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Purpose. Recent researches showed the vital role of BACH1 in promoting the metastasis of lung cancer. We aimed to explore the
value of BACH1 in predicting the overall survival (OS) of early-stage (stages I-II) lung adenocarcinoma. Patients and Methods.
Lung adenocarcinoma cases were screened from the Cancer Genome Atlas (TCGA) database. Functional enrichment analysis
was performed to obtain the biological mechanisms of BACH1. Gene set enrichment analysis (GSEA) was performed to
identify the difference of biological pathways between high- and low-BACH1 groups. Univariate and multivariate COX
regression analysis had been used to screen prognostic factors, which were used to establish the BACH1 expression-based
prognostic model in the TCGA dataset. The C-index and time-dependent AUC curve were used to evaluate predictive power
of the model. External validation of prognostic value was performed in two independent datasets from Gene Expression
Omnibus (GEO). Decision analysis curve was finally used to evaluate clinical usefulness of the BACH1-based model beyond
pathologic stage alone. Results. BACH1 was an independent prognostic factor for lung adenocarcinoma. High-expression
BACH1 cases had worse OS. BACH1-based prognostic model showed an ideal C-index and t-AUC and validated by two GEO
datasets, independently. More importantly, the BACH1-based model indicated positive clinical applicability by DCA curves.
Conclusion. Our research confirmed that BACH1 was an important predictor of prognosis in early-stage lung adenocarcinoma.
The higher the expression of BACH1, the worse OS of the patients.

1. Introduction

Lung cancer (LC) is one of the malignant tumors that
threatens the health and life of human being [1]. In the past
50 years, many countries have reported a significant increase
in lung cancer morbidity and mortality [2], which accounts
for the first place in all malignant tumors in male and the
second place in female [2, 3]. Among all the pathological
phenotypes of LC, non-small-cell lung cancer (NSCLC) pre-
sents with the highest morbidity, especially lung adenocarci-
noma [4].

Transcription factors are proteins that bind to DNA reg-
ulatory sequences to modulate gene transcription, which may
result in alteration in gene transcription, protein synthesis,
and cellular function. Transcriptional activators promote
gene transcription and repressors inhibit that of Reference

[5]. BTB and CNC homology 1 (BACH1) belongs to the bZIP
[6] transcription factor family [7]. BACH1 mRNA is highly
expressed in subsets of monocytes, macrophages, neutro-
phils, and dendritic cells, which are abundant in the tumor
microenvironment (TME) [5]. As these immune cells orches-
trate nearly all of the proliferation, differentiation, and
metastasis in the development of solid tumor, the TME sys-
tem has been recognized as the most promising antitumor
therapy [8].

As it is reported recently, the reactive oxygen system
(ROS) has been defined as another important factor in the
tumor tissue homeostasis and cellular differentiation and
metastasis. Antioxidant transcription factor NRF2 are abun-
dant in cancer, which suggested that increased antioxidant
defense contributes to the tumor progression. ROS plays a
vital role in the homeostasis in normal or tumor tissue and
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hints its contradictory and complex role in the TME system
[9]. Lee et al. found that heme can inhibit the development
of triple-negative breast cancer (TNBC) through the sup-
pression of activation of BACH1, which can negatively mod-
ulate the gene expression of electron transport chain (ETC)
in mitochondria [10]. Lignitto et al. [11] and Wiel et al.
[12] groups reported NRF2 activation in KrasG12D;
p53flox/flox lung tumor mouse model can indirectly pro-
mote the stability of BACH1 via the inhibition of heme
and at last induce the metastasis of lung cancer, which
may be contributed by antioxidant treatment.

The above studies indicated that the upregulation of
BACH1 promoted lung cancer metastasis. However, there
is no direct evidence of BACH1 expression in relation to
the prognosis of early-stage lung cancer.

We utilized bioinformatics approach such as the Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) database to explore the role of BACH1 expression
in the prognosis of early-stage lung adenocarcinoma. In this
study, we established a BACH1-related prognostic model to
predict overall survival (OS) of early-stage lung adenocarci-
noma. In addition, bioinformatics analyses were performed
to explore the biological processes and possible cell signal
pathways underlying the prognosis.

