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Leucine and isoleucine possess antioxidative and anti-inflammatory properties. However, their underlying protective mechanisms
against oxidative damage remain unknown. Therefore, in this study, the protective mechanism of leucine and isoleucine against
H2O2-induced oxidative damage in a bovine mammary epithelial cell lines (MAC-T cells) were investigated. Briefly, MAC-T cells
exposed or free to H2O2 were incubated with different combinations of leucine and isoleucine. The cellular relative proliferation
rate and viability, oxidative stress indicators, and inflammatory factors were determined by specific commercial kits. The genes
related to barrier functions was measured by real-time quantitative PCR. The protein expression differences were explored by
4D label-free quantitative proteomic analyses and validated by parallel reaction monitoring. The results revealed that leucine
and isoleucine increased cell proliferation, total antioxidant status (TAS), and the relative mRNA expression of occludin, as
well as decreased malondialdehyde (MDA), total oxidant status (TOS)/TAS, IL-6, IL-1β, and TOS. When leucine and
isoleucine were combined, MDA, TOS/TAS, and the relative mRNA expression levels of claudin-1, occludin, and zonula
occludens-1 increased when compared to leucine or isoleucine alone. Proteomics analyses revealed that leucine significantly
upregulated the propanoate metabolism; valine, leucine, and isoleucine degradation; and thermogenesis pathways, whereas
isoleucine significantly upregulated the peroxisome and propanoate metabolism pathways. In conclusion, leucine protected
MAC-T cells from H2O2-induced oxidative stress by generating more ATP to supplement energy demands, and isoleucine
improved the deficit in peroxisome transport and promoted acetyl-CoA production. The findings of this study enhance our
understanding of the protective mechanisms of leucine and isoleucine against oxidative damage.

1. Introduction

The transition period from pregnancy to lactation is critical
for dairy cow health, production, and profitability, because
alternations in energy metabolism can negatively affect their
health, including conditions such as mastitis and retained
placenta [1]. The considerable increase in oxygen require-
ments due to increased metabolic demands results in the
augmented production of reactive oxygen species (ROS)

[2]. Oxidative stress is primarily caused by an imbalance
between free radical formation and elimination, that is,
increased ROS production and/or reduced antioxidant
defense, which leads to lipid peroxidation, exacerbated
inflammatory responses, and cell damage [3–5]. If mam-
mary glands are subjected to oxidative stress, the blood-
milk barrier is destroyed, thereby resulting in lower milk
yield and quality [6]. Therefore, it is a necessary and urgent
matter to identify effective antioxidants that relieve the
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oxidative stress in the mammary glands. MAC-T cells, a
bovine mammary epithelial cell line widely used as a model
for lactation researches, were utilized in this study [7–9].

Amino acids, especially branched-chain amino acids
(BCAAs), play important roles in cellular metabolism and
stress responses [10–13]. BCAAs including leucine, isoleu-
cine, and valine are proteinogenic essential amino acids with
aliphatic-branched side chains [14]. In the serum metabo-
lites of early lactating dairy cows, a significant association
between BCAA concentrations and oxidative stress indica-
tors was observed [15]. Mao et al. [16] suggested that the
supplementation of leucine in early weaned Hu lambs was
beneficial to their health as indicated by the increased total
antioxidant capacity (T-AOC) and glutathione peroxidase
(GSH-PX) level and by decreased H2O2 concentration in
the plasma. Yin et al. [17] found that dietary isoleucine sup-
plementation in hybrid bagrid catfish reduced ROS and mal-
ondialdehyde (MDA) levels and upregulated tight junction
structure, which thereby antagonized oxidative damage and
physical barrier functions. However, the underlying protec-
tive mechanisms of leucine and isoleucine against oxidative
damage in MAC-T cells remain unknown.

Therefore, in this study, the protective mechanism of
leucine and isoleucine against H2O2-induced oxidative dam-
age in MAC-T cells was investigated. Briefly, MAC-T cells
exposed or free to H2O2 were incubated with different com-
binations of leucine and isoleucine. The cellular relative pro-
liferation rate and viability, oxidative stress indicators, and
inflammatory factors were determined by specific commer-
cial kits. The genes related to barrier functions were mea-
sured by real-time quantitative PCR. The protein
expression differences were explored by 4D label-free quan-
titative proteomic analyses and validated by parallel reaction
monitoring. This finding will enhance our understanding of
the protective mechanisms of leucine and isoleucine against
oxidative damage.

2. Materials and Methods

2.1. Cell Culture. The MAC-T cells used in this study were
donated by Professors Liu Jianxin and Liu Hongyun of Zhe-
jiang University (Hangzhou, China). The cells were cultured
for 15 passages and grown in Dulbecco’s modified eagle
medium F12 (DMEM/F12) (Gibco, Carlsbad, CA, USA)
and supplemented with 10% fetal bovine serum (FBS)
(Hyclone, Logan, UT, USA) and a 1% final concentration
of antibiotics (penicillin and streptomycin) under 5% CO2
humidity at 37°C. Culturing was performed in a 25 cm2 cul-
ture flask (Corning Inc., NY, USA) containing 5mL medium
and a seeding number of 5 × 105 cells/flask. The medium
was changed every other day.

2.2. Oxidative Stress Model: Time of H2O2 Treatment. At a
confluence of 70–80%, the cells were exposed to completed
medium containing 0, 200, 400, 600, 800, 1000, or
1200μmol/L H2O2 (working concentration) for 2, 4, 6, 8,
or 10h, after which the cellular viability of the MAC-T cells
was measured.

2.3. Oxidative Stress Model: Concentration of H2O2
Treatment. At a confluence of 70–80%, the cells were
exposed to completed medium containing 0, 200, 400, 600,
800, 1000, or 1200μmol/L H2O2 (working concentration)
for 6 h (based on the results of 2.2.), after which oxidative
stress indicators of the MAC-T cells were measured.

2.4. Time and Concentration of Leucine Treatment. At a con-
fluence of 70–80%, the cells were treated with 0.450, 0.675,
0.900, 1.125, or 1.350mmol/L leucine (Sigma, St. Louis,
USA) diluted in DMEM/F12 with antibiotics for 6, 12, 24,
48, or 72 h. The experimental treatments correspond to 1,
1.5, 2, 2.5, and 3 times the leucine concentration in
DMEM/F12, which was 0.450mmol/L. The relative prolifer-
ation rate of the MAC-T cells was measured.

