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Diabetic cardiomyopathy (DCM) is the main factor responsible for poor prognosis and survival in patients with diabetes. The
highly complex pathogenesis of DCM involves multiple signaling pathways, including nuclear factor-κB (NF-κB) signaling
pathway, adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, phosphatidylinositol 3-kinase-protein
kinase B (Akt) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth
factor-β (TGF-β) signaling pathway. Nuclear factor erythroid-2-related factor 2 (Nrf2) seems essential to the amelioration of
the progression of DCM, not only through counterbalancing oxidative stress, but also through interacting with other signaling
pathways to combat inflammation, the disorder in energy homeostasis and insulin signaling, and fibrosis. It has been
evidenced that Chinese herbal monomers could attenuate DCM through the crosstalk of Nrf2 with other signaling pathways.
This article has summarized the pathogenesis of DCM (especially in oxidative stress), the beneficial effects of ameliorating
DCM via the Nrf2 signaling pathway and its crosstalk, and examples of Chinese herbal monomers. It will facilitate
pharmacological research and development to promote the utilization of traditional Chinese medicine in DCM.

1. Introduction

Diabetic cardiomyopathy (DCM) is a cardiac muscle-specific
microvascular complication, which progresses in individuals
with diabetes mellitus (DM) but without other cardiac risk
factors including coronary artery disease, hypertension, and
significant valvular disease [1]. The Framingham Heart Study
showed that over the past 50 years, the proportion of diabetes-
caused cardiovascular diseases has increased, which emphasizes
the need to pay more attention to the cardiac condition in
patients with DM [2]. DCM, which elevates mortality in type
1 and type 2 diabetes mellitus (T1DM and T2DM) patients,
leads to a poor prognosis, and individuals with DM were 2.3
times more likely to develop heart failure than those without
[3, 4]. Around 22% of patients with T2DM develop heart failure
[5]. Furthermore, recent studies showed that even in mildly
elevated blood glucose (prediabetes), the risk of heart failure

was increased and associated with a poor prognosis [6, 7]. To
date, there is no special effective medicine for DCM [8]. How-
ever, a plethora of scientific evidence revealed that Chinese
herbal monomers might be potential drugs for the treatment
of DCM.

Nuclear factor erythroid-2-related factor 2 (Nrf2) is a
potent antioxidant gene, which can regulate cell signaling,
transcription, anabolic metabolism, and extracellular matrix
(ECM) remodeling through jointly acting onmultiple proteins
[9]. Nrf2 activates comprehensive cellular defense processes by
affecting nearly 500 genes, thus augmenting the whole ability
of cells to perform redox balancing factors, detoxifying
enzymes, stress response proteins, and metabolic enzymes
[10, 11]. Increasing investigations have suggested that Nrf2
could ameliorate DCM via crosstalk with different signaling
pathways, and some Chinese herbal monomers have proved
to have the capability of prompting that mechanism. This
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review provides a contemporary view of the pathogenesis of
DCM (especially in oxidative stress), the beneficial effects of
ameliorating DCM via the Nrf2 signaling pathway and its
crosstalk, and the examples of Chinese herbal monomers.

2. Review

2.1. Oxidative Stress in the Pathogenesis of DCM. The progres-
sion from DM to DCM is extremely complicated. The heart is
one of the important target organs of diabetes. Under physio-
logical conditions, insulin stimulates the uptake of glucose into
the cardiac muscle to maintain glucose homeostasis; however,
insulin insistence (IR) and hyperinsulinemia are associated
with the metabolic disorder in cardiovascular diseases [12].
In patients with DM, themain abnormalities of the inner envi-
ronment are hyperglycemia, systemic IR, and hyperinsulin-
emia [1]. In those conditions, these abnormalities instigate
disorders of systemic metabolism, activation of the sympa-
thetic nervous system and renin-angiotensin-aldosterone
system, response for maladaptive immune, inflammation,
and accretion of advanced glycation end products (AGEs) that
further prompt oxidative stress and lipid accumulation [13,
14]. Oxidative stress could trigger mitochondrial dysfunction,
and endoplasmic reticulum stress (ERS), impair calcium
handling, and increase Ca2+ sensitivity and Ca2+ influx [13].
The imbalance between mitophagy and mitochondrial bio-
genesis leads to damage to cardiomyocytes and fewer supply
of energy to the myocardia [13, 15, 16]. Oxidative stress and
ERS could induce abnormalities of calcium handling, which
lead to diastolic dysfunction [13]. Besides, the interaction of
reactive oxygen species (ROS), dysfunction mitochondrial,
ERS, and abnormal calcium handling ultimately causes apo-
ptosis [13]. Apoptosis is considered a major mechanism in
maintaining cellular homeostasis in general, and it plays a
crucial role in normal tissue turnover, immune development,
and defense [17]. However, an increased level of apoptosis
causes excess cell death in many diseases [17]. Regardless of
the diabetes type, highly conserved intracellular pathways of
apoptosis are triggered and lead to a point of no return in apo-
ptosis to influence β-cells, which provokes more metabolic
dysfunctions and thereby cause diabetic complications [18].
The results of the highly complex interaction of multiple
distinct but overlapping mechanisms are some typical changes
in the structure of the heart, including cardiac stiffness, hyper-
trophy, and fibrosis, leading to cardiac dysfunction, combined
with cardiomyocyte death that will promote the progress of
heart failure [1, 13].

Behind these pathological features, there are interactions
among multiple signaling pathways. ROS could enhance
nuclear factor-κB (NF-κB) signaling pathway as a maladaptive
immune modulation that prompts cardiac remodeling and
fibrosis [12, 19]. The increased ROS and impaired adenosine
monophosphate-activated protein kinase (AMPK) signaling
pathway further decrease fatty acid oxidation (FAO) and then
lead to lipid accumulation and diastolic dysfunction [13]. Inap-
propriate activation of the renin-angiotensin-aldosterone sys-
tem impairs the phosphatidylinositol 3-kinase (PI3K)-protein
kinase B (Akt) signaling pathway, further increasing intracellu-
lar Ca2+ levels and Ca2+ sensitivity and then resulting in cardiac

fibrosis/stiffness and diastolic dysfunction [12]. AGEs could
increase fibrosis, cardiac stiffness, and impaired diastolic relax-
ation by increasing the production of ROS and activating the
mitogen-activated protein kinase (MAPK) signaling pathway
[13]. Meanwhile, AGEs could stimulate the expression of colla-
gen, the crosslinks of collagen molecules, and the accumulation
of collagen [13, 20, 21]. The receptor for AGEs could induce the
expression of transforming growth factor-β (TGF-β) to elicit
the forming of myofibroblasts [22, 23].

