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Background. Kaplan-Meier (KM) curve has been widely used in the field of oxidative medicine and cellular longevity. However,
time-varying effect might be presented in KM curve and cannot be intuitively observed. Complementary plots might promote
clear insights in time-varying effect from KM curve. Methods. Three KM curves were identified from published randomized
control trials: (a) curves diverged immediately; (b) intersected curves with statistical significance; and (c) intersected curves
without statistical significance. We reconstructed individual patient data, and plotted 5 complementary plots (difference in
survival probability and risk difference, difference in restricted mean survival time, landmark analyses, and hazard ratio over
time), along with KM curve. Results. Entanglement and intersection of two KM curves would make the 5 complementary plots
to fluctuate over time intuitively. Absolute effects were presented in the 3 plots of difference in survival probability, risk, and
restricted mean survival time. Changed P values from landmark analyses were used to inspect conditional treatment effect; the
turning points could be identified for further landmark analysis. When proportional hazard assumption was not met,
estimated hazard ratio from traditional Cox regression was not appropriate, and time-varying hazard ratios could be presented
instead of an average and single value. Conclusions. The 5 complementary plots with KM curve give a broad and
straightforward picture of potential time-varying effect. They will provide clear insight in treatment effect and assist clinicians
to make decision comprehensively.

1. Introduction

Multiple myeloma is a neoplastic disease of plasma cell char-
acterized by the accumulation of clonal cells in the bone
marrow. These plasma cells overproduce intracellular reac-
tive oxygen species (ROS), resulting in unbalanced redox
homeostasis [1]. Unbalanced production of ROS leads to
oxidative stress, and the oxidative stress signaling could con-
tribute to acquired melphalan resistance [2]. Antioxidant
defense endowed multiple myeloma cells with resistance to
high-dose melphalan [3]. Many therapies, including bortez-
omib and melphalan, have been studied in many trials for
untreated multiple myeloma [4, 5]. In these trials, time-to-
event (TTE) data was collected, including survival time
(until the occurrence of an event of interest, for example,

death and progression of multiple myeloma) and status at
last observation [6]. KM curve becomes an essential part in
generating evidence-based information on TTE data and
has been used for more than 70 years [7]. Previous studies
have presented the application of Kaplan-Meier (KM) curve
to analyze TTE data from oxidative medicine [8]. Time-
specific survival probability can be estimated from KM
curves and median survival time when survival probability
drops to 50% or below [9, 10].

KM curve with two groups can be presented with var-
ious forms. For example, two curves separate widely from
the start to the end of follow-up, or they can track closely
at the early stage and separate at the end, or they can
crossover at the early stage or at late stage. Our brains
have been trained to chronically focus on the rate of
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Figure 1: Three types of Kaplan-Meier curves.
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HR: 0.43 (0.35, 0.52), p < 0.001

Test for proportional hazard:
Chis−quare: 3.531, p = 0.06
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Figure 2: Continued.
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decline between groups; however, many useful information
may be ignored [11]. The diversity of KM curve makes it
difficult to understand TTE data directly and comprehen-
sively, especially when two survival curves intersect. To
have a better understanding of KM curve directly, a trans-
formation of KM curve into difference in survival proba-
bility and risk difference can been introduced as absolute
measures, which have been highly recommended for clin-
ical decision in comparative studies because of their intui-
tion and practical value [12].

Log-rank test has been widely used to compare two
survival curves between two groups. In addition, landmark
analysis has been proposed to assess conditional associa-
tion between treatment and survival outcome before and
after the landmark [13]. A sensitivity analysis on different
landmark times has been recommended. The magnitude of
treatment effect, hazard ratio (HR), should be estimated
using Cox proportional hazard regression [14, 15]. A key
assumption in Cox regression is that the ratio of hazard
functions does not vary with time, which is known as pro-
portional hazard (PH) assumption. Interpretation of a sin-
gle value of HR from Cox regression may be a challenge
when PH assumption is not satisfied. Restricted mean sur-
vival time (RMST) is estimated by calculating the area
under the survival curve between 0 and prespecific time
(τ), and difference in RMST between two group has been
promoted as an alternative statistic than HR without lim-
itation of PH assumption [16–18].