2.5. Time and Concentration of Isoleucine Treatment. At a
confluence of 70–80%, the cells were treated with 0.420,
0.630, 0.840, 1.050, or 1.260mmol/L isoleucine (Sigma, St.
Louis, USA) diluted in DMEM/F12 with antibiotics for 6,
12, 24, 48, or 72 h. The experimental treatments correspond
to 1, 1.5, 2, 2.5, and 3 times the isoleucine concentration in
DMEM/F12, which was 0.420mmol/L. The relative prolifer-
ation rate of the MAC-T cells was measured.

2.6. Time and Concentration of the Combinations of Leucine
and Isoleucine Treatment. Based on the leucine (2.4.) and
isoleucine (2.5.) results, 24 h was selected as the treatment
time and 9 concentrations of leucine and isoleucine com-
bined were designed as follows: (1) 0.450mmol/L leucine
and 0.420mmol/L isoleucine; (2) 0.450mmol/L leucine and
0.630mmol/L isoleucine; (3) 0.450mmol/L leucine and
0.840mmol/L isoleucine; (4) 0.675mmol/L leucine and
0.420mmol/L isoleucine; (5) 0.675mmol/L leucine and
0.630mmol/L isoleucine; (6) 0.675mmol/L leucine and
0.840mmol/L isoleucine; (7) 0.900mmol/L leucine and
0.420mmol/L isoleucine; (8) 0.900mmol/L leucine and
0.630mmol/L isoleucine; and (9) 0.900mmol/L leucine and
0.840mmol/L isoleucine. At a confluence of 70–80%, the
cells were placed in DMEM/F12 with antibiotics containing
different combinations of leucine and isoleucine for 24h to
determine the relative proliferation rate.

2.7. MAC-T Cells Treatment. Based on the above screening
results, MAC-T cells were firstly cultured in completed
medium with or without 600μmol/L H2O2 for 6 h and then
incubated in DMEM/F12 medium (1% antibiotics) with dif-
ferent combinations of leucine and isoleucine for 24h (Sup-
plementary Table1).

2.8. Cellular Relative Proliferation Rate and Viability. A
200μL MAC-T cells suspension (5 × 104 cells/mL) was
seeded into the wells of a 96-well plate. After the cell conflu-
ence reached 70–80%, the completed medium was removed,
and the cells were washed twice with cold PBS. Then, the
cells were incubated in treated medium. The cellular viability
was measured using a CCK-8 commercial kit (Cat No.
BS350A; Biosharp, Guangzhou, China). The absorbance
(OD value) was determined using an enzyme-labeling
instrument (BioTek, Hong Kong, China) at a wavelength
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of 450nm. The relative proliferation rate and cellular viabil-
ity were calculated using the following formulas:

Relative proliferation rate = OD test
OD control ,

Cellular viability = OD test −ODblankð Þ
ODcontrol −ODblankð Þ × 100%:

ð1Þ

2.9. Oxidative Stress Indicators and Inflammatory Factors. A
2mL MAC-T cells suspension (5 × 104 cells/mL) was seeded
into the wells of a 6-well plate. After the cell confluence
reached 70–80%, the completed medium was removed, and
the cells were washed twice with cold PBS. Then, the cells
were incubated with treated medium. The MDA content of
the MAC-T cells was determined using a microplate method
kit (Cat No. A003-4-1; Nanjing Jiancheng Biotechnology
Institute, Nanjing, China). The total oxidant status (TOS,
Cat No. BPE92369), total antioxidant status (TAS, Cat No.
BPE92207), TNF-α (Cat No. BPE92091), IL-1β (Cat No.
BPE92157), IL-6 (Cat No. BPE92153), and IL-10 (Cat No.
BPE92159) of the MAC-T cells were detected using ELISA
kits (Shanghai Lengton Bioscience Co., Ltd., Shanghai,
China) following the manufacturer’s instructions. Briefly,
MAC-T cells were digested by trypsin and placed in centri-
fuge tubes. Then, the tubes were centrifuged at 2,000 rpm
for 20min, and the supernatant was collected. After the cells
were counted, the cell suspension was adjusted with PBS to
reach a cell concentration of 1 × 106 cells/mL. Absorbance
was detected at 530 (MDA) and 450nm (TOS, TAS, TNF-
α, IL-1β, IL-6, and IL-10) using an enzyme-labeling instru-
ment (BioTek, Hong Kong, China).

2.10. Total RNA Extraction and Real-Time Quantitative PCR
(RT-qPCR). TRIzol reagent (Cat No. DP430; Tiangen Bio-
technology Co., Ltd., Beijing, China) was used to extract
the total RNA from the MAC-T cells following the manufac-
turer’s instructions. Then, the quantity and quality of the
total RNA were assessed using an ultraviolet-visible fluores-
cence spectrometer (Eppendorf, Hamburg, Germany). The
samples with an A260/A280 ratio of 2.0 : 2.2 were used for
subsequent PCR reactions. Finally, the total RNA was
reverse transcribed into cDNA using a PrimeScript RT Mas-
ter Mix kit (Cat No. KR116-01; Tiangen Biotechnology Co.,
Ltd., Beijing, China). The cDNA samples were stored at
−20°C for further analysis.

The mRNA expressing certain genes, including clau-
din-1, occludin, and zonula occludens-1 (ZO-1), was eval-
uated by RT-qPCR. The primers of these genes and the
housekeeping gene (β-actin) were synthesized by Sangon
Biotechnology Co., Ltd. (Shanghai, China) (Table 1). RT-
qPCR assays were conducted using a StepOnePlus Real-
Time PCR System (Applied Biosystems, Carlsbad, CA,
USA) using Talent qPCR PreMix kits (Cat No. FP209-
01; Tiangen Biotechnology Co., Ltd., Beijing, China). The
total reaction volume was 20μL: 10μL Talent qPCR pre-
mix (2 ×), 2μL ROX Reference Dye (50×), 4.8μL
RNase-free ddH2O, 0.6μL of reverse primer (100μmol),

0.6μL of forward primer (100μmol), and 2μL cDNA.
The reaction conditions were as follows: 95°C for 3min;
40 cycles at 95°C for 5 s; and 60°C for 15 s. The cycle
threshold values were normalized to β-actin. The relative
mRNA expression levels of the selected genes were calcu-
lated using the 2−ΔΔCt method [18].

2.11. 4D Label-Free Quantitative Proteomic Profiling. Four
volumes of lysis buffer containing 8mol/L urea and 1% pro-
tease inhibitor cocktail were added to MAC-T cells samples
from each treatment group and then sonicated three times
on ice using a high intensity ultrasonic processor (Scientz-
5T; Scientz, Ningbo, China). The supernatant was collected
after centrifugation at 12,000 g for 10min at 4°C. Then, the
protein concentration was determined using a BCA kit
(Cat No. A045-4-2; Beyotime Biotechnology, Shanghai,
China) following the manufacturer’s instructions.

