative drugs, so
further studies are still needed by using animal models
[18–20]. Regarding the construction of animal models of
doxorubicin cardiotoxicity, according to domestic and foreign
literature, most scholars chose mice, rats, rabbits, dogs, and
zebrafish to construct animal models of doxorubicin cardio-
toxicity by giving doxorubicin 5~45mg/kg by intraperitoneal
or tail vein injection. There are advantages and disadvantages
to intraperitoneal or caudal intravenous administration. It has
been found that although intraperitoneal administration is
simple, it may cause peritoneal injury and increase the risk
of noncardiac death, and peritoneal injury may also prevent
the absorption of drugs in subsequent experiments, thus
affecting the experimental results, while caudal intravenous
administration can avoid the above problems, but it is difficult
to operate and increases the risk of phlebitis and tail rot [21,
22]. In terms of the dose administered, some scholars believe
that cumulative doses of doxorubicin at or below 10mg/kg
do not cause cardiotoxicity [23]; others suggest that a cumula-
tive dose of 20mg/kg is the lowest dose that can cause cardio-
toxicity [24–26]; others have found that a cumulative dose of
24mg/kg administered intraperitoneally can show both severe
cardiotoxicities with a low mortality rate, which is more
suitable for experimental studies [27].

Since doxorubicin cardiotoxicity is time- and dose-
dependent, there are two types of animal models of doxo-
rubicin cardiotoxicity: acute cardiotoxicity animal model
and chronic cardiotoxicity animal model. Acute animal
cardiotoxicity of doxorubicin usually occurs at the begin-
ning of drug use, which is short-lived and reversible, with
clinical manifestations appearing within 2 weeks after the
end of treatment. Therefore, short-term, high-dose injec-
tions are generally used to establish doxorubicin acute
cardiotoxicity animal models, which have the advantage
of short modeling period and predictable time of cardio-
toxicity but usually have high mortality rate and low
model success rate, while chronic cardiotoxicity often
occurs after long-term use of the drug, with clinical symp-
toms appearing within 1 year. Chronic cardiotoxicity often
occurs after long-term use of the drug, and clinical symp-
toms appear within 1 year, so the low-dose, long-term
injection of doxorubicin is generally chosen to replicate
the chronic cardiotoxicity animal model of doxorubicin,
which has the advantages of low mortality and long sur-
vival time of animals, and this mode of administration
better simulates the clinical treatment regimen of intermit-
tent dosing and the resulting chronic myocardial injury,
but the experimental period is long and the time of the
most obvious cardiotoxicity cannot be determined. The
following sections describe the methods commonly used
to prepare each of these two animal models.

2.1.1. Animal Model of Acute Cardiotoxicity of Doxorubicin.
A single intraperitoneal injection of DOX (10mg/kg or
20mg/kg or 25mg/kg) or a single tail vein DOX (20mg/
kg) can be used to construct acute cardiotoxicity models in
rats and mice [28–32], which showed symptoms such as
reduced dietary intake, weight loss, diarrhea, reduced activ-
ity, decreased left ventricular ejection fraction, decreased left
ventricular pressure change rate (± DP/DTmax), decreased
-dP/dtmax, increased left ventricular end-diastolic pressure
(LVEDP), myocardial fiber distortion and rupture, increased
myocardial cell necrosis, increased type B (BNP), increased
lactate dehydrogenase (LDH), and increased calponin T
(cTnT); zebrafish embryos were placed in DOX at 30μM/
100μM, and intraperitoneal injection of DOX (20mg/kg)
can replicate the zebrafish embryo and adult zebrafish
models of acute cardiotoxicity of doxorubicin, which showed
that doxorubicin can cause partial myocardial fiber arrange-
ment disorder, cardiomyocyte sequestration, decreased left
ventricular minor axis decoration rate (LVFS) and heart rate
(HR), and increased serum BNP [33, 34].