2. Materials and Methods

2.1. Data Acquisition. The gene expression data and corre-
sponding clinical information of lung adenocarcinoma were

screened from the Cancer Genome Atlas (TCGA) website
(https://portal.gdc.cancer.gov/repository) (up to May 17,
2020). 515 cases with RNA-sequencing data and clinical
information were initially downloaded. The gene expression
profiles were normalized by variance stabilizing transforma-
tion (VST) using DESeq2 R package. 134 cases with less than
30 days of following-up time and 75 cases with unknown
clinical stage or stages III-IV were excluded; eventually,
306 cases were enrolled for subsequent analysis.

2.2. Functional Enrichment Analysis. Spearman correlation
analysis was performed between the expression of BACH1
and other encoding genes, and then genes with P value less
than 0.05 and the highest correlation coefficient (>0.3) were
selected. Gene Ontology (GO) analysis was performed using
the clusterProfiler R package [13] to evaluate the BACH1-
related biological process (BP), cellular compartment (CC),
and molecular function (MF). Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis was conducted to further
evaluate potential biological signal pathways related to
BACH1 expression. We visualized significant processes and
pathways using the function of clusterProfiler R package.

2.3. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) was performed to identify the difference
of biological pathways and corresponding genes between
lung adenocarcinoma cases with the high- and low-BACH1
groups, in order to further evaluate the potential mechanism
of the underlying involvement of BACH1 in lung

Table 1: Demographic and clinical characteristics of early-stage lung adenocarcinoma cases.

Characteristics
Training cohort (TCGA) Validation cohort 1 (GSE13213) Validation cohort 2 (GSE72094)

No. of patients Percent (%) No. of patients Percent (%) No. of patients Percent (%)

Total no. 306 92 311

Age

<60 85 27.8 32 34.8 45 14.5

60-70 126 41.2 18 19.6 116 37.3

>70 95 31.0 42 45.7 150 48.2

Gender

Male 135 44.1 50 54.3 141 45.3

Female 171 55.9 42 45.7 170 54.7

Pathologic stage

I 215 70.3 79 85.9 246 79.1

II 91 29.7 13 14.1 65 20.9

Laterality

Left 119 38.9 — — — —

Right 183 59.8 — — — —

Unknown 4 1.3 — — — —

Smoking history

Yes 254 83.0 47 51.1 236 75.9

No 52 17.0 45 48.9 75 24.1

BACH1 expression

High 103 33.7 23 33.3 50 19.2

Low 203 66.3 69 66.7 261 80.8
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Figure 1: Continued.
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adenocarcinoma prognosis. An annotated gene set file
(h.all.v7.1.entrez.gmt) was selected as reference. The thresh-
old was set at P < 0:05.

2.4. Construction of BACH1 Expression-Based Prognostic
Model. BACH1 expression data and clinical information
were integrated to analyze the relationship between BACH1
and OS. Univariate and multivariate COX regression analyses
were conducted to select prognostic factors. Then, variables
that achieved significance at P < 0:05 after the multivariable
analysis were screened to establish the nomogram model.
Concordance index (C-index) was used to quantify the predic-
tive accuracy of the model. C-index ranges from 0.5, which
means a random chance, to 1.0, which indicates a perfect abil-
ity of correct prediction. The calibration plot was performed to
compare actual and predicted probability of 3- and 5-year OS.
Then, the reliability of the model was verified by means of the
time-dependent area under ROC curves (t-AUC). A t-AUC
value above 0.7 suggests that a reasonable prediction model
has been constructed.

2.5. External Validation of Prognostic Model. We systemati-
cally searched for gene expression datasets of early-stage
lung adenocarcinoma that were published and available in
Gene Expression Omnibus (GEO) website (https://ncbi
.nlm.nih.gov/geo). We finally selected two cohorts of sam-
ples in GEO databases (GSE13213 and GSE72094) as exter-

nal validation cohorts to further validate the value of
BACH1 expression-based prognostic model.

2.6. Risk Group Stratification Based on the Nomogram and
Clinical Usefulness. Log-rank statistics was used to make a
risk group stratification according to the total risk scores
based on the nomogram, in order to illustrate the indepen-
dent discrimination ability of BACH1-based model beyond
BACH1 alone. Decision curve analysis (DCA) [14, 15] was
finally used to evaluate clinical usefulness of BACH1-based
model beyond pathologic stage alone.