The protein concentration of each sample was enzymat-
ically hydrolyzed in equal quantities, and the volume was
adjusted to be consistent with the lysate. Then, 20% trichlo-
roacetic acid (Sigma, St. Louis, USA) was gradually added.
The solution was mixed, vortexed, and incubated at 4°C for
2 h and then centrifuged at 4,500 g for 5min. The superna-
tant was discarded, and the precipitate was washed with pre-
chilled acetone three times. The acetone-precipitated protein
pellets were suspended in 200mmol/L TEAB (Sigma, St.
Louis, USA). Then, trypsin (trypsin : proteins =1 : 50) (Pro-
mega, WI, USA) was added for digestion overnight. The
solution was reduced with 5mmol/L dithiothreitol (Sigma,
St. Louis, USA) for 30min at 56°C. Finally, iodoacetamide
(Sigma, St. Louis, USA) was added to a final concentration
of 11mmol/L followed by incubation at room temperature
in the dark for 15min.

Liquid chromatography tandem mass spectrometry (LC-
MS/MS) analysis was performed. Digested peptides were
dissolved by LC mobile phase A containing 0.1% formic acid
and 2% acetonitrile and then separated by a NanoElute
ultraperformance LC system (Waters Corporation, MA,
USA). The elution gradient was as follows: 6–24% solvent
B containing 0.1% formic acid in 100% acetonitrile for
70min, 24–32% for 14min, 32–80% for 3min, and finally
kept at 80% for 3min. All operations were performed on a
NanoElute ultraperformance LC system at a constant flow
rate of 450nL/min. Peptides were separated by an ultrahigh
performance liquid phase system subjected to a capillary ion
source and then analyzed by timsTOF Pro MSP (Bruker
Daltonics, Bremen, Germany); the electrospray voltage was
1.75 kV. The peptide parent ions and their secondary frag-
ments were detected and analyzed using high-resolution
TOF. The secondary MS scanning range was 100–1700m/
z. Data acquisition on the timsTOF Pro was collected using
the parallel accumulation serial fragmentation (PASEF)
acquisition mode. After the first MS stage, the second MS
stage (charge number of the parent ions was 0–5) was
recorded using the 10 PASEF mode. A dynamic exclusion
time of 30 s was used for the MS/MS scan. When the thresh-
old of the protein relative expression ratio increased by ≥1.5-
fold or decreased by ≤0.6-fold, the result was considered
significant.
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A bioinformatics analysis using 4 comparison groups
(H1L1I vs. control, H1L2I vs. H1L1I, H2L1I vs. H1L1I, and
H2L1.5I vs. H1L1I) was performed. Functional annotations
of the quantified proteins were acquired using the Gene
Ontology Annotation (GOA) Database (EMBL-EBI, Hinxton,
Cambridgeshire, UK) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis databases [19]. For the
GO annotations and protein pathways, a two-tailed Fisher’s
exact test was used to test the enrichment of differentially
expressed (DE) proteins against all identified proteins using
a corrected p value < 0.05, which was considered significant.
The ggplot2 package in R software was used to construct a vol-
cano map of the DE proteins with a 1.5-times fold change.
Hierarchical clustering based on different protein pathways
was conducted using the collated categories obtained after
enrichment and after p values were filtered, which were
enriched in at least 1 cluster with p < 0:05. Then, the filtered
p value matrix was transformed using the function:

x = − log 10 p − valueð Þ: ð2Þ

The x values were z-transformed for each functional cate-
gory. Then, the z-scores were clustered by one-way hierarchi-
cal clustering (Euclidean distance, average linkage clustering)
using Genesis [20].

2.12. Parallel Reaction Monitoring (PRM) Validation. The
expression levels of the candidate proteins screened by 4D
label-free quantitative proteomic analyses were verified by
quantification by parallel reaction monitoring (PRM) tech-
nique [21]. The specific PRM validation procedure was
obtained from Jingjie PTM BioLab Co. Ltd. (Hangzhou,
China) as follows: the protein solution was reduced with
5mmol dithiothreitol for 30min at 56°C and alkylated with
11mmol/L iodoacetamide for 15min at room temperature
in darkness.. The protein sample was then diluted to urea
concentration less than 2mol/L. Finally, trypsin was added
at 1 : 50 trypsin-to-protein mass ratio for the first digestion
overnight and 1 : 100 trypsin-to-protein mass ratio for a
second 4h digestion. Then, the analysis was performed
using LC-MS/MS. The tryptic peptides were dissolved in
0.1% formic acid (solvent A), directly loaded onto a home-
made reversed-phase analytical column. The gradient was

comprised of an increase from 6% to 23% solvent B
(0.1% formic acid in 98% acetonitrile) over 38min, 23%
to 35% in 14min climbing to 80% in 4min and then hold-
ing at 80% for the last 4min, all at a constant flow rate of
700 nL/min on an EASYnLC 1000 UPLC system. The pep-
tides were subjected to NSI source followed by MS/MS in
Q Exactive™ Plus (Thermo) coupled online to the UPLC.
The electrospray voltage applied was 2.0 kV. The m/z scan
range was 350 to 1000 for full scan, and intact peptides
were detected in the Orbitrap at a resolution of 35,000.
Peptides were then selected for MS/MS using NCE setting
as 27, and the fragments were detected in the Orbitrap at
a resolution of 17,500. A data-independent procedure that
alternated between one MS scan followed by 20 MS/MS
scans. Automatic gain control (AGC) was set at 3E6 for
full MS and 1E5 for MS/MS. The maximum IT was set
at 20ms for full MS and auto for MS/MS. The isolation
window for MS/MS was set at 2.0m/z. The resulting MS
data were processed using Skyline (v.3.6). In the peptide
settings, the enzyme was set as Trypsin [KR/P] and max
missed cleavage was set as 2. The peptide length was set
as 8-25. Variable modification was set as Carbamido-
methyl on Cys and oxidation on Met, and max variable
modifications was set as 3. In the transition settings, pre-
cursor charges were set as 2, 3, ion charges were set as
1, 2, and ion types were set as b, y, p. The productions
were set as from ion 3 to last ion, and the ion match tol-
erance was set as 0.02Da.

2.13. Statistical Analysis. The data are presented as the
mean ± standard deviation (SD). Statistical analyses were con-
ducted using SPSS version 22.0 (IBM Inc., Beijing, China). The
data between different groups were compared by a one-way
analysis of variance (ANOVA) followed by Duncan’s post
hoc multiple comparisons test. For the different statistical
tests, a significance threshold of p < 0:05 was used.