2.1.2. Animal Model of Chronic Cardiotoxicity of
Doxorubicin. A rat model of chronic cardiotoxicity can be
constructed by multiple intraperitoneal injections of DOX
(cumulative doses of 10mg/kg or 15mg/kg or 24mg/kg)
and tail vein injections of DOX (cumulative doses of 6mg/
kg or 15mg/kg), which showed myocardial cell edema,
vacuolar degeneration, and myocardial fiber rupture in rats.
The cardiomyocytes showed small focal or patellar necrosis.
Left ventricular systolic pressure (LVSP), ±dp/dtmax, left
ventricular diastolic dimension (LVIDD), FS, and ejection
fraction (EF) decreased, while -DP/DTmax and LVEDP
increased [28, 29, 35–37]. A rabbit model of chronic cardio-
toxicity was established by multiple intravenous injections of
DOX (cumulative doses of 16mg/kg or 30mg/kg) at the ear
margins, which showed that rabbits were depressed, activity
and food intake decreased, and rabbit hair fell off a lot [35,
38, 39]. Myocardial cells showed edema, degeneration, par-
tial lysis, and necrosis. LVEDP and left ventricular end-
diastolic dimension (LVDD) increased, while left ventricular
systolic pressure (LVSP) and ±dp/dtmax decreased. The
contents of cardiac troponin I (cTnI) and BNP increased.
A canine model of cardiotoxicity was established by using
cephalic intravenous DOX (cumulative dose 9.25-13.75mg/
kg or 240mg/m2), which showed canine cardiomyocyte vac-
uolation, decreased FS and left ventricular ejection fraction
(LVEF), increased LVIDD and left ventricular end-systolic
diameter (LVESD), and increased serum BNP levels [40,
41]. In addition, a porcine model of cardiotoxicity was repli-
cated by using multiple coronary injections of DOX (cumu-
lative dose of 100mg), whose results showed that the left
ventricular work (LVSW) and left ventricular stroke work
index (LVSWI) decreased in pigs [42].

2.2. Animal Models of Trastuzumab Cardiotoxicity. Trastu-
zumab (TRZ) is a humanized monoclonal antibody that rec-
ognizes human epidermal growth factor receptor-2 (HER-
2). It produces antitumor activity by specifically binding to
the HER-2 oncogene expression product P185 protein on
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tumor cell membranes [43]. In 1998, the FDA-approved
trastuzumab for the treatment of invasive breast cancer with
HER2 gene overexpression results in a 50% and 33% reduc-
tion in recurrence and mortality rates, respectively [44].
However, subsequent clinical trials and dosing revealed a
high incidence of cardiotoxicity, which was mainly mani-
fested by reduced left ventricular systolic function, asymp-
tomatic heart failure, and heart failure with symptoms and
signs [45, 46]. The molecular mechanism of trastuzumab-
induced cardiotoxicity is still unclear, and some studies have
found correlations between the renin-angiotensin system,
NADPH oxidase, mitogen-activated protein kinase (MAPK)
signaling pathways, MAPK/ERK1/2 phosphatidylinositol 3
kinase/Akt, and FAK-dependent cell survival signaling and
HER2 receptor signaling pathways, but the connection is
not clear; therefore, it needs to be further explored using ani-
mal models [25, 47, 48]. According to the existing literature,
most scholars use rats and rabbits for the establishment of
animal models of trastuzumab cardiotoxicity, because com-
pared with mice, rats and rabbits have more mature tech-
niques for cardiac function studies, and cardiac function is
less affected by anesthesia and other intervention factors,
which makes it easier to obtain more accurate experimental
data; in terms of the mode of administration, since trastuzu-
mab is mostly administered by slow intravenous drip, it is
easier to simulate the effect of prolonged entry of trastuzu-
mab into the circulatory system by peritoneal and subcuta-
neous administration than by intravenous administration.
Therefore, some scholars have successfully replicated trastu-
zumab cardiotoxicity models by using rats and rabbits with
cumulative doses of 15-60mg/kg administered intraperito-
neally or subcutaneously and evaluated the models by car-
diac ultrasound and pathological morphology.