Oxidative stress, an imbalance status between prooxidants
and antioxidants, may perform a central role in the pathogen-
esis of DCM via impacting β-cells and cardiac cells. A constant
weakening in β-cells quantities and utility is one of the charac-
teristics of the natural history of diabetes, which tightly relates
to microvascular or macrovascular complications of DM,
including DCM [24]. The pancreatic β-cells, with lower levels
of free radical detoxifying and redox-regulating enzymes, con-
trasted to other cell types, may be at a higher hazard for oxida-
tive injury with boosted sensitivity for apoptosis [25]. ROS and
reactive nitrogen species (RNS) are the two chief cellular gener-
ation sites of redox-reactive species [19]. Under physiological
conditions, ROS/RNS regulates insulin secretion and insulin
action; conversely, under pathological conditions, ROS/RNS
prompts the deactivation of metabolic enzymes, suppression
of insulin secretion, and death of β-cells [26]. The activity of
nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxi-
dase (NOX) elevated upon Ca2+ stimulation, then prompt ROS
accumulation in β-cells increased rapidly, and attain harmful
levels to influence the progression of DM and its complications
[25]. NOXs, an important ROS-producing enzyme, not only
trigger oxidative damage in β-cells but also regulate both adap-
tive and maladaptive changes in the cardiomyocytes [27]. The
physiological amounts of nitric oxide (NO) are a vital coupling
factor in insulin-secreting cells; however, the excessive NO pro-
duction, whichmay relate to inflammation, can generate oxida-
tive/nitrosative stress, which is one of the crucial procedures of
β-cells death [19, 28].

ROS is regarded as a prototypical senescence inducer, and
the considerable amount of ROS and RNS in adult cardiac
muscle cells leads to cardiotoxicity [29]. ROS-induced aging
and cardiotoxicity prompt cardiac stem cells senescence and
then reduce cardiac muscle function, especially in patients
with DM [29]. Besides broad oxidation inducing cell dysfunc-
tion, necrosis, or apoptosis, dysregulated ROS/RNS signaling
also leads to specific posttranslational modifications which
could alter the function of vital cellular proteins and signaling
pathways in the heart [30]. For example, bromodomain-
containing protein 4 is a critical protein in the modulation of
various biological processes, and its expression has been
detected upregulated in the DCM [31, 32]. ROS production
could trigger the expression of bromodomain-containing pro-
tein 4 to prompt cardiac hypertrophy, and this progression
also relates to signaling pathways for inflammation, fibrosis,
and so on [31]. NO is an oxygen-derived free radical and is
synthesized by three NO synthase isoforms including induc-
ible NO synthase (iNOS), endothelial NOS (eNOS), and neu-
ronal nitric oxide synthase [19, 33, 34]. Abnormalities in
vascular NO production and transport accompany many dis-
ease states, including cardiovascular diseases and diabetes
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[34]. The pathological amounts of NO are related to vascular
endothelial dysfunction, which is considered a major mediator
in diabetic cardiomyopathy [35]. The reduction of bioavail-
ability of NO in the vasculature is one of the characteristics
of IR, and improving the bioavailability of NO could also help
coronary vasodilation [36, 37].

The pathogenesis of DCM is extremely complex and
involves multiple signaling pathways. Oxidative stress is
the major factor responsible for poor prognosis and survival
in patients with DCM, and it could impact both β-cells and
cardiac cells. The mechanisms of oxidative stress in DCM
have been summarized in Figure 1. Antioxidation is one of
the promising therapeutic strategies for DCM and calls for
more attention.

2.2. Relationship of Nrf2 and DCM. Nrf2 performs a critical
character in counterbalancing oxidative stress and inflamma-
tion. Kelch-like ECH-associated protein 1 (Keap1) sequesters
Nrf2 in cytoplasmic usually, but under conditions of oxidative
stress, it resolves with Nrf2 in a dose-independent manner
[38]. The resolved newly synthesized Nrf2 translocates into
the nucleus and then binds to the small Maf proteins to form
a new protein dimer [10]. Furthermore, the heterodimer can
recognize the antioxidant response elements (AREs), which
locate in the regulatory domains of multiple defense enzyme
genes [11]. AREs then transcript heme oxygenase-1 (HO-1),
NAD(P)H quinone dehydrogenase-1 (NQO1), superoxide
dismutase (SOD), catalase (CAT), glutathione peroxidase
(GPX), glutathione S-transferase (GST), and γ-glutamylcys-
teine synthetase (γ-GCS) to defend the cell against oxidative
stress [39, 40].

Nrf2 is broadly accepted as having a remarkable role in
combating oxidative stress, and investigations have claimed
that the expression of Nrf2 in diabetic animals and patients
is significantly diminished [41, 42]. The decreased expression
of Nrf2 leads to cardiac damage and is correlated to IR, abnor-
mal angiogenesis, and endothelial dysfunction [41]. However,
increasing the expression of Nrf2 can guard the cardiac cells
and heart against the hyperglycemia environment in vitro
and in vivo [42]. Chinese herbal monomers could upregulate
Nrf2 to reverse this condition. Abdelsamia et al. suggested
the advantages of metformin/curcumin combination in coun-
teracting DCM [43]. They treated diabetic rats with curcumin
(100mg/kg/d) for 6 weeks and then observed Nrf2; HO-1
upregulated; and the metformin/curcumin combination
group is superior to the metformin and curcumin group
[43]. Atta et al. noted that 12 weeks oral of thymoquinone
(50mg/kg/d) in diabetic rats could upregulate Nrf2 and
SOD, as well as downregulate iNOS and NO [44].