All analyses were conducted in R software (version
3.6.1). The value of P < 0:05 was statistically significant.

3. Results and Discussion

3.1. Characteristics of Cases in TCGA Dataset. A total of 276
cases of TCGA cohort with both clinical and gene expression
data were enrolled in the present study (Table 1). The
median follow-up time was 20 months, and median age
was 66 years old. 44.1% cases were male. The pathologic
stage included 215 (70.3%) with stage I and 91 (29.7%) with
stage II. Most cases (254, 83.0%) had smoking history. 48 of
204 (23.5%) cases had lymph node metastases (pelvic and
para-aortic). Cases with high- and low-expression BACH1
accounted for 33.7% (103) and 66.3% (203), respectively.
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Figure 1: GO and KEGG analysis of BACH1 in the training set (TCGA dataset). (a) GO analysis of the BACH1-related BP, CC, and MF. (b)
KEGG analysis of potential biological signal pathways related to BACH1 expression. (c) Circular plot of the KEGG pathways enriched for
BACH1 expression-related genes.
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3.2. Functional Enrichment Analysis. GO and KEGG analysis
was performed to obtain a novel understanding of biological
mechanisms of BACH1. 5000 genes that highly associated
with BACH1 (correlation coefficient > 0:3 and P < 0:05)
were extracted and subjected to GO and KEGG analyses.
Genes related to BACH1 expression were mainly enriched
in BP column of “protein targeting”, “nuclear-transformed
mRNA catabolic process”, “protein localization to endoplas-
mic reticulum”, “protein targeting to endoplasmic reticu-
lum”, “cotranslational protein targeting to membrane”
terms, and in CC column of “mitochondrial inner mem-
brane”, “mitochondrial matrix”, “focal adhesion”, “ribo-
some”, “cytosolic part” terms, and in MF column of
“protein serine/threonine kinase activity”, “small GTPase
binding”, “RAS GTPase binding”, “ubiquitin-protein trans-
ferase activity”, “nucleoside-triphosphatase regulator activ-
ity”, “cadherin binding”, “GTPase regulator activity”, and
“structural constituent of ribosome” terms according to the
GO analysis (Figure 1(a)), as well as “ribosome”, “EGFR
tyrosine kinase inhibitor resistance”, “inositol phosphate
metabolism”, “non-small-cell lung cancer”, “autophagy”,

“oxidative phosphorylation”, and “mTOR signaling path-
way” according to KEGG analysis (Figure 1(b)). Furtherly,
we screened out 200 genes with the most significant correla-
tion with BACH1 expression to construct circular plot of
KEGG and found that the PI3K-Akt signaling pathway,
which was known to be a signaling pathway closely related
to the occurrence and development of tumors, was signifi-
cantly activated (Figure 1(c)) in the high-expression group
of BACH1.

3.3. Potential Mechanism Underlying the Role of BACH1
Affecting Prognosis. GSEA was performed to identify the
difference of biological pathways and corresponding genes
between 103 high- and 203 low-expression BACH1 cases.
28 biological processes were significantly enriched
(Table 2), 21 activated, and 7 suppressed cell signal pathways.

We selected the most significantly enriched pathways
based on normalized enrichment score (NES) in BACH1
high-expression phenotype. The results revealed that OXIDA-
TIVE_PHOSPHORYLATION (NES = −2:575, P = 0:002),
MYC_TARGETS_V1 (NES = −1:448, P = 0:002), DNA_

Table 2: Gene sets enriched in high-expression BACH1 cases.