A rat cardiotoxicity model was constructed by multiple
intraperitoneal injections of trastuzumab (cumulative doses
of 15.75mg/kg or 48mg/kg or 60mg/kg), which showed
myocardial fibrosis, decreased LVEF and FS, increased
LVDD and end-systolic volume (ESV), and increased serum
LDH and cTnI levels in rats [49–51]. The subcutaneous
injection of trastuzumab (cumulative dose of 26mg/kg) rep-
licated the cardiotoxicity model in rabbits, which showed
lymphocyte and macrophage infiltration around myocardial
cells and decreased LVEF, suggesting a decrease in left ven-
tricular function in rabbits [52].

2.3. Animal Model of 5-Fluorouracil Cardiotoxicity. 5-Fluo-
rouracil (5-Fu) is an antimetabolic anticancer agent that is
widely used in chemotherapy, especially in gastrointestinal
tumors. However, in recent years, more and more clinical
cases have shown the serious cardiotoxic side effects of 5-
Fu during its application, and the incidence of cardiotoxicity
is second only to anthracycline antibiotics [53–55]. Cur-
rently, the main mechanisms of 5-Fu cardiotoxicity include
coronary artery spasm, endothelial injury-induced thrombo-
sis, and oxidative stress, but these proposed mechanisms are
based on only a few small experimental studies, and there
are no uniform criteria for the diagnosis and prevention of
5-Fu cardiotoxicity so we require in-depth research with
activity models [56–62]. According to the existing literature,

most scholars have used single or multiple intravenous injec-
tions to replicate 5-Fu cardiotoxicity animal models, which
are more in line with the clinical application but increase
the risk of phlebitis; the experimental animals are mostly
rabbits and rats, which facilitate better observation of cardiac
changes.

Some researchers used multiple intravenous injections of
5-FU (cumulative dose 40mg/kg), multiple intraperitoneal
injections of 5-FU (cumulative dose 300mg/kg), or single
intraperitoneal injections of 5-FU (cumulative dose
150mg/kg) to replicate cardiotoxic rat models, and the
results showed that the rats showed symptoms such as
depression, severe diarrhea, and loss of appetite. Extensive
separation and distortion of myocardial fibers, accompanied
by inflammatory cell infiltration around the cells, creatine
kinase (CK), C-reactive protein (CRP), the levels of CRP,
tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-
1β) increased, suggesting that 5-FU can cause myocardial
injury in rats [63–65]. Other scholars used a single intrave-
nous injection of 5-FU (50mg/kg) and multiple injections
of 5-FU (cumulative dose of 60mg/kg) to establish a rabbit
model of cardiotoxicity, and the results showed that the rab-
bit left ventricular wall had a large area of hemorrhagic
infarction, myocardial cells showed multifocal necrosis,
and the left ventricular wall increased, suggesting left ven-
tricular dysfunction [66].

2.4. Animal Models of Cisplatin Cardiotoxicity. As a broad-
spectrum cytotoxic drug, cisplatin is inexpensive and highly
effective and is commonly used to treat advanced bladder
cancer and other malignancies, but its induced cardiotoxi-
city has received much attention in recent years [67]. Exist-
ing studies have confirmed that the mechanisms of cisplatin
cardiotoxicity include cytotoxic effects of cisplatin, oxidative
stress, and inflammation, but the specific mechanisms of
action are not well defined, and there is no definite drug
proven to be a protective agent against cisplatin cardiotoxi-
city, so further studies using animal models are needed.
The amount of literature on the establishment of animal
models of cisplatin cardiotoxicity is very small, and more
studies are needed for refinement.