Previous studies also suggested that activating Nrf2/HO-1
pathway could positively attenuate the death of cardiomyo-
cytes [45]. The strategy of targeting Nrf2 could enhance the
expression of Nrf2 in the cardiac to elevate the expression of
HO-1 in the myocardial and then diminish cardiac hypertro-
phy and cardiac dysfunction [46]. Wang et al. fed T1DMmice
with resveratrol (10mg/kg per day) for 1 month and afterward
observed for 6 months and showed that cardiac function
improved and fibrosis reduced which is accompanied by
upregulating Nrf2, HO-1, SOD, and NQO1 [47]. Dong et al.

evidenced in vitro that gastrodin could defend against
hyperglycemia-induced cardiomyocyte toxicity through
upregulating Nrf2, SOD, and CAT [48]. Duan et al. found that
Aralia taibaiensis could reduce intracellular ROS levels and
cell oxidative injury accompanied by enhancing the expression
of Nrf2, SOD, and GSH [49].

The Nrf2 system is also responsible for maintaining lipid
metabolism and glucose metabolism by regulating glucose
utilization and insulin secretion to convert the progression
of DM [50]. Castillo et al. treated rats with quercetin (0.5%
w/w) for 4 weeks and then observed quercetin counteracted
hyperglycemia-induced bioenergetic deterioration, including
avoiding cardiac cholesterol accumulation, accompanied by
upregulating Nrf2, HO-1, SOD, and proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1α) [51]. PGC-
1α is regarded as a master regulator of mitochondria, which
is related to intracellular energy homeostasis [52]. In a word,
Nrf2, as an antioxidant factor, could efficiently ameliorate
DCM.

2.3. Main Signaling Pathways in the Pathogenesis of DCM
and Crosstalk with Nrf2. The pathogenesis of DCM involves
diverse signaling pathways to exercise different functions,
and these mechanisms are summarized in Table 1. For ame-
liorating DCM, Nrf2 plays a pivotal role in crosstalk with
these pathways and that would be discussed in detail in the
following text.

2.3.1. Effects of NF-κB Signaling Pathway and Crosstalk with
Nrf2. NF-κB is one of the major signaling pathways involved
in the pathogenesis of DCM. Mainly transcription factors in
mammals of the NF-κB family include p50, p52, p65, Rel,
and RelB [53, 54]. NF-κB is expressed in nearly all cell sorts,
and the family of inhibitors of NF-κB (IκB) couldmake it inac-
tive in the cytoplasm [55, 56]. This signaling pathway could be
activated inmultiple ways, including ROS and RNS levels, toll-
like receptors (TLRs), interleukin-1 (IL-1), IL-6, and tumor
necrosis factor α (TNF-α) [19, 55, 57, 58, 59]. TLRs, inside
the human body, it is named TLR4, are components of the
innate immune, whose activation can produce inflammatory
cytokines and systematically affects vascular function and
remodeling [60]. Myeloid differentiation primary response
protein 88 (MyD88), one of the adapters of TLR4, is a kinase
that performs an essential role in triggering NF-κB signaling
[57]. TLR4 can also bind to NOX4 and subsequently generate
ROS, thus provoking oxidative damage [19, 61]. Proinflam-
matory cytokines, such as IL-1β, are produced by inflamma-
somes, which are a group of protein complexes built around
several proteins, including nucleotide-binding oligomerization
domain-like receptor protein 3 (NLRP3) [62]. Besides that,
NF-κB could transcript some cell adhesion molecules, which
firmly adhesion to leukocytes to migrate into injured tissues,
such as intercellular adhesion molecule-1 (ICAM-1) and vas-
cular cell adhesion molecular-1 (VCAM-1) [63]. Monocyte
chemoattractant protein-1 (MCP-1), a member of chemotac-
tic cytokines, could promote adhesion via the upregulated
related receptor, such as the receptor of ICAM-1 [64].

NF-κB signaling pathway performs a vital part in the path-
ophysiology of DCM through involving in the transcription of
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different proinflammatory and inflammatory [65]. During
inflammatory responses, cellular events are tightly associated
with redox balance [66]. Between Nrf2 and NF-κB signaling
pathways, there is an existing complex and dynamic interplay,
and both modulate the physiological homeostasis of cellular
redox status and responses to stress and inflammation [10].
Nrf2 signaling pathway could decrease the production of
ROS in intracellular and then could inhibit proinflammatory
signals in general [67]. Nrf2 plays a major role in anti-
inflammatory and includes counteracting NF-κB-driven
inflammatory, and this supposedly has been evidenced by
multiple studies [10, 68]. Raish et al. stated that sinapic acid

(20 and 40mg/kg oral for 12 weeks) can upregulate GPX,
SOD, CAT, IκB-α/β, Nrf2, and HO-1 while downregulating
TNF-α, IL-6, and NF-κB [45]. Lian et al. observed the poten-
tial of chrysophanol for antioxidant and anti-inflammation is
Nrf2-dependent [69]. They gave mice 25 and 50mg/kg/d
chrysophanol solution for 19 weeks and then noted Nrf2,
HO-1 are upregulated and is accompanied with IL-6, IL-18,
IL-1β, TNF-α, ICAM-1, and VCAM-1 are downregulated,
but this result does not show in Nrf2 knockout mice [69].
Chen et al. also observed this dependency; they found that
kaempferol can enhance Nrf2 activity in cells and upregulate
HO-1, NQO1, SOD, and IκB-α, as well as downregulate

Ca2+

ROS
RNS

Death

Dysfunction

𝛽 - cell

Cardiac cell

Hyperglycemia

Systemic insulin insistence

Hyperinsulinemia

Oxidative stress

Figure 1: Oxidative stress in the pathogenesis of DCM (created with BioRender.com). In patients with diabetes, the main abnormalities of
the inner environment are hyperglycemia, systemic insulin insistence, and hyperinsulinemia. Oxidative stress could trigger mitochondrial
dysfunction and endoplasmic reticulum stress, and impair calcium handling and increase Ca2+ sensitivity and Ca2+ influx. ROS/RNS
could impact both β-cells and cardiac cells leading to cell death and dysfunction. ROS: reactive oxygen species; RNS: reactive nitrogen
species.

Table 1: Mechanisms of diverse signaling pathways in the pathogenesis of DCM.