In this study, we aimed to combine the four measures,
including difference in survival probability over time, risk
difference over time, difference in RMST over time, HR over
time, and landmark analyses based on a series of time points,
to provide a comprehensive information on treatment effect,
which might help clinicians and lay people to understand
treatment effect in TTE data more clearly.

2. Methods

2.1. Data Source. We identified an appropriate study based
on the following inclusion criteria: (a) trials related to bor-
tezomib, melphalan, and prednisone in multiple myeloma;
(b) trials enrolling only two groups; (c) study reporting
number of individuals at risks under KM curve; and finally,
two appropriate studies with 3 different types of KM curves
were included as our examples [4, 5].

In Mateos et al.’s study, the effect of daratumumab in
combination with bortezomib, melphalan, and prednisone
(D-VMP, N = 350) was compared with bortezomib-
melphalan-prednisone (VMP, N = 356, control group). In
the KM curve of progression-free survival (PFS), two
curves diverged immediately and showed significant differ-
ence (Figure 1(a)). For the overall survival (OS), two sur-
vival curves intersected in the early stage and then
diverged widely (Figure 1(b)). In Gentile et al.’s study,
VMP (N = 257) and lenalidomide and low-dose dexameth-
asone (Rd, N = 222, control group) were extracted from
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Figure 2: Two survival curves with significantly early and widening difference.
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HR: 0.61 (0.46, 0.81), p < 0.001

Test for proportional hazard:
Chis−quare: 4.161, p = 0.041
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Figure 3: Continued.
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two randomized phase III trials [19–21]. Treatment effect
on PFS was evaluated and visualized; the two survival
curves are intersected at a point in the medium term
(Figure 1(c)).

2.2. Reconstruction of Individual Patient Data. A R function
has been developed to reconstruct individual patient data
(IPD) from published KM curve [22]. KM curves and total
numbers of events in two groups were captured from
included trials, and Engauge Digitizer was used to extract
data points from KM curves [23].

2.3. Statistical Analysis.We replotted the KM curve based on
corresponding IPD. Intervention group was marked in red,
and control group was marked in gray. Proportional hazard
assumption was tested using scaled Schoenfeld residuals; HR
and corresponding 95% confidence interval (CI) were calcu-
lated based on Cox regression used in the original study;
these data were annotated on the replotted KM curve. We
also compared the reconstructed KM curve and estimated
HR with those from original study to verify accuracy of
reconstructed IPD.

Three absolute effects were visualized. Firstly, change of
difference in survival probability over follow-up time was
drawn. Survival probability and its standard error (SE) at a
series of time points on both curves (intervention group

and control group) were estimated using nonparametric
Kaplan-Meier method. Difference in survival probability
could be calculated, and 95% confidence interval of curve
was constructed using Altman’s method [24]. Secondly,
change of risk difference over follow-up time was plotted.
The numbers at risk decreased during follow-up; risk differ-
ence cannot be estimated based on 2 × 2 contingency table.
Pseudovalue method was proposed to estimate risk differ-
ence in survival analysis, which was not limited to PH
assumption [25]. Generalized estimating equation (GEE)
was applied in pseudovalue regression to model the effects
of covariates on risk of event. To explore arbitrary nonlinear
relationship between risk difference and follow-up time, a
restricted cubic spline of time and its interaction with group
was included in GEE. Lastly, change of difference in RMST
and 95% confidence interval over follow-up time were plot-
ted based on Kaplan-Meier curve.