Some researchers used multiple intraperitoneal injections
of cisplatin (cumulative dose of 12mg/kg or 120mg/kg) and
a single intraperitoneal injection of cisplatin (cumulative dose
of 7mg/kg) to replicate the cisplatin cardiotoxicity mouse
model, which showed myocardial fiber degeneration and rup-
ture, myocardial cell edema and vacuole-like degeneration,
increased myocardial apoptosis, and increased creatine kinase
isoenzyme (CK-MB), LDH, and cTnI content, suggesting that
cisplatin can cause myocardial injury in mice [23, 24, 27, 30,
38, 39, 65, 68–126]. A single intraperitoneal injection of cis-
platin (cumulative dose of 20mg/kg) was selected to replicate
a rat model of cisplatin cardiotoxicity, which showed an
increase in cTnI and LDH content, suggesting myocardial
damage in rats [70].

2.5. Animal Model of Radiation Cardiotoxicity. Radiotherapy
significantly reduces mortality in thoracic malignancies and
plays a pivotal role in the treatment of tumors. However,
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the radiation heart damage (RIHD) induced by radiotherapy
increases the mortality of tumor patients to a certain extent
[71, 72]. Some studies have shown that the risk of heart
injury increases by 7.4% when the radiation dose increases
by 1Gy [73]. As for the pathogenesis of RIHD, it mainly
includes vascular injury, endothelial dysfunction, oxidative
stress, etc., but most of the studies on the above mechanisms
only involve one or two pathways, which are not compre-
hensive and in-depth and need further research [74, 75].
As for the prevention and treatment of RIHD, although
the cardiac radiation dose continues to decrease with the
continuous development of radiotherapy technology, which
reduces the risk of RIHD to a certain extent, this only plays
a preventive role, and no effective drugs have been developed
for the treatment of RIHD. How to clarify its molecular
mechanism and effectively treat RIHD needs to be continu-
ously explored by using relevant animal models [76].
According to existing literature reports, RIHD model ani-
mals are mainly rats, mice, rabbits, dogs, and monkeys
[77–86]. Some scholars believe that single local irradiation
with a dose of 15~25Gy should be selected for rats to estab-
lish an irreversible RIHD animal model. For larger animals
(rabbits, monkeys, etc.) than rats, a single dose of more than
20Gy should be selected [87]. In terms of irradiation
methods, single or multiple local irradiation, whole-body
irradiation, and dose division irradiation can be used [86,
88]. Most scholars choose single or multiple local irradia-
tions, because compared with the latter two irradiation
methods, it has a precise site of action and high clinical
applicability and is more scientific, reasonable, and
standardized.

The RIHD rat model was established by single local car-
diac irradiation at a total dose of 15, 18, and 20Gy or multi-
ple local cardiac irradiations (cumulative dose of 45Gy)
[77–79, 89], which showed anorexia, hair loss in the cardiac
projection area, physical wasting, slow activity, cardiac myo-
cyte congestion and edema with inflammatory cell infiltra-
tion, myocardial tissue fibrosis, increased left ventricular
end-diastolic posterior wall (LVPDW), and increased cTnI
levels; a rabbit model of RIHD could be replicated using a
single local cardiac irradiation at a total dose of 10-54Gy,
which showed collagen fiber proliferation, focal necrosis of
cardiomyocytes, a large number of inflammatory cell infil-
trates, and elevated cTnI content, suggesting radiation
therapy-induced myocardial injury in rabbits [80].

2.6. Animal Models of Immunosuppressant-Induced
Cardiotoxicity. Immune checkpoint inhibitors (ICIs) are
the most promising antitumor therapies and have made sig-
nificant advances in the treatment of advanced tumors such
as progressive melanoma, renal cell carcinoma, and non-
small-cell lung cancer [90]. However, several cases of severe
cardiotoxicity caused by ICIs have recently been reported in
international authoritative journals; meanwhile, some stud-
ies have shown that ICIs may cause fulminant progression
of myocarditis and thus lead to patient death, thus receiving
widespread attention [91]. However, the mechanism of
action of immune checkpoint inhibitor-induced cardiotoxi-
city has not been fully elucidated, and there is a lack of uni-