Gene set name/signal pathway NES P value Q value

HALLMARK_OXIDATIVE_PHOSPHORYLATION -2.575 0.002 0.002

HALLMARK_MYC_TARGETS_V1 -1.448 0.002 0.002

HALLMARK_DNA_REPAIR -1.981 0.002 0.002

HALLMARK_MYC_TARGETS_V2 -1.964 0.002 0.002

HALLMARK_ANGIOGENESIS 2.114 0.002 0.002

HALLMARK_ANDROGEN_RESPONSE 1.783 0.002 0.002

HALLMARK_PROTEIN_SECRETION 1.657 0.002 0.002

HALLMARK_IL6_JAK_STAT3_SIGNALING 1.908 0.002 0.002

HALLMARK_TGF_BETA_SIGNALING 1.860 0.002 0.002

HALLMARK_HYPOXIA 1.559 0.003 0.002

HALLMARK_G2M_CHECKPOINT 2.300 0.003 0.002

HALLMARK_COMPLEMENT 1.915 0.003 0.002

HALLMARK_APOPTOSIS 1.411 0.003 0.002

HALLMARK_E2F_TARGETS 1.589 0.003 0.002

HALLMARK_INTERFERON_GAMMA_RESPONSE 1.884 0.003 0.002

HALLMARK_MITOTIC_SPINDLE 2.151 0.003 0.002

HALLMARK_TNFA_SIGNALING_VIA_NFKB 2.265 0.003 0.002

HALLMARK_APICAL_JUNCTION 1.645 0.003 0.002

HALLMARK_IL2_STAT5_SIGNALING 1.877 0.003 0.002

HALLMARK_KRAS_SIGNALING_UP 2.349 0.003 0.002

HALLMARK_MTORC1_SIGNALING 1.372 0.003 0.002

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 3.165 0.003 0.002

HALLMARK_INFLAMMATORY_RESPONSE 2.423 0.003 0.002

HALLMARK_PEROXISOME -1.526 0.010 0.006

HALLMARK_XENOBIOTIC_METABOLISM -1.393 0.015 0.009

HALLMARK_COAGULATION 1.291 0.024 0.013

HALLMARK_HEDGEHOG_SIGNALING 1.536 0.026 0.014

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY -1.481 0.032 0.016

NES: normalized enrichment score; NOM: nominal. Gene sets with P value < 0.05 and Q value < 0.05 are considered as significant.
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Figure 2: Continued.
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Figure 2: GSEA analysis of BACH1 in the training set (TCGA dataset). Significant enrichment of the BACH1-related signaling pathways in
the high-expression BACH1 group compared with that in the low-expression BACH1 group.
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REPAIR (NES = −1:981, P = 0:002), and MYC_TARGETS_
V2 (NES = −1:964, P = 0:002) pathways were differentially
suppressed. ANGIOGENESIS (NES = 2:114, P = 0:002), IL6_
JAK_STAT3_SIGNALING (NES = 1:908, P = 0:002), and
TGF_BETA_SIGNALING (NES = 1:860, P = 0:002) path-
ways were differentially activated (Figure 2).

4. Development and Validation of BACH1-
Based Prognostic Model

Univariate and multivariate COX regression analyses were
used to select risk factors. According to Cox regression anal-
ysis (Table 3), age (P < 0:001), pathologic stage (P < 0:001),
and BACH1 expression (P < 0:001) were significantly inde-
pendent prognostic factors and were incorporated to estab-
lish the nomogram model (Figure 3(a)).

The predictive ability of the model was then evaluated in
TCGA dataset and independently validated in the validation
cohort of GSE13213 and GSE72094.

The C-index of the model was 0.782 (95% CI [0.752,
0.812]) in TCGA dataset while 0.648 (95% CI [0.596,
0.700]) in GSE13213 cohort and 0.632 (95% CI [0.595,
0.669]) in GSE72094 cohort. Figure 3(b) shows that t-AUC
value was above 0.6 for the prediction of deterioration risk
within 5 years both in TCGA dataset and validation cohort,
indicating that a stable prognostic model was established.

Furthermore, the calibration curves of the model showed
high consistencies between predicted and observed 3- and 5-
year OS probability in TCGA dataset and GSE13213 cohort

(Figures 3(c), 3(d), 3(f), and 3(g)) and 2- and 3-year OS
probability in GSE72094 cohort. Thus, the model showed
considerably discriminative and calibrating abilities.

5. Risk Stratification Based on the Nomogram

High-expression BACH1 cases had worse OS according
to Kaplan-Meier curves (TCGA dataset, P < 0:001;
GSE13213 cohort, P = 0:012; GSE72094 cohort, P = 0:003)
(Figures 4(a), 4(d), and 4(g)). Risk stratification was made
based on the nomogram. The total point of each case was
counted based on the score of each variable. Cases were
grouped into two risk groups according to total points by
utilizing X-tile software: low-risk (total points < 10) and
high-risk (total points ≥ 10) group. The risk plot showed that
the deaths occurred more frequently in the high-risk group in
both TCGA and validation cohort (Figures 4(b), 4(e), and
4(h)). The Kaplan-Meier curves also presented the
significant discrimination among two risk groups both in
TCGA (P < 0:001) and validation cohort (GSE132123, P =
0:003; GSE72094, P = 0:002).