Signaling pathway Mechanism

NF-κB signaling pathway Increase inflammation and apoptosis

AMPK signaling pathway

Improve utilization of glucose
Maintain energy homeostasis
Decrease lipid accumulation, ROS production, and
inflammation

Akt signaling pathway
Regulate insulin signaling
Decrease apoptosis

MAPK signaling pathway
Regulate insulin signaling
Lead growth and remodeling responses
Increase inflammation

TGF-β signaling pathway Increase fibrosis and apoptosis
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TNF-α and IL-6, but when knockdown of Nrf2 in H9c2 cells,
kaempferol has no attenuation effect on ROS production [70].

NF-κB signaling pathway also performs a crucial charac-
ter in apoptosis. In β-cells, activated NF-κB could upregulate
proapoptotic (e.g., Bax) and downregulate antiapoptotic
(e.g., Bcl2) [19]. Besides, excessive production of ROS pro-
vokes the apoptosis of cells through combination with
inflammatory [19]. Nrf2 signaling pathway could inhibit
apoptosis in multiple ways, such as transcript antioxidant
factors, suppressing NF-κB signaling pathway. Liang’s study
could approve this result. After 12 weeks of oral for 1, 10,
and 20mg/kg/d in diabetes mice, andrographolide could
upregulate SOD, Nrf2, HO-1, and IκB-α, as well as downreg-
ulate p65, NF-κB, TNF-α, IL-1β, IL-6, and Bax/Bc12 [71]. Li
et al. found that piceatannol in vitro could enhance the
expression of Bc12, Nrf2, HO-1, SOD, and IκB-α and, mean-
while, reduce the expression of Bax, p65, and caspase3 [72].
The family of caspase is related to apoptosis β-cells [19].

The main crosstalk mechanisms in Nrf2 and NF-κB
signaling pathway are as follows. Firstly, Nrf2-dependent
antioxidant genes, such as HO-1 and NQO1, could limit the
activation of NF-κB to attenuate inflammation via blocking
TNF and TLR4-depending signaling pathways [68, 73]. Yan
et al. observed that scutellarin could regulate both Keap1/
Nrf2/ARE and TLR4/MyD88/NF-κB signaling pathways
[74]. According to Yan’s study, scutellarin could upregulate
the expression of SOD, CAT, GPX, GST, Nrf2, NQO1, HO-
1, and IκB-β while downregulating Keap1, TLR4, Myd88,
p50, IL-6, and TNF-α after a 6 weeks oral (10 or 20mg/kg/
day) [74]. Xu et al. gave mice bixin solution 50, 100, and
200mg/kg/d for 14 weeks and then found that Nrf2, SOD,
HO-1, and CAT upregulated; meanwhile, TLR4, Myd88,
IκB-α, and NF-κB downregulated [75]. Enhancing the expres-
sion of HO-1 not only inhibits the TNF-dependent activation
of NF-κB but also reduces VCAM-1 expression in aortic endo-
thelial cells; the behind mechanism may be that HO-1 can
impede the transcriptional machinery of NF-κB in the nucleus
[76]. Li et al. observed that 15 weeks oral of luteolin (20mg/kg/
d) could upregulate Nrf2, HO-1, and NQO1; meanwhile, it
could downregulate IL-1β, IL-6, TNF-α, MCP-1, ICAM, and
VCAM [77]. Secondly, Nrf2 could impede the activation of
NLRP3 inflammasome. Nrf2 and NQO1 are involved in the
progression, impeding the priming step to decrease the activity
of NLRP3 inflammasome, and it also suppresses caspase-1
cleavage and subsequent IL-1β generation [78]. Thirdly,
Keap1 could inhibit the activity of NF-κB via ubiquitinating
IκB kinase [79]. Furthermore, Keap1 could be targeted by
15d-PGJ2 to initiate gene transcription with an overall anti-
inflammatory result [80]. 15d-PGJ2 is a product of NF-κB-
induced cyclooxygenase-2, where interesting is that NF-κB
system could manage its termination by expression of other
target genes [80]. Fourthly, NF-κB could compete with Nrf2
to combine with cAMP-response-element-binding protein-
binding protein, a transcriptional co-activator [68]. Themech-
anisms have been summarized in the figure (see Figure 2). In
conclusion, the NF-κB signaling pathway triggering inflam-
mation and apoptosis to lead the poor prognosis of DCM
and Nrf2 could improve this via crosstalk with it.

2.3.2. Effects of AMPK Signaling Pathway and Crosstalk with
Nrf2. AMPK has been regarded as an enzyme that performs
a crucial part in maintaining energy homeostasis, reduction
of ROS production in the cytosol, and utilization of glucose
[81–83]. The activity of AMPK was considerably decreased
in DCM, and increasing the activity of AMPK would signif-
icantly diminish lipid accumulation and revamp cardiac
function [8]. In cardiac, AMPK is a major kinase to regulate
myocardial metabolism through controlling numerous met-
abolic pathways, such as lipid metabolism and utilization [8,
83]. Under normal physiological conditions, the adult heart
gains about 50-75% of its acetyl coenzyme A (CoA)-derived
ATP from FAO, but also could rapidly adjust to alterations
in substrate availability for the generation of ATP to inces-
santly maintain its energy requirements, which termed
“metabolic flexibility” [83]. However, in pathological cardiac
hypertrophy and dilated cardiomyopathy, there would be
some changes in transcription that prompt the diminish of
this metabolic flexibility, which contributes to the pathogen-
esis of heart failure [83]. Once AMPK is activated, it could
increase fatty acids entering the mitochondria through car-
nitine palmitoyl CoA transferase 1 for FAO [84]. Acetyl-
CoA carboxylase (ACC) is a protein that could catalyze the
transformation of acetyl CoA to malonyl-CoA, and
malonyl-CoA could negatively regulate carnitine palmitoyl
CoA transferase 1 [85]. Activated AMPK could diminish
malonyl-CoA levels and increase FAO through phosphory-
lating and inhibiting ACC [86]. Furthermore, both AMPK
and silent information regulator 1 (SIRT1) are regarded as
the gatekeepers of the activity of PGC-1α, and the activated
AMPK/SIRT1/PGC1-α signaling pathway contributes to a
regulatory network for metabolic homeostasis [52].