form indicators for monitoring related cardiotoxicity, and
preventive and related therapeutic measures have yet to be
developed, all of which require animal models for relevant
studies. Currently, the main immune checkpoint inhibitors
used in clinical antitumor therapy include programmed cell
death protein 1 (PD-1) inhibitors, programmed cell death
ligand protein-1 (PD-L1) inhibitors, and programmed cell
death protein 1/cytotoxic T lymphocyte-associated antigen
4 (PD-1/CTLA-4) inhibitors on which existing studies focus.
The construction methods of ICI cardiotoxicity animal
models include two main categories: gene knockout and
drug injection. Gene knockout is mainly to knock out PD-
1, PD-L1, and CTLA-4 genes; drug injection mainly includes
intraperitoneal injection of the CTLA-4 inhibitor ipilimu-
mab, intraperitoneal injection of the PD-1/PD-L1 inhibitor
BMS-1, and tail vein injection of PD-L1 antibody and anti-
PD-1 antibodies. Knockout-constructed cardiotoxicity ani-
mal models are more able to achieve the purpose of accurate
research, while excluding the influence of other experimental
factors, such as the absorption and metabolic process of
drugs, and the research results are accurate and reliable,
but they are operationally difficult. They mostly choose mice
as experimental animals, because the genome sequencing
program of mice has been completed and the genome mod-
ification technology is mature. The animal model of cardio-
toxicity constructed by drug injection can better simulate the
clinical use of immune checkpoint inhibitors and is simple
to operate.

The ICI cardiotoxicity mouse model could be established
by knocking out the PD-1/CTLA-4 gene, and the results
showed that the mouse cardiomyocytes were deformed,
myofilaments were disordered and broken, mitochondria
were irregularly shaped, there were a large number of lym-
phocytes and multinucleated cells infiltrated between cells,
the content of cardiac inflammatory markers interleukin-2
(IL-2) and TNF-α was increased, LVDS and LVDD were
elevated, and FS was decreased, suggesting left ventricular
dysfunction and myocardial injury in mice. However, one
study found that mating knockout PD-1 mice with knockout
CTLA-4 mice produced Ctla4 +/- Pdcd1 -/- offspring mice
that were more suitable for ICI myocarditis studies, and such
mice showed more pronounced and clinically similar
changes in cardiac injury relative to simultaneous knockout
PD-1/CTLA-4 mice [92–95]. Replication of the ICI cardio-
toxicity mouse model using intraperitoneal injection of
BMS-1 (cumulative doses of 30mg/kg or 60mg/kg) showed
interstitial fibrosis of cardiomyocytes, decreased body
weight, increased heart-to-body mass ratio, and increased
serum levels of cardiac markers such as BNP, CK-MB, and
LDH and increased proapoptotic proteins such as caspase-
3 and caspase-9 levels, indicating cardiac injury in mice
[122]. The ICI cardiotoxicity mouse model was established
by multiple intraperitoneal injections of ipilimumab (cumu-
lative dose 105mg/kg), which showed decreased FS and
radial strain (RS) and increased cardiac inflammatory
markers IL-2 and TNF-α, indicating decreased cardiac func-
tion and damaged cardiomyocytes in mice [97]. The repro-
ducible ICI cardiotoxicity mouse model by multiple tail
vein injections of anti-PD-L1 antibody (cumulative dose
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60μg/g) and anti-PD-1 antibody (cumulative dose 75μg/g)
showed that mice were huddled and immobile, with signifi-
cantly reduced response to external stimuli, cardiomyocyte
hypertrophy, intercellular lymphocyte and neutrophil infil-
tration, and reduced EF, FS, and LVEDV, suggesting that
mice’ left ventricular function is reduced [98, 99]. In addi-
tion, the cardiotoxic crab monkey model can be replicated
using multiple intravenous administrations of nabumab
(cumulative dose 80mg/kg) and epirubicin (cumulative dose
60mg/kg), which showed a large infiltration of monocytes
around the cardiomyocytes of crab monkeys, and cardiac
inflammatory markers interleukin-6 (interleukin 6, IL-6),
gamma interferon-γ (IFN-γ), and TNF-α were increased,
suggesting myocardial injury in crab-eating monkeys [100].