We performed a series of landmark analyses based on
different cutoffs of follow-up time. Based on the cutoff, the
IPD data was divided into prelandmark and postlandmark
part. Log-rank test was applied in both parts, and paired P
values were presented with transformation (Y = −log10 ðPÞ).
Using the - log10 (0.05) as reference, any point above the ref-
erence line indicated statistical significance. For feasibility of
analysis, the paired landmark analyses were not conducted
when any group had less than 5 participants or no event.
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Figure 3: Two survival curves with intersection in the early stage and significant difference.
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HR: 0.94 (0.75, 1.18), p = 0.59

Test for proportional hazard:
Chis−quare: 29.272, p < 0.001
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Figure 4: Continued.
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Meanwhile, the change in HR over time and 95% confidence
interval were estimated based on restricted cubic spline.

Reconstruction of IPD, data analysis, and visualization
were conducted by using R version 3.5.1 software (the R
Foundation for Statistical Computing, Vienna, Austria) with
dplyr, survival, survRM2, rms, ggplot2, and cowplot pack-
age. All R codes were accessible in the supplementary mate-
rial. Statistical significance tests were conducted using a 2-
sided type I error rate of 5%.

3. Results

Generally, we expected that two survival curves diverged
immediately and showed significant difference. In Figure 2
(PFS), the re-estimated HR is 0.42 (95% CI, 0.35, 0.52),
which was similar to 0.42 (95% CI, 0.34 to 0.51), which sup-
ported high accuracy of reconstructed IPD (Figure 1(a) and
Figure 2(a)). Intervention group always had a higher survival
probability than control group during the whole follow-up
period. The difference in survival probability (Figure 2(c))
between two groups increased slowly and entered into a pla-
teau during the first 14 months. Subsequently, the difference
increased sharply and then maintained stable. Plot of risk
difference (Figure 2(e)) showed that the risk of event (pro-
gression) had been kept at a lower level in intervention
group. Difference in RMST (Figure 2(b)) presented a steady
upward trend, indicating that the intervention group always

delayed the progression during the whole follow-up period
because the 95% confidence band did not include 0. At 47
months, the difference in RMST between two group was
about 10 months as the net profit. A “X” shape was pre-
sented in landmark analysis (Figure 2(d)); the P values from
prelandmark parts were always significant (P < 0:05) and got
smaller during follow-up, which indicated no apparent con-
ditional association and supported the robustness of conclu-
sion. We had observed a different divergence pattern before
and after 14 months. Even though the PH assumption was
hold, the corresponding P value was close to 0.05 and the
HR decreased over time slightly, which suggested that the
treatment effect increased over time (Figure 2(f)). Superior-
ity of the intervention group to control group existed in both
short and long term.

In Figure 2 (OS), two survival curves intersected in the
early stage and then diverged widely (Figure 3(a)). The
average HR was 0.61 (95% CI, 0.46, 0.81) which was sim-
ilar to 0.60 (95% CI 0.46, 0.80) in raw plot (Figure 1(b)).
The P value from PH assumption test was 0.041, suggest-
ing time-varying treatment effect. Difference in survival
probability (Figure 3(c)) kept stable in the first 21 months
and then increased and peaked at 20% at 51 months. The
risk difference plot (Figure 3(e)) presented similar change,
and the turning point was also identified at 21 months.
Both suggested that intervention had took effect after 21
months. A “J-shape” was found in the difference in RMST

–0.25

0.00

0.25

0.50

0.75

Ri
sk

 d
iff

er
en

ce

0 10 20 30 40 50 60

Follow−up time

(e)

0.25

1.00

4.00

16.00

0 10 20 30 40 50 60

Follow−up time

H
az

ar
d 

ra
tio

(f)

Figure 4: Two survival curves with divergence in the early stage and intersection in the later stage.
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which increased slowly at first and then more rapidly
(Figure 3(b)). After 40th month, the difference becomes
statistically significant. Finally, patients in intervention
group would significantly live about 3.8 months longer
than those in control group during the 51 months. A X-
shape was presented in the landmark analysis
(Figure 3(d)). Before 28th month, all postlandmark analy-
ses were significant, and all prelandmark analyses were not
significant. The 21th month presented the smallest P value
from postlandmark analysis. An apparent change in HR
was found, which was consistent with the non-PH
(Figure 3(f)). During the early stage, the treatment effect
was not significant hazard. After 21 months, the HR was
getting away from 1. The 21th month could be considered
as a landmark time for further analysis.