5.1. Clinical Usefulness. DCA was applied to evaluate the
clinical usefulness of the model by quantifying the net bene-
fit at different threshold probabilities compared with stage
systems (Figure 5). The model showed more net benefits
than stage systems across a wider range of threshold proba-
bilities both in TCGA dataset and validation cohort.

Table 3: Univariate and multivariate Cox analyses of OS in training cohort.

Characteristics
Univariable analysis Multivariable analysis

HR 95% CI P HR 95% CI P

Age 0.002 0.001

<60 1.000 1.000

60-70 0.698 0.313-1.556 0.379 0.674 0.299-1.521 0.342

>70 2.290 1.143-4.587 0.019 2.355 1.145-4.841 0.020

Gender 0.292

Male 1.000

Female 1.227 0.695-2.167 0.480

Pathologic stage <0.001 <0.001
I 1.000 1.000

II 2.673 1.516-4.712 0.001 2.819 1.578-5.036 <0.001
Laterality 0.582

Right 1.000

Left 1.118 0.632-1.975 0.475

Unknown 0.991 0.134-7.343 0.993

Smoking history 0.375

Yes 1.000

No 1.195 0.610-2.341 0.603

BACH1 expression <0.001 <0.001
High 1.000 1.000

Low 0.284 0.158-0.511 <0.001 0.315 0.174-0.571 <0.001
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Figure 3: Continued.
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6. Discussion

In this pioneering study, we confirmed that BACH1 was an
important prognostic factor for early-stage lung adenocarci-
noma by establishing a BACH1-based prognostic model that
incorporated BACH1 expression and clinical characteristics.
The prognostic model was evaluated by a variety of statisti-
cal indicators and validated by independent datasets and
proved to be accurate. More importantly, the BACH1-
based model indicated positive clinical applicability by
DCA curves.

Countless molecular factors contribute to the prolifera-
tion and metastasis of cancer, which meant its thousand

years living as one of the most malignant diseases with us
human beings. BACH1 on behalf of bad prognosis gene
has been elucidated by the presentation of its biofunction
and molecular mechanism. Lignitto et al. [11] and Wiel
et al. [12] groups reported that NRF2 activation can indi-
rectly promote the stability of BACH1 and at last induce
the metastasis of lung cancer; however, no research had ever
illustrated whether BACH1 affects the prognosis of early-
stage lung cancer. We firstly confirmed the vital role of
BACH1 in the prognosis of early-stage lung cancer.

With the highest mortality, lung adenocarcinoma also
shows more gene mutation and leads to its wide variety of
treatments [16, 17]. BACH1-associated gene enrichment
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Figure 3: Nomogram construction and evaluation. (a) A constructed nomogram for risk prediction of OS. (b) T-AUC of the nomogram
model in the TCGA dataset and validation cohort (GSE13213, GSE72094). (c) Calibration curves of the 3-year OS in the TCGA dataset.
(d) Calibration curves of the 3-year OS in the validation cohort 1 (GSE13213). (e) Calibration curves of the 2-year OS in the validation
cohort 2 (GSE72094). (f) Calibration curves of the 5-year OS in the TCGA dataset. (g) Calibration curves of the 5-year OS in the
validation cohort 1 (GSE13213). (h) Calibration curves of the 3-year OS in the validation cohort 2 (GSE72094).
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Figure 4: Continued.
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suggested the top ones that connected with its biofunction.
As a transcription factor, it apparently participated fre-
quently in protein expression and biosystem of protein
expression associated process. The protein targeting enrich-
ment may give us a new view to tumor target therapy.
BACH1 also participates in viral gene transcription and
expression, which hints us its connection with some viral-
induced tumor, for example, cervical cancer [18].