3. Animal Models of the Compound-
Induced Cardiotoxicity

Animal models of the compound-induced cardiotoxicity
refer to an animal model of cardiotoxicity induced by a com-
bination of antitumor modalities. Since single antitumor
therapy does not achieve the desired effect and is prone to
drug resistance, in contrast, combination therapy can
enhance the therapeutic effect while overcoming drug resis-
tance [90, 101]. Therefore, the combination therapy model is
more in line with the clinical situation than monotherapy,
but it can induce more severe cardiotoxicity with a superim-
posed effect on cardiotoxicity [101, 102]. The main combi-
nation treatment modalities that commonly cause severe
cardiotoxicity in clinical practice are doxorubicin combined
with trastuzumab and radiation combined with trastuzu-
mab, and most of the existing studies have been conducted
around these two aspects.

3.1. Doxorubicin Combined with Trastuzumab
Cardiotoxicity Animal Model. Doxorubicin (DOX) in com-
bination with trastuzumab (TRZ) is commonly used as a
standard chemotherapy regimen for the clinical treatment
of human epidermal growth factor receptor 2- (HER-2-)
positive breast cancer, and its efficacy is remarkable and well
tolerated by patients [103–106]. However, trastuzumab and
doxorubicin are both highly cardiotoxic, and some studies
have shown a superimposed effect of combination-induced
cardiotoxicity [107, 108]. Regarding the establishment of
DOX combined with TRZ cardiotoxicity animal models,
most scholars adopted single intraperitoneal injections of
DOX (20mg/kg) and TRZ (10mg/kg) or multiple intraperi-
toneal injections of DOX (cumulative dose 15-24mg/kg)
and TRZ (cumulative dose 10-30mg/kg) and observed the
general status of animals, cardiac ultrasound, pathological
morphology, etc. to evaluate the animal model.

A mouse model of cardiotoxicity can be established by
simultaneous intraperitoneal injection of DOX 20mg/kg,
TRZ 10mg/kg or DOX 6mg/kg, and TRZ 10mg/kg or
DOX (cumulative dose of 24mg/kg) for 1 week followed
by TRZ (cumulative dose of 10mg/kg), whose results
showed that the myocardial cells of mice were altered by
myofibrillar degeneration and vacuolization and infiltrated
by a large number of surrounding inflammatory cells,

LVESV and LVEDD were increased, LVEF and FS were
decreased, and serum CK-MB and cTnI levels were
increased, suggesting myocardial injury in mice [24, 27, 30,
109–111]. The cardiotoxic rat model was induced by intra-
peritoneal injection of DOX (cumulative dose 15mg/kg or
20mg/kg), TRZ (cumulative dose 20mg/kg), and DOX
(cumulative dose 15mg/kg) at 8 days, TRZ (cumulative dose
20mg/kg) and DOX (cumulative dose 20mg/kg) after
11days, and then TRZ (cumulative dose 30/kg) after 2 weeks,
whose results showed that there were a large number of
macrophages around the rat cardiac cells, left ventricular
end-systolic volume (LVESV) and left ventricular end-
diastolic volume (LVEDV) increased, FS and longitudinal
strain (LS) decreased, and serum cTnI and N-terminal pro-
brain natriuretic peptide (NT-proBNP) levels increased
[112, 117, 120].

3.2. Radiation Combined with Trastuzumab Cardiotoxicity
Animal Model. Like DOX combined with TRZ, radiation
combined with trastuzumab is also commonly used in clini-
cal practice to treat HER-2-positive breast cancer, with the
difference that it is not clear whether the simultaneous appli-
cation of radiation therapy with TRZ superimposes its cardi-
otoxicity [21]. Therefore, it is necessary to investigate the
degree of cardiotoxicity induced by radiation combined with
TRZ and its mechanism of action using animal models.
According to the existing literature, some scholars con-
structed a RIHD rat model by single local irradiation of
the heart at 15Gy combined with a single intraperitoneal
injection of TRZ (6mg/kg), which showed mitochondrial
edema and endothelial vacuole-like changes in rat cardio-
myocytes, suggesting myocardial injury in rats [77]. Some
scholars also used single local irradiation of the heart at
15Gy or 20Gy combined with multiple intraperitoneal
injections of TRZ (cumulative dose 10mg/kg) to replicate
the RIHD mouse model, which showed a decrease in body
weight, disturbed arrangement of cardiomyocytes with vacu-
olar and fat-like changes, and increased left ventricular pos-
terior wall thickness (LVPWT) and interventricular septal
thickness (IVST), suggesting a decrease in LV function in
mice [83].