3. Results

3.1. Oxidative Stress Model: Effects of the Different H2O2
Concentrations for Different Times on the Cellular Viability
of MAC-T Cells. The cellular viability of cells gradually
decreased as the H2O2 concentration increased over time

Table 1: Primer sequences used for real-time quantitative PCR (RT-qPCR) analysis.

Genes Primer sequences (5′ to 3′)

Zonula occludens-1 (ZO-1)
F: 5′-GCGAAATGAGAAACAAGCACC-3′
R: 5′-ATGAGTTGAGTTGGGCAGGAC-3′

Occludin
F: 5′-GCGAAATGAGAAACAAGCACC-3′
R: 5′-ATGAGTTGAGTTGGGCAGGAC-3′

Claudin-1
F: 5′-AAGACGACGAGGCACAGAAGA-3′
R: 5′-GAAGGTGCTGGCTTGGGATAG-3′

β-Actin
F: 5′-GCGTGGCTACAGCTTCACC-3′
R: 5′-TTGATGTCACGGACGATTTC-3′
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(Figure 1(a) and Supplementary Table 2). Cellular viability
in 600 and 1200μmol/L H2O2 decreased significantly
(p < 0:05) after 4 h (84:99 ± 2:78% and 7:58 ± 0:18%,
respectively) but decreased significantly (p < 0:05) in 200,

400, 800, and 1000μmol/L H2O2 after 6 h (93:08 ± 2:26%,
88:16 ± 1:57%, 64:58 ± 2:11%, and 55:20 ± 0:73%,
respectively). Thus, the H2O2 treatment time of 6 h was
selected for the oxidative stress model.

1200
0

20

40

60

80

100

H2O2 concentration, μmol/L

Ce
llu

la
r v

ia
bi

lit
y,

 %

2 h
4 h
6 h

8 h
10 h

A A
A

A

A

A

ABBC
C

D

A
B

C

D

B
C

D

E

A
B

C

D

B
A

C

D

B
C C

D

0 200 400 600 800 1000

(a)

0

1

2

3

4

H2O2 concentration, μmol/L

M
D

A
, n

m
ol

/m
gp

ro
t

D
D

DC
BC B

B

A

0.
62

±0
.1

2

0.
87

±0
.0

1

0.
96

±0
.1

6

1.
27

±0
.2

4

1.
34

±0
.1

9

1.
54

±0
.1

6

2.
64

±0
.7

0

0 200 400 600 800 1000 1200

(b)

0

5

10

15

20

25

TO
S,

 μ
m

ol
/L

D D D

C
B

BC

A

10
.4

5±
0.

73

10
.0

6±
0.

90

9.
56

±0
.6

6

12
.6

1±
0.

96

13
.7

6±
1.

04

12
.9

2±
0.

80

21
.6

3±
0.

91

0 200 400 600 800 1000 1200

H2O2 concentration, μmol/L

(c)

0.0

0.2

0.4

TA
S,

 μ
m

ol
/L

0.6

A
A

AB
B

C C
C

0.
45

±0
.0

2

0.
44

±0
.0

9

0.
40

±0
.0

3

0.
37

±0
.0

2

0.
26

±0
.0

1

0.
25

±0
.0

3

0.
21

±0
.0

1

H2O2 concentration, μmol/L

0 200 400 600 800 1000 1200

(d)

0

40

80

120

O
xi

da
tiv

e s
tr

es
s i

nd
ex

,
TO

S/
TA

S

D D D
C

B

A

23
.1

0±
1.

64

23
.8

2±
4.

77

23
.9

7±
2.

28

34
.4

2±
3.

15

52
.8

2±
3.

90

52
.3

3±
6.

72

10
4.

3±
1.

2

0 200 400 600 800 1000 1200

H2O2 concentration, μmol/L

B

(e)

Figure 1: Oxidative stress model. (a) Effects of H2O2 on the cellular viability of MAC-T cells. Different letters (A–E) indicate significant
differences at the same concentration (p < 0:05). Effects of different H2O2 concentrations for 6 h on oxidative stress indicators in MAC-T
cells: MDA (b), TOS (c), TAS (d), and TOS/TAS (e). Different letters (A–D) among treatments indicate significant differences (p < 0:05).
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Figure 2: Effects of different leucine concentrations for 6 (a), 12 (b), 24 (c), 48 (d), or 72 h (e) on the relative proliferation rate of MAC-T
cells. Different letters (A–C) among treatments indicate significant differences (p < 0:05).
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3.2. Oxidative Stress Model: Effects of Different H2O2
Concentrations for 6h on the Oxidative Stress Indicators in
MAC-T Cells. H2O2 significantly increased (p < 0:05) the
TOS/TAS, MDA, and TOS but significantly decreased
(p < 0:05) the TAS in MAC-T cells treated with ≥600μmol/L
H2O2 when compared to 0μmol/L H2O2 (TOS/TAS, 34:42 ±
3:15 vs. 23:10 ± 1:64; MDA, 1:27 ± 0:24 vs. 0:62 ± 0:12nmol/
mgprot; TOS, 12:61 ± 0:96 vs. 10:45 ± 0:73μmol/L; and TAS,

0:37 ± 0:02 vs. 0:45 ± 0:02μmol/L) (Figures 1(b)–1(e)). Thus,
600μmol/L H2O2 was used for the oxidative stress model.

3.3. Effects of Different Leucine Concentrations for Different
Times on the Relative Proliferation Rate of MAC-T Cells.
After 6 or 72h, no significant differences were detected for
the relative proliferation rate among leucine concentration
treatments (Figures 2(a) and 2(e)). After 12h, the relative
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Figure 3: Effects of different isoleucine concentrations for 6 (a), 12 (b), 24 (c), 48 (d), or 72 h (e) on the relative proliferation rate of MAC-T
cells. Different letters (A–D) among treatments indicate significant differences (p < 0:05).
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proliferation rate significantly increased (p < 0:05) and peaked
at 1:33 ± 0:07 under 0.900mmol/L leucine (Figure 2(b)) and
then significantly decreased (p < 0:05) to 0:84 ± 0:14 under
1.350mmol/L leucine. Similarly, after 24h, the relative prolif-
eration rate significantly increased (p < 0:05) to 1:30 ± 0:14
under 0.900mmol/L leucine (Figure 2(c)), followed by a sig-
nificant decrease (p < 0:05) to 0:83 ± 0:03 under 1.350mmol/
L leucine. Likewise, after 48h, despite an initial significant
increase (p < 0:05), the relative proliferation rate significantly
decreased (p < 0:05) from its peak under 0.900mmol/L leu-
cine at 1:15 ± 0:04 to 0:78 ± 0:15 under 1.350mmol/L leucine
(Figure 2(d)). Thus, the leucine concentrations of 0.450, 0.675,
and 0.900mmol/L and the treatment times of 12, 24, 48h were
selected for further analysis.