In Figure 4, two survival curves diverge in the early stage
and intersect at the later stage (Figure 4(a)). The average HR
was 0.94 with no statistical significance. The P value from
PH assumption test was less than 0.001, suggesting time-
varying effect. A reverse “U-shaped” change was found in
the difference in survival probability (Figure 4(c)). At about
12 months, the difference reached the highest point (18%)
with statistical significance. Subsequently, it decreased grad-
ually and leveled out towards a minimum at -18%. The risk
difference increased from negative value to positive value,
suggested early benefit and late harm (Figure 4(e)). Another
reverse “U-shaped” change was found in difference in RMST
(Figure 4(b)). Treatment benefit in the early stage was
diminished after about 32th month. Even though the benefit
from treatment was not offset completely, the difference in
RMST becomes insignificant at the end of 55 months. Both
prelandmark and postlandmark analyses showed reverse
“U-shaped” change which indicated a complex and entan-
gling pre- and postrelationship (D). Between 12th month
and 32th month, both prelandmark and postlandmark anal-
yses reported statistical significances; a clinical and statistical
landmark time could be determined. Non-PH could be vali-
dated in the changing HR over time (Figure B.). A tipping
point at about 18th month instead of 32th month was
observed; the intervention presented significant benefit on
patients during early stage (HR<1); after that, the interven-
tion effect appeared significant harm during late stage
(HR<1). Based on B and F, the intervention did not benefit
the patients comprehensively.

4. Discussion

Even though KM curves only presented falling trend, differ-
ent falling forms generated various changes over time in sur-
vival probability, risk difference, difference in RMST, P
values from prelandmark and postlandmark analyses, and
HR. Magnitude of difference in survival probability and risk
difference was estimated as projection of KM curve. RMST
gave a cumulative treatment effect without limitation of
PH assumption. Landmark analyses were used to identify
the best landmark point where there was a clinical and sig-
nificant difference between prelandmark and postlandmark
part. Existence of entanglement and crossover caused these
curves to fluctuate, and the significant turning points could

be determined for further analysis, clinical explanation,
and decision-making.

Frequently, P value from log-rank test or HR (95% con-
fidence interval) was annotated on KM curve to provide
more information for readers to make conclusions. HR was
estimated from Cox proportional hazard regression as a rel-
ative measure of survival difference. Both practicing clini-
cians and lay people tended to overestimate effect size
when only reporting relative measures [26, 27]. For example,
the rate of event was 2‰ in intervention group and 1‰ in
control group, which indicated an increase in risk by
100%. Absolute measures gave a better and intuitive presen-
tation of actual situation, such as risk difference was only
1‰ in this case. However, absolute measures are influenced
by baseline level which might vary across difference popula-
tions, resulting in less generalization than relative measures.
Confusion about the efficacy and risk of treatment can be
introduced in patients and clinicians when only reported
one of them [28]. Two popular reporting specifications, con-
solidated standards of reporting trials (CONSORT) and
strengthening the reporting of observational studies in epi-
demiology (STROBE), strongly urge researchers to report
both measures whenever possible [29, 30]. Presentation of
both relative and absolute effect size can provide a broad pic-
ture of the characteristics of treatment effect. However, a
recent structural review showed that 75% reported only rel-
ative measures and 18% reported only absolute measures in
the full texts of 344 published medical and public health arti-
cles [31]. In our study, we had estimated three kinds of abso-
lute measures without limitation of PH assumption.