4. Application of Animal Models of
Cardiotoxicity in Antitumor Therapy for
Mechanism Exploration and
Drug Development

4.1. Application of Animal Models of Cardiotoxicity in
Antitumor Therapy for Mechanism Exploration. In recent
years, based on animal models of cardiotoxicity in antitumor
therapy, breakthroughs have been made in the study of
related cardiotoxicity mechanisms. For example, Fang et al.
found that iron death is one of the key mechanisms of adria-
mycin cardiotoxicity by using the mouse model of adriamy-
cin cardiotoxicity, which provides a novel strategy for the
prevention and treatment of adriamycin cardiomyopathy
[113]; Zhang et al. found that DNA topoisomerase IIB
(TOP2B) is an important target for the occurrence of adria-
mycin cardiotoxicity by using the mouse model of
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adriamycin cardiotoxicity [114]; Chen et al. used the PD-1/
PD-L1 inhibitor BMS-1 to construct a mouse model of
immune checkpoint inhibitor-associated cardiotoxicity and
found that abnormal gut flora function may be one of the
mechanisms of PD-1/PD-L1 inhibitor-associated cardiotoxi-
city and suggested that targeting gut flora to inhibit M1
polarization of colonic macrophages is a potential therapeu-
tic strategy for PD-1/PD-L1 inhibitor-associated cardiotoxi-
city. The discovery of these mechanisms and targets of
action has laid a solid foundation for the development of
related drugs [96].

4.2. Application of Animal Models of Cardiotoxicity in
Antitumor Therapy for Drug Development. Animal models
of antitumor therapeutic cardiotoxicity are also of high
application in the development of relevant drugs for preven-
tion and treatment. So far, most of the studies related to the
prevention and treatment drugs recommended in various
guidelines for the management of cardiotoxicity in antitu-
mor therapy have used animal models, such as statins, ACEI,
and ARB. Using the adriamycin cardiotoxicity mouse model,
Li et al. found that statins significantly improved cardiomyo-
cyte injury in mice through antiapoptotic effects and pro-
posed that statins could be used as a DOX-induced
cardiotoxic protective agent [99]; Kabel et al. and Adeneye
et al. using a rat model of trastuzumab cardiotoxicity,
respectively, found that the combination of rosuvastatin
with ubiquinone and antihypertensive drugs (valsartan,
amlodipine, and lisinopril) has great potential in the preven-
tion and treatment of trastuzumab-induced cardiotoxicity
[115, 116].

In addition, animal models have also played an impor-
tant role in the exploration of novel antitumor therapeutic
agents for the prevention and treatment of cardiotoxicity.
For example, Li et al. used a mouse model of doxorubicin
cardiotoxicity to find that thrombopoietin (TPO) signifi-
cantly attenuated cardiotoxicity in mice through antioxidant
and anti-inflammatory effects, providing a new option for
the treatment of doxorubicin cardiotoxicity [99]; Milano
et al. used a rat model of cardiotoxicity induced by the com-
bination of doxorubicin and trastuzumab to find that miR-
146a-5p-mediated human CPC exosomes attenuated Dox-
coinduced oxidative stress injury in the heart [117]; Chen
et al. used the anti-PD-1 antibody and anti-PD-L1 antibody
cardiotoxic mouse model and found that levothyroxine had
a significant alleviating effect on PD-1/PD-L1-induced
cardiotoxicity.