Lee et al. reported that BACH1 affected the transcription
of electron transport chain (ETC) genes [10], which mainly
functioned in the mitochondria. Our big data analysis also
yielded similar results, which suggested that BACH1 mainly
play vital role in the biological activity in mitochondria. It
inhibits the ETC gene transcription and leads to the more
available independence from mitochondrial aerobic respira-
tion. What is interested is that BACH1 may contribute to
metastasis via the focal adhesion kinase (FAK), which is an
important mediator of cell proliferation, differentiation,
and migration [19]. Malignant metastasis normally comes
down to the ECM or cellular permeation process [20, 21];
it is not surprising that FAK participates in that, which has
also been confirmed by studies from both mouse model
and human patients. From the cellular view, BACH1 obvi-
ously activates the serine/threonine kinase, which always
binds to the transforming growth factor-βs (TGF-βs). Its
activation has been estimated as a vital promoter in neopla-
sia. Another potential tumor-promoting effect may be its
binding to the small GTPase, which contains five subfamily

members: Ras, Rho, Rab, Sarl/Arf, and Ran. Among them,
Ras plays a vital role in the human neoplasia. They are
signaling nodes that are activated in response to a variety
of extracellular stimuli. Activated Ras combines with various
effectors with different catalytic activities to regulate cyto-
plasmic signal network, so as to control gene expression, cell
proliferation, differentiation, and growth.

KEGG analysis comprehensively recapitulates the bioin-
formation from both macroscopic and microscopic views,
which showed us an excellent data that BACH1 may be an
important prognosis factor to the NSCLC. Some NSCLC
patients, who burden the mutation of epidermal growth fac-
tor receptor (EGFR), have pointers to the target therapy [22]
and may also have poor therapeutic effect due to high
BACH1 expression.

Besides, the PI3K-Akt signaling pathway, which was
known to be a signaling pathway closely related to the occur-
rence and development of tumors, was also significantly acti-
vated in the high BACH1 expression cases. GSEA analysis
also showed suppressed oxidative phosphorylation and
DNA repair pathway and activated oncogenic pathways
such as angiogenesis, IL-6/JAK/STAT3, and TGF-β signal-
ing pathways in the high-expression group of BACH1.

ROS is a well-known cancer-related system, which could
be generated by neutrophils, macrophages, and even tumor
cell itself. Due to this complex and contradictory system in
the neoplasia [23], cancer cells engage a relative safe envi-
ronment to survive and proliferate, which we called TME
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Figure 4: Analyses of BACH1 expression on OS at different risks in lung adenocarcinoma cases. (a, d, g) Impact of BACH1 expression on
OS in the TCGA dataset, validation cohort 1 (GSE13213), and validation cohort 2 (GSE72094). (b, e, h) Cut-off point selection for risk
stratification according to nomogram scores in the TCGA dataset, validation cohort 1 (GSE13213), and validation cohort 2 (GSE72094).
(c, f, i) Kaplan-Meier curves of OS at different risks in the training and validation cohort (before PSM). (f, g) Kaplan-Meier curves of C-
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Figure 5: DCA curves of nomogram model compared with pathologic stage. (a, b) DCA curves of 3- and 5-year in the TCGA dataset. (c, d)
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(tumor microenvironment). Through inhibiting BACH1,
ROS prevents the malignant proliferation and metastasis;
however, BACH1-activated FAK [24] may help the cells to
attach to extracellular matrix, thus contributes to the oxida-
tive environment in the solid tumor, which in turn can help
BACH1 restrain the ETC gene expression. At last, these
factors help to construct a neoplasia-fitted hypoxia microen-
vironment and promote the proceeding of tumor prolifera-
tion. BACH1-enriched immune cells can drive immune
storm alone or cooperate together. For example, neutrophils
promote tumorigenesis via the release of ROS, which
contributes to DNA damage [25]. Animal experiment that
conducted in zebrafish showed the cooperation of macro-
phages and neutrophils in neoplasia, in which macrophages
can attract neutrophils through ROS-Src family kinase
signaling, which hints the important recruitment role of
TME to immune cells how macrophages modulate the
attachment of immune cells [23].

7. Conclusions

In conclusion, our study confirmed the vital role of BACH1
in the prognosis of early-stage lung adenocarcinoma. The
orchestration of a complex cell signal network that affects
the proliferation and invasion of cancer destines BACH1 to
be a promising predictor of the prognosis of NSCLC and a
new potential cancer target.
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