Both AMPK and Nrf1/2 are the crucial regulator of
mitochondrial dynamics and synergistic to maintain cardio-
vascular energy homeostasis [15, 87]. Enhancing the expres-
sion of Nrf2 could help AMPK to improve cardiac function.
Li et al. stated that bailcalin improves diabetes-induced
cardiac dysfunction via AMPK/Nrf2 signaling [8]. After
administering diabetic mice with bailcalin (100mg/kg/d, 4
months), it was found that it can upregulate AMPKα,
CPT-1, PGC1-α, glutathione (GSH), SOD, and Nrf2 while
downregulating atrial natriuretic peptide (ANP), B-type
natriuretic peptide (BNP), β-myosin heavy chain (β-
MHC), ACC, and oxidized glutathione (GSSG) [8]. GSH is
regarded as one of the most essential scavengers of ROS,
and its ratio with GSSG may be considered a biomarker of
oxidative stress [88]. BNP is a valuable indicator in the diag-
nosis of heart failure, and its elevation is correlated with
disease severity, especially left ventricular systolic ejection
fraction and left ventricular diastolic function [89]. The
meaning of ANP is nearly the same as BNP, but it has a dif-
ferent mechanism [90]. In cardiomyocytes, isoforms of β-
MHC have been evidenced to change cardiac muscle func-
tion both in healthy developing and diseased hearts [91].
Both BNP and β-MHC are cardiac hypertrophy marker pro-
teins [92]. Du et al. found that in vitro notoginsenoside R1
could upregulate Nrf2, HO-1, and AMPK, as well as down-
regulate ANP and BNP [93].
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Besides, AMPK could prompt the Nrf2-mediated antioxi-
dative cascade while inhibiting inflammation via suppression
of TLR-mediated proinflammatory cascades [94]. Kosuru
et al. stated that pterostilbene, 8 weeks oral for 20mg/kg/d in
rats, could upregulate SOD, CAT, GSH, GPX, PGC-1α, Nrf2,
HO-1, and AMPK; meanwhile, it could downregulate IL-1β,
IL-6, TNF-α, NF-κB, TLR4, and NLRP3 [95]. Zhao et al.
observed that fortunellin, 8 weeks oral for 10, 20, and 30mg/
kg in mice, could upregulate SOD, Nrf2, HO-1, and AMPK
and downregulate TNF-α, IL-1β, IL-6, IL-18, NF-κB, and
Keap1 [96]. Altamimi et al. revealed that ellagic acid, 8 weeks
for 100mg/kg/d in rats, could upregulate GSH, SOD, Nrf2,
and SIRT1, as well as downregulate BNP, TNF-α, and IL-6 [97].

Although whether Nrf2 is a direct molecular target of
AMPK is unclear, Nrf2 could be activated in an AMPK-
dependent way and as a downstream factor [94]. The crosstalk
mechanisms between Nrf2 and AMPK signaling pathway are
concluded in the following aspects. Firstly, glycogen synthase
kinase 3β (GSK3β), which is regarded as an activation switch
of Nrf2 gene expression, is a key protein in the crosstalk
between Nrf2 and AMPK. Nrf2 could be phosphorylated by
AMPK at the Ser550 residue, and then combine with AMPK-
mediated GSK3β inhibition, further enhancing the nuclear

accumulation of Nrf2 for ARE-driven gene transactivation
[98]. Phosphorylated GSK3β was also found that this could
improve cardiac function [99]. Cao et al. found in vitro that
Z-ligustilide could restore cardiomyocyte dysfunction via
upregulating AMPK, Nrf2, and SOD while downregulating
GSK3β [100]. Secondly, activated AMPK could promote
p62-dependent autophagic degradation of Keap1, which leads
Nrf2 to separate from Keap1 and translocate to the nucleus
[101]. Thirdly, SIRT1, which could be activated by AMPK
via increasing the substrate, could regulate Nrf2 to attenuate
oxidative damage [102]. Besides, a family of secreted
frizzled-related proteins (Sfrps) recently had been reported
to be widely associated with the pathogenesis and prognosis
of DCM, including apoptosis, inflammation, and oxidative
stress, and then lead to the events of cardiac fibrosis and even
heart failure [103–108]. Although Sfrps has been evidenced
could reduce oxidative stress in an AMPK/PGC1-α-depen-
dentmanner, studies are deficient about the direct relationship
between Nrf2 and Sfrps [108]. However, between Nrf2 and
Sfrps, there are so many same proteins involved, such as
GSK3β and PGC1-α, and the related studies should be
expected [104, 105, 108]. In short, besides combating oxidative
stress, AMPK and Nrf2 jointly work to revamp cardiac

(a) (b)

(c) (d)

TLR

MyD88

TNFR

Nrf2 HO-1
NQO1

Nrf2

NQO1

NLRP3

Caspase-1

IL-1𝛽

Keap1 IKK

NF-κB

15d-PGJ2

CBP
Nrf2

P50 P65
CBP

Antioxidation

Figure 2: The crosstalk between Nrf2 and NF-κB signaling pathway (created with BioRender.com). (a) Nrf2-dependent antioxidant genes
could block TLR and TNF-dependent signaling. (b) Nrf2 and NQO1 inhibit the priming step of NLRP3, and suppress caspase-1 cleavage
and IL-1β generation. (c) Keap1 could ubiquitinate IKK and be targeted by 15d-PGJ2. (d) Nrf2 and NF-κB could compete to combine
with CBP. Nrf2: nuclear factor erythroid-2 related factor 2; NF-κB: nuclear factor-κB; HO-1: heme oxygenase-1; NQO1: NAD(P)H
quinone dehydrogenase-1; TLR: toll-like receptors; TNFR: tumor necrosis factor receptor; NLRP3: nucleotide-binding oligomerization
domain-like receptor protein 3; IL-1β: interleukin-1β; Keap1: kelch-like ECH-associated protein 1; IKK: inhibitors of NF-κB kinase; CBP:
cAMP-response-element-binding protein-binding protein.
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function via maintaining heart energy homeostasis, improving
utilization of glucose, and decreasing lipid accumulation and
inflammation based on the above mechanisms.