Change of difference in both survival probability and
risk with time was to project the difference of two KM curves
on the x-axis, which was convenient for observing and
understanding the change intuitively. The number needed
to treat (NNT) can be calculated by the reciprocal of abso-
lute risk difference and indicates the number of treated sub-
jects required to prevent one additional event [32].
Cumulative survival time presents special clinical signifi-
cance for oncological studies. RMST as effect measure had
attracted many attentions in survival analysis [17]. Differ-
ence in RMST indicates that patient will live longer (posi-
tive) or shorter (negative) and its magnitude presents the
size of average gain or lost in life expectancy within prespe-
cific time (τ).

Application of landmark analysis was a feasible method
to explore possible conditional treatment effect [33]. Choice
of landmark time is a crucial issue. Previous studies selected
only one landmark time based on KM curve without addi-
tional explanation [34, 35]. However, a sensitivity analysis
that performs landmark analysis using a series of time points
was recommended to select appropriate time point [36]. In
our study, we used the sensitivity analysis and combined
the KM curve with landmark analysis with the same x-axis
(follow-up time). Once a suitable landmark time was
selected, a new KM curve partitioned by or after landmark
time point can be presented [34, 37]. Meanwhile, the time
point should be explained clinically and meaningfully. The
change of valid sample size might influence the power of this
analysis. All subjects were included in the prelandmark part;
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when the landmark time is specified in an earlier stage of fol-
low-up, status of many subjects was marked as censoring,
which resulted in a reduction in valid number of events.
For postlandmark part, subjects whose events of interest
occurred prior to the landmark time were excluded, sample
size and statistical power for postlandmark analysis
decreased.

Time-dependent covariate and time-dependent coeffi-
cient were two extensive applications of COX regression in
clinical practice. When the exposure status was fixed but
PH assumption was not hold, it suggested that the effect of
exposure was not constant over the follow-up time, and
the single HR value with average property was no longer
appropriate. Time-varying HR was constructed using a spe-
cial function of time HR ðtÞ = eβ×gðtÞ [38]. Instantaneous
effect of exposure can be obtained for any time point. In
our study, we modified the implicit plot.cox.zph function
in survival package and integrated it as a complementary
plot. The turning point from HR<1 to HR>1 or from
HR>1 to HR<1 could be found for clinical decision-making.

In the current study, we only applied comparison
between two groups and developed R functions to visualize
corresponding effect measures. When more than two treat-
ment groups were included, KM plot and log-rank test were
still feasible to evaluate overall effect; meanwhile, multiple
comparisons were required for post-hoc analysis [39]. How-
ever, landmark analysis should be used with caution because
points of prelandmark and postlandmark analysis might be
presented redundantly. The differences in survival probabil-
ity, risk, and RMST and change of HR over time should be
separately estimated based on pairwise comparison; thus,
we cannot obtain the overall effect. The developed R func-
tions can be extended to accommodate multiple groups
and visualize multiple lines from multiple comparisons.
Moreover, falsely significant difference between any two
groups should be addressed appropriately, and confidence
interval should be adjusted accordingly.

This study had several strengths. 3 KM curves were
selected as examples, and 5 complementary plots were illus-
trated to give a comprehensive perspective of time-varying
effect. The KM curve and the 5 complementary plots were
plotted with KM curves using a consistent x-axis for intui-
tive comparison. These were a number of limitations in this
study: the exposure status was hypothesized to be fixed, and
no time-dependent covariate was included. In addition, sur-
vival curves adjusted for covariates were not estimated; only
time, status, and group were parameterized in developed R
functions. Parametric survival regression and Cox propor-
tional hazards model can be useful to estimate covariate-
adjusted survival curves.

5. Conclusion

In this study, difference in survival probability over time,
risk difference over time, difference in RMST over time,
and landmark analyses using different cutoffs and HR over
time were plotted with KM curves to give a complete and
straightforward picture of potential time-varying effect in
TTE data. They provide useful and straightforward adjuncts

to, not a replacement for, KM curves and might help clini-
cians and lay people to understand treatment effect clearly
and make decision smartly. Since integrated R functions
had been developed, we hope that these 5 plots can also be
reported as appurtenances to the KM curve in the future
visualization of survival analysis.
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