3.4. Effects of Different Isoleucine Concentrations for
Different Times on the Relative Proliferation Rate of MAC-
T Cells. Among the isoleucine concentration treatments,
the relative proliferation rate after 6 and 48 h exhibited sim-
ilar trends (Figure 3(a) and 3(d)). After stabilizing from
0.420 to 0.840mmol/L isoleucine, the relative proliferation
rate significantly decreased (p < 0:05) to 0:77 ± 0:02 after
6 h and 0:60 ± 0:08 after 48 h under 1.260mmol/L isoleu-
cine. However, after 12 h (Figure 3(b)), the relative prolifer-
ation rate peaked at 1:15 ± 0:18 under 0.630mmol/L
isoleucine before decreasing significantly (p < 0:05) to 0:80
± 0:04 under 1.260mmol/L isoleucine. Similarly, after 24 h
(Figure 3(c)), the relative proliferation rate significantly
increased (p < 0:05) from 1.00 under 0.420mmol/L isoleu-
cine and peaked at 1:10 ± 0:02 under 0.840mmol/L isoleu-
cine before significantly decreasing (p < 0:05) to 0:57 ± 0:01
under 1.260mmol/L isoleucine. After 72 h, the relative pro-
liferation rate decreased significantly (p < 0:05) from 1.00
under 0.420mmol/L isoleucine to 0:44 ± 0:02 under
1.260mmol/L isoleucine (Figure 3(e)). Thus, the isoleucine
concentrations of 0.420, 0.630, and 0.840mmol/L and the
treatment time of 24h were selected for further analysis.

3.5. Effects of Different Concentrations of Leucine and
Isoleucine Combined after 24 h on the Relative Proliferation
Rate of MAC-T Cells. The relative proliferation rates under

0.450mmol/L leucine and 0.840mmol/L isoleucine,
0.900mmol/L leucine and 0.420mmol/L isoleucine, and
0.900mmol/L leucine and 0.630mmol/L isoleucine were sig-
nificantly higher (p < 0:05) than 0.450mmol/L leucine and
0.420mmol/L isoleucine (Figure 4). Thus, these combined
concentrations of leucine and isoleucine were selected to fur-
ther investigate the protective mechanisms of leucine and
isoleucine against H2O2-induced oxidative damage in
MAC-T cells.

3.6. Effects of Leucine and Isoleucine on the Relative
Proliferation Rate and Oxidative Stress Indicators in MAC-T
Cells due to H2O2-Induced Oxidative Damage. The relative
proliferation rate and TAS significantly decreased (p < 0:05),
while TOS, MDA, and TOS/TAS significantly increased
(p < 0:05) in the H1L1I group when compared to the control
group, indicating that H2O2-induced oxidative damage had
occurred in MAC-T cells (Figure 5). Compared to the H1L1I
group, the relative proliferation rate significantly increased
(p < 0:05) in the H1L2I, H2L1I, and H2L1.5I groups by
23.08%, 34.62%, and 24.36%, respectively (Figure 5(a)). How-
ever, TAS significantly increased (p < 0:05) in the H1L2I and
H2L1I groups by 46.15% and 38.46%, respectively
(Figure 5(b)), but not in the H2L1.5I group. TOS and MDA
in the H1L2I, H2L1I, and H2L1.5I groups were significantly
lower (p < 0:05) than the H1L1I group (Figures 5(c) and
5(d)). Additionally, the MDA content in the H1L2I group
was significantly lower (p < 0:05) than in the H2L1.5I group.
Compared to the H1L1I group, TOS/TAS significantly
decreased (p < 0:05) in the H1L2I, H2L1I, and H2L1.5I groups
(Figure 5(e)). However, TOS/TAS significantly increased
(p < 0:05) by 25.20% in the H2L1.5I group when compared
to the H1L2I and H2L1I groups.

3.7. Effects of Leucine and Isoleucine on Inflammatory
Factors in MAC-T Cells due to H2O2-Induced Oxidative
Damage. The TNF-α, IL-1β, and IL-6 levels in MAC-T cells
significantly increased (p < 0:05) in the H1L1I group when
compared to the control group (Figure 6). However, this
upward trend was suppressed to a certain extent by
increased concentrations of leucine or isoleucine. Compared
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Figure 5: Continued.
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to the H1L1I group, IL-6 significantly decreased (p < 0:05)
by 48.24% in the H1L2I, H2L1I, and H2L1.5I groups, while
1 L-1β significantly decreased (p < 0:05) in the H1L2I group
by 65.64% (Figures 6(a) and 6 (b)). However, leucine and/or
isoleucine intervention did not induce a significant change
in the TNF-α level (Figure 6(c)). Additionally, there were
no significant differences detected in IL-10 between the
H1L1I and control groups, but the IL-10 level in the
H2L1I group was significantly higher (p < 0:05) than that
in the H2LI and control groups (Figure 6(d)).

3.8. Effects of Leucine and Isoleucine on Barrier Functions in
MAC-T Cells due to H2O2-Induced Oxidative Damage. To
assess the effects of leucine and isoleucine on the barrier
functions in MAC-T cells due to H2O2-induced oxidative
damage, the mRNA expression levels of claudin-1, occludin,
and ZO-1 were determined. Specifically, the mRNA expres-

sion levels of claudin-1 and occludin significantly decreased
(p < 0:05) in MAC-T cells due to oxidative stress
(Figures 7(a) and 7 (b)). When compared to the H1L1I
group, leucine significantly increased (p < 0:05) the mRNA
expression levels of claudin-1 and occludin and isoleucine
significantly increased (p < 0:05) the mRNA expression level
of occludin (p < 0:05). Additionally, combined leucine and
isoleucine significantly increased (p < 0:05) the mRNA
expression levels of claudin-1, occludin, and ZO-1
(Figure 7(c)).