2.3.3. Effects of Akt Signaling Pathway, and Crosstalk with
Nrf2. PI3K/Akt signaling pathway also significantly influ-
ences the prognosis of DCM. IR could independently predict
the mortality of individuals with heart failure [109]. Akt sig-
naling pathway is one typical pathway responsible for cellu-
lar insulin signaling, which is beneficial to the glucose uptake
in the heart [13]. Impairment of the insulin-induced activa-
tion of PI3K/Akt is one of the characteristics of IR [109].
Activated Akt signaling pathway could ameliorate cardiac
IR [110]. Recently, accumulating evidence has suggested that
oxidative stress plays a causal role in the cardiac complica-
tions of IR too [109]. Akt signaling pathway evidenced that
it could enhance the expression of Nrf2 and then jointly
against IR to improve cardiac function [111, 112]. Xu et al.
observed that cardiac function improved in mice after 4
weeks of intraperitoneal injection with scutellarin (5, 10,
20mg/kg), accompanied by enhancing the expression of
Nrf2, HO-1, and Akt [113].

Akt signaling pathway could be activated in multiple
ways, including insulin receptor substrate (IRS), and estro-
gen receptors. IRS represented a classical insulin-induced
way to activate Akt signaling pathway, which contributes
to ameliorating prognosis, including improving cardiac
function and apoptosis. Ma et al. evidenced that low expres-
sion of SIRT1 induces the decrease of IRS-2 and further does
not activate Akt signaling pathway [110]. According to Ma’s
study, the level of ANP and BNP significantly increased in
the SIRT1 knockout mice, and 5 consecutive days treated
with resveratrol (25mg/kg/d) in mice could reverse this con-
dition, by enhancing the expression of Nrf2, SIRT1 [110].
Furthermore, IRS-1 could initiate eNOS through Akt acti-
vating way [37]. In diabetic rats, the blocked PI3K/Akt sig-
naling pathway results in the reduction of protein
expression of eNOS, which could also regulate the level of
apoptosis [112]. Liu et al. showed that spiraeoside in vitro
could upregulate Akt, Nrf2, HO-1, Bcl2, SOD, GPX, and
CAT and downregulate caspase3, caspase7, and Bax [114].
Estrogen receptors-α36-G protein-coupled estrogen receptor
signaling complex could rapidly induce the generating of
ceramide, which is necessary for signaling of ceramide-
protein kinase C ζ-casein kinase 2 (CK2) [115]. CK2 further
supports the activation of diverse signaling kinases, includ-
ing Akt signaling [115].

The crosstalk mechanisms between Akt and Nrf2 are the
following aspects. Firstly, GSK3β is regarded as a crucial
protein. GSK3β, a multifunctional serine/threonine kinase,
could phosphorylate Fyn, and then phosphorylate Nrf2 tyro-
sine 568, finally provoking the degradation of Nrf2 [116].
Akt could phosphorylate GSK3β at Ser 9 to make it deacti-
vate to facilitate the accumulation of Nrf2 [111, 116]. Zhang
et al. found that in vitro myricitrin could increase Nrf2, HO-
1, γ-GCS, NQO1, and Akt, as well as downregulate GSK3β
[117]. Duan et al. showed that every other day for 15 days
oral for 10, 20, and 40mg/kg in diabetic mice, butin could
upregulate SOD, Nrf2, HO-1, and Akt, as well as downregu-

late Keap1, GSK3β, and Fyn [116]. Besides, CK2 contributes
to the accumulation of Nrf2 not only by activating the PI3K/
Akt axis but also by directly phosphorylating Nrf2 to
enhance its stability [115]. Briefly, Akt and Nrf2 signaling
pathways could alleviate IR and apoptosis to improve the
prognosis of DCM through regulating cellular insulin
signaling.

2.3.4. Effects of MAPK Signaling Pathway and Crosstalk with
Nrf2. MAPK is a vital target signaling pathway for treating
DCM. MAPK is a key signal transduction pathway in regu-
lating cellular insulin signaling, which mainly relates to the
disturbance in the metabolic and growth effects of insulin
signaling [13]. The activated MAPK signaling pathway is
related to growth and remodeling responses, which leads to
myocardial hypertrophy, cardiac fibrosis, impaired myocar-
dial endothelial signaling, and death of myocardial and
endothelial cells [13]. Besides, MAPK is regarded canonical
intracellular signaling pathway related to inflammation and
immune [118]. Downregulating the MAPK pathway could
alleviate chronic inflammation in diabetic mice via Chinese
herbal monomers, such as berberine [119].

Chinese herbal monomers have been observed that they
can regulate MAPK and Nrf2 signaling pathways in cardiac
at the same time. MAPK family includes c-Jun N-terminal
kinase (JNK), extracellular signal-regulated kinase (ERK),
and p38. Overactivated phosphorylated ERK, which tightly
relates to IR in cardiac, is always accompanied by a
depressed expression of cardiac Nrf2 [109]. Furthermore,
insulin-induced ERK activity was significantly decreased by
the forced activation of Nrf2, which indicated that activation
of Nrf2 could diminish the activity of oxidative stress-
induced ERK in adult cardiomyocytes [109]. Chinese herbal
monomers have been evidenced that they could inhibit
ERK1/2 and p38 MAPK phosphorylation in angiotensin II-
treated neonatal rat ventricular myocytes, which contribute
to alleviating cardiac hypertrophy [120, 121]. Activated
JNK, a key marker of tissue injury, was previously shown
to relate to IR, increased ROS generation, and ERS under
hyperglycemic conditions [122, 123]. The Nrf2 inhibitor
could increase the expression of JNK [123]. The ERK1/2
and JNK are downstream factors of the Nrf2 pathway,
involved in DCM, and upregulated by NOX and Nrf2
deficiency-stimulated ROS production [123]. Gu et al.
showed isoliquiritigenin in vitro could upregulate Nrf2 and
HO-1 and meanwhile downregulate TNF-α, IL-6, IL-1β,
VCAM-1, MCP-1, JNK, ERK, and p38 [118]. Lu et al. sug-
gested that hinokinin could protect against cardiac injury;
they treated diabetic mice with hinokinin (20 and 40mg/
kg) for 6 weeks and then observed that Nrf2, HO-1, and
SOD upregulated, while Keap1, JNK1, ERK1/2, and p38
downregulated [124]. Ni et al. found that in vitro salidroside
could upregulate Nrf2 and HO-1, as well as downregulate
ERK, JNK, and p38 to protect against cardiomyocyte apo-
ptosis and ventricular remodeling [125]. Nrf2 could inhibit
MAPK signaling pathway to ameliorate the prognosis of
DCM; however, the relationship between Nrf2 and MAPK
calls for more research details.
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2.3.5. Effects of TGF-β Signaling Pathway and Crosstalk with
Nrf2. Fibrotic diseases are a result of an imbalance between
profibrotic and antifibrotic cytokines and secreted proteins,
whose character is excessive scarring caused by excessive
production, deposition, and contraction of ECM [126]. The
degradation of ECM is regulated by matrix metalloprotein-
ases (MMPs), and the dysregulation of MMPs function, spe-
cifically MMP-2 and MMP-9, could provoke myocardial
remodeling and the development of heart failure [127,
128]. Fibrosis is one of the most prevalent characteristics
of diabetes, and recent evidence posted the term “redox
fibrosis” [129]. The term “redox fibrosis” means that oxida-
tive stress and the antioxidant system might be the essential
mechanism behind fibrosis development and persistence,
and the potential target of antifibrosis is the antioxidant sys-
tem [129].