5. Summary and Conclusion

Animal models, as the experimental basis of experimental
and clinical hypotheses, have become an extremely impor-
tant experimental method and means in modern biomedical
research, which not only overcomes the time and space lim-
itations of clinical empirical research but also avoids many
moral and methodological limitations of many experiments,
and the establishment of scientific and effective experimental
animal models is the basis for the study of pathogenesis and
preventive and curative drugs. Currently, most scholars have

chosen rats, mice, and rabbits as the models for the prepara-
tion of animal models of antitumor therapeutic cardiotoxi-
city, and the modeling methods are drug injection and
targeted gene knockout (Table 1), which have great applica-
tion value in elucidating the mechanism of antitumor thera-
peutic cardiotoxicity and the development of related
prevention and treatment drugs, but there are also many
problems. (1) The intervention dose is vague and very con-
troversial. For example, regarding the ideal intervention dose
of doxorubicin in the preparation of doxorubicin cardiotoxi-
city animal models, some scholars proposed that 15mg/kg is
the ideal intervention dose as it is close to the cumulative
dose of clinical doxorubicin use and can clearly show cardi-
otoxicity, but some scholars found that the cumulative dose
of 20mg/kg is the lowest dose that can cause cardiotoxicity
[24–26, 37]. (2) The modeling period is not clear, and some
antitumor therapy cardiotoxicity has a delayed character,
some even manifest several years after treatment, such as
radiation cardiotoxicity, and most scholars often conduct
different studies for multiple periods to determine the opti-
mal modeling period, which consumes a lot of energy and
material power and hinders the progress of experiments to
some extent. (3) Animal models cannot fully simulate the
human disease process. For example, current clinical exper-
iments have found that trastuzumab-induced cardiotoxicity
is reversible, while animal models of trastuzumab cardio-
toxicity can only show the manifestation of trastuzumab-
induced cardiomyocyte damage after the reversible process
[96, 118, 119]. Therefore, how to optimize the existing ani-
mal models of antitumor therapy cardiotoxicity, as well as
to further study and improve the production methods of
animal models of antitumor therapy cardiotoxicity, and
how to establish animal models with simple operation, high
survival rate, good stability, and better simulation of the
characteristics of human antitumor therapy cardiotoxicity
are still the key and difficult problems for future research
in this field.
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CRP: C-reactive protein
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CTnT: Cardiac troponin T
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ESV: End-systolic volume
FS: Fractional shortening
FDA: Food and Drug Administration
HR: Heart rate
HER-2: Human epidermal growth factor receptor 2
ICIs: Immune checkpoint inhibitors
IVST: Interventricular septal thickness
IL-1β: Interleukin-1β
IL-2: Interleukin-2
IL-6: Interleukin-6
IFN-γ: Interferon-γ
LS: Longitudinal strain
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LDH: Lactate dehydrogenase
LVDD: Left ventricular end-diastolic dimension
LVEF: Left ventricular ejection fraction
LVWT: Left ventricular wall thickness
LVSP: Left ventricular systolic pressure
LVSW: Left ventricular-stroke work
LVESV: Left ventricular end-systolic volume
LVEDV: Left ventricular end-diastolic volume
LVIDD: Left ventricular diastolic dimension
LVEDP: Left ventricular end-diastolic pressure
LVESD: Left ventricular end-systolic diameter
LVSWI: Left ventricular-stroke work index
LVPDW: Left ventricular end-diastolic posterior wall
LVPWT: Left ventricular posterior wall thickness
NT-proBNP: N-terminal probrain natriuretic peptide
PD-L1: Programmed cell death ligand protein-1
PD-1/CTLA-4: Programmed cell death protein 1/cytotoxic

T lymphocyte-associated antigen 4
RS: Radial strain
RIHD: Radiation heart damage
TRZ: Trastuzumab
TNF-α: Tumor necrosis factor-α
5-FU: 5-Fluorouracil
±dp/dtmax: Left ventricular pressure change rate.
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