3.9. Protein Expression Differences. Proteomic data of the
MAC-T cells in the five groups are shown in Figure 8. A total
of 1220 quantifiable DE proteins were successfully identified
in this study. Based on the volcano plot (red, upregulated;
green, downregulated), the number of downregulated or
upregulated proteins in the H1L2I, H2L1I, and H2L1.5I
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Figure 5: Effects of different combinations of leucine and isoleucine for 24 h on the relative proliferation rate (a) and oxidative stress
indicators (TAS (b), TOS (c), MDA (d), and TOS/TAS (e)) in MAC-T cells due to H2O2-induced oxidative damage. Different letters (A–
D) among treatments indicate significant differences (p < 0:05).
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Figure 6: Continued.
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groups overlapped and each group had unique proteins
(Figure 8(a)). Interestingly, the amount of downregulated
proteins in the H2L1I group was two times lower than in
the H1L2I and H2L1.5I groups, while the amount of upreg-
ulated DE proteins in the H2L1.5I group was two times
higher than in the H1L2I and H2L1I groups (Figure 8(b)).
There were 1189 DE proteins identified in the H1L1I group
when compared to the control group. Compared to the
H1L1I group, the same 5 proteins were identified in the
H1L2I, H2L1I, and H2L1.5I groups, while 11, 23, and 15
unique proteins were identified in these same groups,
respectively (Figure 8(c)).

3.10. GO Enrichment of Differentially Quantified Proteins.
Following GO classification with biological process (BP), cel-
lular component (CC), and molecular function (MF), a cluster
analysis was conducted to compare the functional correlations
between DE proteins in the experimental groups; the results
are displayed in a heat map (Figure 9). When cells were sub-
jected to oxidative stress, some downregulated proteins with
functional annotations in the H1L1I group were identified,
including carboxylic acid metabolic process and mitochon-
drial gene expression in BP (Figure 9(a)), mitochondrion
and mitochondrial matrix in CC (Figure 9(b)), and oxidore-
ductase activity, oxidoreductase activity, and activity on
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Figure 6: Effects of different combinations of leucine and isoleucine for 24 h on IL-6 (a), IL-1β (b), TNF-α (c), and IL-10 (d) in MAC-T cells
due to H2O2-induced oxidative damage. Different letters (A, B) among treatments indicate significant differences (p < 0:05).
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Figure 7: Effects of different combinations of leucine and isoleucine for 24 h on the mRNA expression levels of claudin-1 (a), occludin (b),
and ZO-1 (c) in MAC-T cells due to H2O2-induced oxidative damage. Different letters (A–E) among treatments indicate significant
differences (p < 0:05).
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Figure 8: Continued.
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NAD (P) H in MF (Figure 9(c)). Several upregulated proteins
with functional annotations were identified in the H1L1I
group, including regulation of cellular response to stress in
BP and enzyme regulator activity and ubiquitin activating
enzyme activity in MF. Furthermore, when cells subjected to
H2O2-induced oxidative damage were treated with leucine or
isoleucine, unique proteins were expressed in each group.
The H1L2I group contained several unique proteins with
functional annotations including peroxisomal transport and
peroxisome organization in BP and microbody and peroxi-
some in CC. The H2L1I group contained unique proteins with
functional annotations including steroid hormone receptor
binding, enzyme regulator activity, CoA-ligase activity, and
amide binding inMF. The H2L1.5I group had unique proteins
with functional annotations including positive regulation of
developmental growth and regulation of cellular response to
stress in BP, membrane microdomain, membrane raft in CC,
and ATP binding in MF. These results suggested that the
intervention of leucine, isoleucine, or their combinations
improved the condition of MAC-T cells subjected to oxidative
stress, which was achieved through unique mechanisms.

3.11. Specific Regulation Pathways of Leucine and Isoleucine
against H2O2-Induced Oxidative Damage in MAC-T Cells.
To further explore the regulation pathways of leucine and
isoleucine against H2O2-induced oxidative damage in
MAC-T cells, a KEGG pathway enrichment analysis was
conducted. Most of the pathways were significantly altered
after MAC-T cells were subjected to oxidative stress
(Figure 10). For example, in the H1L1I group, the map
04657 IL-17 and map 04668 TNF signaling pathways were

significantly upregulated (p < 0:05), while the map 00280
valine, leucine, and isoleucine degradation, map 00640 pro-
panoate metabolism, and map 04714 thermogenesis path-
ways were significantly downregulated (p < 0:05). When
compared to the H1L1I group, the upregulation of a com-
mon pathway (map 00640 propanoate metabolism)
occurred in the H1L2I and H2L1I groups, while unique
pathways in the H1L2I (map 04146 peroxisome) and
H2L1I groups (map 04714 thermogenesis and map 00280
valine, leucine, and isoleucine degradation) were upregu-
lated; these pathways were not identified in the H2L1.5I
group. Despite six upregulated pathways in the H2L1.5I
group, these pathways were not detected when compared
to the H1L1I and control groups. No significantly downreg-
ulated pathways were detected in the H1L2I or H2L1.5I
groups. Although five downregulated pathways existed in
the H2L1I group, these were not associated with H2O2-
induced oxidative damage.

A total of 2, 2, 2, and 3 proteins were significantly upreg-
ulated (p < 0:05) in the propanoate metabolism; peroxisome;
valine, leucine and isoleucine degradation; and thermogene-
sis pathways, respectively (Tables 2 and 3). Specifically, the
expression of methylmalonate-semialdehyde dehydrogenase
[acylating], mitochondrial (ALDH6A1) and propionate-
CoA ligase (ACSS2) in propanoate metabolism, ALDH6A1,
and isobutyryl-CoA dehydrogenase, mitochondrial
(ACAD8) in valine, leucine, and isoleucine degradation,
and protein arginine methyltransferase NDUFAF7 (NDU-
FAF7), NADH dehydrogenase [ubiquinone] 1 alpha sub-
complex assembly factor 4 (NDUFAF4), and ATP synthase
subunit f, mitochondrial (ATP5MF) in thermogenesis was

H1L2IvsH1L1I H2L1IvsH1L1I
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Figure 8: Distribution of proteins identified in MAC-T cells of the control, H1L1I, H1L2I, H2L1I, and H2L1.5I groups. (a) Volcano plot of
differentially expressed (DE) proteins. The horizontal coordinate indicates the fold change (log2 transformation) and the vertical coordinate
indicates the p-values (log10 transformation). Red dots indicate upregulation and green dots indicate downregulation. (b) Upregulated and
downregulated DE proteins. (c) Venn diagram of DE proteins identified in MAC-T cells due to H2O2-induced oxidative damage (fold
change ≥ 1:5).
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Figure 9: Cluster analysis heat map based on GO enrichment classifications: (a) biological process (BP); (b) cellular component (CC); and
(c) molecular function (MF). The DE proteins among the comparison groups were subjected to GO enrichment, and a cluster analysis was
performed to determine the correlative relationships among the DE protein functions. The horizontal direction indicates the enrichment test
results of different groups, and the vertical direction indicates the description of DE enrichment-related functions. Different sets of DE
proteins and color blocks correspond with the functional descriptions and indicate the degree of enrichment, where red indicates
stronger enrichment (the deeper the red, the stronger the enrichment) and blue indicates weaker enrichment (the lighter the blue, the
weaker the enrichment).
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Figure 10: Bubble chart of DE proteins enriched in KEGG pathways. The bubble size represents the number of DE proteins in the enriched
pathway terms, and the bubble color represents the p value.