TGF-β and connective tissue growth factor (CTGF) are
important profibrotic proteins [126]. TGF-β could induce
fibroblasts to synthesize and contract ECM, and it has been
regarded as a dominant regulator in the responding of
fibrotic for a long time, which performs a central part of
fibrogenesis in almost all organs [129, 130]. CTGF, whose

regulation is mediated by TGF-β, could enhance the action
of TGF-β on cells [131]. In DM, these factors prompt car-
diomyopathy fibrosis and reduced compliance of the heart
[13, 20, 21]. It has been evidenced that NOX4 is the most
responsible factor for ROS-induced activation of fibroblast
and mesangial cells and performs an essential part in the
activation of TGF-β1 signaling and differentiation into a
profibrotic myofibroblast phenotype and matrix production
[132]. This implies that antioxidant stress can also be used to
fight fibrosis. Several studies have evidenced that enhancing
Nrf2 could antifibrosis via inhibiting TGF-β. Liao et al. dem-
onstrated that those 6 months of myricetin treatment
(200mg/kg/d) could upregulate Nrf2, HO-1, NQO1, and
SOD, as well as downregulate collagen I, collagen III, fibronec-
tin, CTGF, Smad3, and TGF-β [133]. Ma et al. observed that
bakuchiol in vitro could upregulate Nrf2, SOD, and GPX, as
well as downregulate collagen I, collagen III, α-smooth muscle
actin (α-SMA), TGF-β, and Smad3 [134]. α-SMA is the bio-
marker of mature myofibroblasts, which is also regarded as a
cardiac fibrotic marker, and the mechanism behind it might
be involved in the contraction and remodeling of the extracel-
lular matrix [135]. Ying et al. treated mice with phloretin
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Figure 3: The crosstalk between Nrf2 and other signaling pathways (created with BioRender.com). (a) AMPK could phosphorylate both
Nrf2 (active) and GSK3β (deactivate) to prevent Nrf2 ubiquitinated by GSK3β to improve the nuclear accumulation of Nrf2. AMPK
could promote autophagic degradation of Keap1. Besides, AMPK could activate SIRT1 to regulate Nrf2. (b) Akt could phosphorylate
GSK3β to prompt nuclear accumulation of Nrf2. Furthermore, CK2 could not only activate Akt signaling pathway but also could
directly phosphorylate Nrf2 to enhance its stability. (c) ERK, JNK, and p38 are always observed accompany by suppression of Nrf2. But
the underlying mechanism is unclear. (d) Nrf2 could reduce MMP-9 to decrease the levels of TGF-β. Besides, Smad7 could form a
complex type I receptor, and it recruits Smurf 1/2 to activate the type I receptor, thus negatively regulating TGF-β signaling pathway.
And Nrf2 could enhance the level of Smad7. AMPK: adenosine monophosphate-activated protein kinase; GSK3β: glycogen synthase
kinase 3β; SIRT: silent information regulator 1; Akt: phosphatidylinositol 3-kinase-protein kinase B; CK2: ceramide-protein kinase C ζ-
casein kinase 2; ERK: extracellular signal-regulated kinase; JNK: c-Jun N-terminal kinase; MMP: matrix metalloproteinases; TGF-β:
transforming growth factor-β; Smurf: Smad-mediated ubiquitination regulatory factor.
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Table 2: Mechanisms behind Chinese herbal monomers ameliorate DCM based on Nrf2.

Reference Author Component Experiment Mechanism

[43]
Eman M

Abdelsamia
Curcumin In vivo Upregulate Nrf2, HO-1

[44] Mustafa S Atta Thymoquinone In vivo
Upregulate Nrf2, SOD

Downregulate iNOS, NO

[47] Guan Wang Resveratrol In vivo Upregulate Nrf2, HO-1, SOD, NQO1

[48] Z Dong Gastrodin In vitro Upregulate Nrf2, SOD, CAT

[49] Jialin Duan Aralia taibaiensis In vitro Upregulate Nrf2, SOD, GSH

[51] Rodrigo L Castillo Quercetin In vivo Upregulate Nrf2, HO-1, SOD, PGC-1α

[45] Raish Mohammad Sinapic acid In vivo
Upregulate GPX, SOD, CAT, IκB-α/β, Nrf2, HO-1

Downregulate TNF-α, IL-6, NF-κB

[69] Yonggang Lian Chrysophanol In vivo
Upregulate Nrf2, HO-1

Downregulate IL-6, IL-18, IL-1β, TNF-α, ICAM-1, VCAM-1

[70] Xuemei Chen Kaempferol In vitro
Upregulate Nrf2, HO-1, NQO1, SOD, IκB-α

Downregulate TNF-α, IL-6

[71] Ershun Liang Andrographolide In vivo
Upregulate SOD, Nrf2, HO-1, IκB-α

Downregulate p65, NF-κB, TNF-α, IL-1β, IL-6, Bax/Bc12

[72] Hao Li Piceatannol In vitro
Upregulate Bc12, Nrf2, HO-1, SOD, IκB-α

Downregulate Bax, p65, caspase3

[74] Huo Yan Scutellarin In vivo
Upregulate SOD, CAT, GPX, GST, Nrf2, NQO1, HO-1, IκB-β