Table 2: DE proteins before and after leucine intervention in the propanoate metabolism, valine, leucine, and isoleucine degradation and
thermogenesis pathways of MAC-T cells due to H2O2-induced oxidative damage.

Pathways No. Protein accession Protein description Gene name
H2L1I/H1L1I

ratio
H2L1I/H1L1I

p value

Propanoate
metabolism

1 A0A3Q1LN22
Methylmalonate-semialdehyde
dehydrogenase [acylating],

mitochondrial
ALDH6A1 2.28 <0.001

2 A7YWF1 Propionate-CoA ligase ACSS2 1.61 0.004

Valine, leucine
and isoleucine
degradation

1 A0A3Q1LN22
Methylmalonate-semialdehyde
dehydrogenase [acylating],

mitochondrial
ALDH6A1 2.28 <0.001

2 Q0NXR6
Isobutyryl-CoA dehydrogenase,

mitochondrial
ACAD8 1.59 0.045

Thermogenesis

1 A0A3Q1N564
Protein arginine

methyltransferase NDUFAF7
NDUFAF7 1.61 0.001

2 A4FUH5

NADH dehydrogenase
[ubiquinone] 1 alpha
subcomplex assembly

factor 4

NDUFAF4 1.53 0.003

3 Q28851
ATP synthase subunit

f, mitochondrial
ATP5MF 1.52 <0.001
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significantly upregulated (p < 0:05) after leucine intervention
(Table 2). After isoleucine intervention, the expression of
ALDH6A1 and ACSS2 in propanoate metabolism and per-
oxisomal membrane protein PEX16 (PEX16) and
phytanoyl-CoA dioxygenase, peroxisomal (PHYH) in per-
oxisome was significantly upregulated (p < 0:05) (Table 3).

3.12. PRM Protein Expression Quantities. The 8 target pro-
teins shown in Tables 2 and 3 were selected for verification
using PRM validation. Five of them named ALDH6A1,
ACSS2, NDUFAF7, ATP5MF, and PEX16 were quantified
as shown in Figure 11. After normalizing, the results of the
relative quantitative expression showed that the 5 candidate
proteins exhibited similar trends of those observed in the 4D
label-free quantitative proteomic profiling results, which
supports the plausibility and reliability of the proteomics
data.

Therefore, based on all above data, the protective mech-
anism of leucine and isoleucine against H2O2-induced oxi-
dative damage in bovine mammary epithelial cells was
outlined in Figure 12. In general, the intervention of leucine
can generate more ATP for energy supplementation
(Figure 12(a)); the intervention of isoleucine can improve
the deficit in peroxisome transport and promote acetyl-
CoA production, for MAC-T cells due to H2O2-induced oxi-
dative damage (Figure 12(b)).

4. Discussion

Free radical production plays an essential role in normal
metabolism, including hydrogen peroxide, superoxide radi-
cals, and hydroxyl radicals [22]. Excessive free radical forma-
tion may lead to oxidative stress [23]. How to effectively
alleviate oxidative stress damage to the body caused by free
radicals has become an urgent problem. The balance between
the oxidant and antioxidant defenses systems is important.
Previously, leucine and isoleucine supplementation was found
to increase antioxidation and reduce oxidative stress in the
body [24–26]. H2O2 is the main product of oxidative stress
[27]. Therefore, in this study, we induced oxidative stress
in vitro by treating MAC-T cells with H2O2. Our findings sug-
gested that leucine and isoleucine alleviated oxidative stress
through certain pathways, which furthers our understanding
of the antioxidant effects of certain nutrients.

Oxidative stress and apoptosis are considered effective
immune defense mechanisms when the body is subjected
to various harmful stimuli [28]. Sordillo and Aitken [2]
found that a high MDA content indicated an imbalance
between the level of oxidative stress and strength of the anti-
oxidant defense system in dairy cows, which can increase the
risk of disease. Jin et al. [29] found that the activation of
endogenous ROS production in MAC-T cells subjected to
H2O2 resulted in cumulative oxidative damage to cellular
components, altered cellular functions, and apoptotic cell

Table 3: DE proteins before and after isoleucine intervention in the propanoate metabolism and peroxisome pathways of MAC-T cells due
to H2O2-induced oxidative damage.

Pathways No.
Protein
accession

Protein description
Gene
name

H1L2I/
H1L1I ratio

H1L2I/H1L1I
p value

Propanoate
metabolism

1 A0A3Q1LN22
Methylmalonate-semialdehyde dehydrogenase

[acylating], mitochondrial
ALDH6A1 1.95 0.001

2 A7YWF1 Propionate-CoA ligase ACSS2 1.51 0.017

Peroxisome
1 A0A3Q1LZN4 Peroxisomal membrane protein PEX16 PEX16 2.14 0.024

2 O18778 Phytanoyl-CoA dioxygenase, peroxisomal PHYH 1.70 0.034
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Figure 11: PRM protein expression quantities of the candidate proteins which were ALDH6A1, ACSS2, NDUFAF7, ATP5MF, and PEX16.
∗ indicates p < 0:05 and ∗∗ indicates p < 0:01 vs. control group. ## indicates p < 0:01 vs. H1L1I group.
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death. We also observed an increase in TOS and MDA, as
well as a decrease in the relative proliferation rate and TAS
when MAC-T cells were treated with H2O2, indicating that
these cells were subjected to oxidative stress. Leucine and
isoleucine acting as antioxidants have been reported
[24–26]. Similarly, we found that they played antioxidative
roles in MAC-T cells by increasing the relative proliferation
rate and TAS, as well as decreasing TOS and MDA.

The KEGG pathway enrichment analysis results indi-
cated that leucine intervention positively regulated the pro-
panoate metabolism; valine, leucine, and isoleucine
degradation; and thermogenesis pathways in MAC-T cells
after oxidative damage. The upregulation of ACAD8 and
ALDH6A1 expression in the valine, leucine, and isoleucine
degradation pathway was observed, which promotes valine
metabolism and generates succinyl-CoA [30, 31]. Succinyl-
CoA enters the tricarboxylic acid (TCA) cycle to produce

ATP [32]. Additionally, ALDH6A1 was found to be involved
in the propanoate metabolism pathway to generate acetyl-
CoA, which is an essential intermediate metabolite that
enters the TCA cycle and is oxidized to yield energy [32].
The TCA cycle and electron transport chain are two main
components that determine energy metabolism [33]. The
expression levels of NDUFAF7, NDUFAF4, and ATP5MF
in the electron transport chain (thermogenesis-related path-
way) were upregulated, leading to electron coupling and oxi-
dative phosphorylation to form ATP [34]. Consequently,
generating more ATP for energy supplementation may be
a potential mechanism by which leucine counters H2O2-
induced oxidative damage in MAC-T cells. Additionally, iso-
leucine positively regulated the propanoate metabolism and
peroxisome pathways in MAC-T cells after oxidative dam-
age. Peroxisomes are small membrane-bound organelles that
play diverse roles in the cellular metabolism, including the

Leucine

Cytoplasm

Valine, leucine, isoleucine degradation Propanoate metabolism

Acetyl-CoA

Oxidative stress

Succinyl-CoA

TCA
cycle
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Figure 12: The protective mechanism of leucine (a) and isoleucine (b) against H2O2-induced oxidative damage in bovine mammary
epithelial cells. Genes in black was validated in PRM and 4D label-free quantitative proteomic analysis, while genes in white was only
validated in 4D label-free quantitative proteomic analysis.
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conversion of hydrogen peroxide to nontoxic forms [35, 36].
Mammalian Pex16 is an integral membrane protein that
plays a role in the early stages of peroxisome biogenesis
and promotes the formation of peroxisomes [36]. The
upregulation of Pex16 expression was detected in the perox-
isome pathway, which thereby facilitated the membrane pro-
tein transport of peroxisomes. Thus, improving the deficit in
peroxisome transport and promoting acetyl-CoA produc-
tion may be potential mechanisms by which isoleucine
counters H2O2-induced oxidative damage in MAC-T cells.
Interestingly, no DE proteins were enriched in the KEGG
pathways associated with oxidative stress in MAC-T cells
after oxidative damage when leucine and isoleucine concen-
trations were simultaneous increased. In addition, the
H2L1.5I group had a higher TOS/TAS than the H1L2I and
H2L1I groups. These results may be related to the concen-
trations and proportions of leucine and isoleucine or their
interactions, as BCAAs share the same transporter on the
cell membrane [37, 38]. However, further research is
required to clarify and expand upon these findings.

Oxidative stress can activate the inflammation signaling
pathway by activating pro-inflammatory cytokines, such as
TNF-α, IL-1β, and IL-6 [39], thereby triggering excessive
inflammatory and immune responses in dairy cows, which
can result in certain diseases, including mastitis and abnor-
malities of the glucose and lipid metabolism [40, 41]. J. Lee
et al. [42] reported that IL-6mRNA expression decreased after
leucine or isoleucine supplementation in the microglial cells of
mice; the expression of proinflammatory cytokines also
decreased as the concentrations of leucine, isoleucine, and
valine increased, suggesting that an antagonistic effect among
these BCAAs did not exist within the inflammatory response
mechanism. Our study found similar results. IL-10 is an
important anti-inflammatory cytokine that regulates the func-
tion of inflammatory immune cells [43]. In the present study,
the intervention of leucine and/or isoleucine did not signifi-
cantly affect IL-10 expression in MAC-T cells after oxidative
damage, which corroborates the notion that different BCAAs
do not alter the synthesis of IL-10 by macrophages [12].

Oxidative stress can affect barrier functions, leading to
increased cell permeability [44]. Tight junction proteins are
adhesive junction molecules that link epithelial cells together,
including the occludin, ZO, and claudin protein families [45],
which are involved in the regulation of cell permeability by pro-
moting junction tightening [46]. When cells are subjected to
oxidative stress, the mRNA expression levels of tight junction
proteins significantly decrease [47], which is consistent with
our results. Our data suggested that leucine or isoleucine treat-
ment alleviated oxidative stress, which improved the mRNA
expression levels of tight junction proteins, thereby restoring
barrier functions. Interestingly, when compared to the H1L1I
group, the mRNA expression levels of ZO-1 did not change in
the H1L2I and H2L1I groups but significantly increased in the
H2L1.5I group. Additionally, based on the cluster analysis heat
map results and GO enrichment classifications, the H2L1.5I
group contained several unique proteins with functional roles
in membrane microdomain and membrane raft, indicating that
simultaneously increasing leucine and isoleucine improved bar-
rier functions in MAC-T cells better than leucine or isoleucine

alone. However, the interactive effects of leucine and isoleucine
on barrier functions require further investigation.

Interestingly, we found that leucine and isoleucine could
act as antioxidants in MAC-T cells, which was expected.
Additionally, we found that the protective mechanisms of
leucine and isoleucine against oxidative stress were related
to multiple regulatory pathways. Notably, the antagonism
between leucine and isoleucine existed in antioxidative
stress, but not in barrier functions or as anti-inflammatory
activities. Based on this experimental data alone, the exact
mechanism between the interaction of leucine and isoleucine
was difficult to determine and remains unknown. Therefore,
further research should be conducted to further analyze,
expound, and prove this mechanism.

5. Conclusions

In conclusion, leucine was found to protect MAC-T cells
from H2O2-induced oxidative stress by regulating the pro-
panoate metabolism; valine, leucine and isoleucine degrada-
tion; and thermogenesis pathways, thereby generating more
ATP to supplement energy demands. Moreover, the protec-
tive mechanisms of isoleucine against oxidative stress
improved the deficit in peroxisome transport by regulating
the peroxisome pathway and promoting acetyl-CoA produc-
tion by regulating the propanoate metabolism pathway. The
findings of this study enhance our understanding of the
underlying protective mechanisms of leucine and isoleucine
against oxidative damage.
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Supplementary Table 1: MAC-T cells were firstly cultured in
completed medium with or without 600μmol/L H2O2 for 6
h and then incubated in DMEM/F12 medium (1% antibi-
otics) with different combinations of leucine and isoleucine
for 24 h. 1H corresponds to treatment of 600μmol/L H2O2
for 6 h; 1L and 2L correspond to 1 and 2 times the leucine
concentration in DMEM/F12, which was 0.450 mmol/L; 1I,
1.5I, and 2I correspond to 1, 1.5, and 2 times the isoleucine
concentration in DMEM/F12, which was 0.420 mmol/L. For
example, H1L1I means that the MAC-T cells were firstly
cultured in completed medium with 600μmol/L H2O2 for
6 h and then incubated in DMEM/F12 medium (1% antibi-
otics) with combinations of 0.450 mmol/L leucine and
0.420 mmol/L isoleucine for 24 h. Supplementary Table 2:
effects of the different H2O2 concentrations for different
times on the cellular viability (%) of MAC-T cells. 1Different
letters (a–e) indicate significant differences at the same con-
centration (p < 0:05). (Supplementary Materials)
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