Downregulate Keap1, TLR4, Myd88, p50, IL-6, TNF-α

[75] Zhou Xu Bixin In vivo
Upregulate Nrf2, SOD, HO-1, CAT

Downregulate TLR4, Myd88, IκB-α, NF-κB

[77] Li Li Luteolin In vivo
Upregulate Nrf2, HO-1, NQO1

Downregulate IL-1β, IL-6, TNF-α, MCP-1, ICAM, VCAM

[8] Li Ran Bailcalin In vivo
Upregulate AMPKα, SOD, CPT-1, PGC1-α, GSH, Nrf2

Downregulate ANP, BNP, β-MHC, ACC, GSSG

[93] Fawang Du
Notoginsenoside

R1
In vitro

Upregulate Nrf2, HO-1, AMPK
Downregulate ANP, BNP

[95] Ramoji Kosuru Pterostilbene In vivo
Upregulate SOD, CAT, GSH, GPX, PGC-1α, Nrf2, HO-1, AMPK

Downregulate IL-1β, IL-6, TNF-α, NF-κB, TLR4, NLRP3

[96] Cuihua Zhao Fortunellin In vivo
Upregulate SOD, Nrf2, HO-1, AMPK

Downregulate TNF-α, IL-1β, IL-6, IL-18, NF-κB, Keap1

[97] J Z Altamimi Ellagic acid In vivo
Upregulate GSH, SOD, Nrf2, SIRT1
Downregulate BNP, TNF-α, IL-6

[100] Yiqiu Cao Z-ligustilide In vitro
Upregulate AMPK, Nrf2, SOD

Downregulate GSK3β

[113] Lijiao Xu Scutellarin In vivo Upregulate Nrf2, HO-1, Akt

[110] Sai Ma Resveratrol In vivo
Upregulate Nrf2, SIRT1
Downregulate ANP, BNP

[114] Hongyang Liu Spiraeoside In vitro
Upregulate Akt, Nrf2, HO-1, Bcl2, SOD, GPX, CAT

Downregulate caspase3, caspase7, Bax

[117] Bin Zhang Myricitrin In vitro
Upregulate Nrf2, HO-1, γ-GCS, NQO1, Akt

Downregulate GSK3β

[116] Jialin Duan Butin In vivo
Upregulate SOD, Nrf2, HO-1, Akt
Downregulate Keap1, GSK3β, Fyn

[118] Xuemei Gu Isoliquiritigenin In vitro
Upregulate Nrf2, HO-1

Downregulate TNF-α, IL-6, IL-1β, VCAM-1, MCP-1, JNK, ERK, p38

[124] Qitong Lu Hinokinin In vivo
Upregulate Nrf2, HO-1, SOD

Downregulate Keap1, JNK1, ERK1/2, p38

[125] Jing Ni Salidroside In vitro
Upregulate Nrf2, HO-1

Downregulate ERK, JNK, p38
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(10mg/kg every 2 days) for 7weeks and showed that phloretin
could upregulate Nrf2, HO-1, and NQO1 and, meanwhile,
downregulate TGF-β, collagen I, and CTGF [136].

The increased activation of the TGF-β signaling pathway
is one of the underlying mechanisms for increased rates of
apoptosis [20]. Smad3 is the chief transcription factor of
TGF-β, and the elevation of its phosphorylation levels in
human T2DM islets indicates an autocrine role for TGF-β/
Smad3 signaling in the apoptosis of β-cells; the same results
are observed in diabetic mice [137]. NOX 4 regulates the acti-
vation of Smad2/3 to mediate the TGF-β1-induced transfor-
mation of fibroblasts to myofibroblasts [132]. Increasing the
expression of Nrf2 could be antiapoptotic via inhibiting
TGF-β. Alshehri et al. gave diabetic rats a daily oral dose of
kaempferol solution (50mg/kg) and then observed that Nrf2,
GSH, and Bcl2 upregulated; meanwhile, TGF-β1 and Bax
were downregulated [138].

The main crosstalk mechanisms between Nrf2 and TGF-
β are as follows. Firstly, Nrf2 could reduce MMP-9 to
decrease the levels of TGF-β [139, 140]. Secondly, Nrf2-
mediated Smad inhibition could be tightly associated with
enhanced Smad7 levels [141]. Smad7 could form a complex
type I receptor, and it recruits Smad-mediated ubiquitina-
tion regulatory factor 1/2 to activate the type I receptor, thus
negatively regulating the TGF-β signaling pathway [141].
Zhang et al. detected that 20-week oral of notoginsenoside
R1 (7.5, 15, and 30mg/kg/d) could upregulate Nrf2, HO-1,
γ-GCS, NQO1, and Smurf2 as well as downregulate TGF-
β, collagen I, Bax/Bc12, caspase-3, caspase-9, and Smad2/3
[40]. Li et al. showed that 8 weeks oral of syringaresinol
(25mg/kg every other day) in diabetic mice could upregulate
Nrf2, NQO1, HO-1, and SOD, as well as downregulate TGF-
β, fibronectin, α- SMA, Smad2/3, Bax/Bc12, and Keap1
[142]. There exists a tight relationship between fibrosis, apo-
ptosis, and oxidative stress, and Nrf2-dependent combating
oxidative stress would be a potential therapeutic strategy.

The mechanisms of crosstalk between Nrf2 and AMPK,
Akt, MAPK, and TGF-β signaling pathways have been sum-
marized in the figure (see Figure 3). The above-mentioned
mechanisms of Chinese herbal monomers are summarized
in Table 2.

3. Conclusions

The increasingmorbidity and lethality of DCM related to poor
prognosis and survival in patients with DM call for multiple
measures to prevent it. Themechanisms behind the pathogen-
esis of DCM are highly complex, but the overlapping progres-
sion and many signaling pathways are involved in it. What is
highlighted is that oxidative stress is one of the central mech-
anisms in the pathogenesis of DCM. Nrf2 signaling pathway is
essential to counterbalance oxidative stress via crosstalk with
other signaling pathways. Surprisingly, increasing studies indi-
cate that Chinese herbal monomers attenuate DCM in differ-
ent aspects at the same time via regulating Nrf2. However, the
molecular mechanisms behind the crosstalk between Nrf2 and
these pathways need to be explored furthermore deeply. The
phenomenon of multiple targets regulation based on Chinese
herbal monomers is looking forward to having more detailed
and precise experiment results.
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