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Hypoxia is a recognized inducer of oxidative stress during prolonged physical activity. Nevertheless, previous studies have not
systematically examined the effects of normoxia and hypoxia during acute physical exercise. The study is aimed at evaluating
the relationship between enzymatic and nonenzymatic antioxidant barrier, total antioxidant/oxidant status, oxidative and
nitrosative damage, inflammation, and lysosomal function in different acute exercise protocols under normoxia and hypoxia.
Fifteen competitive athletes were recruited for the study. They were subjected to two types of acute cycling exercise with
different intensities and durations: graded exercise until exhaustion (GE) and simulated 30 km individual time trial (TT). Both
exercise protocols were performed under normoxic and hypoxic (FiO2 = 16:5%) conditions. The number of subjects was
determined based on our previous experiment, assuming the test power = 0:8 and α = 0:05. We demonstrated enhanced
enzymatic antioxidant systems during hypoxic exercise (GE: ↑ catalase (CAT), ↑ superoxide dismutase; TT: ↑ CAT) with a
concomitant decrease in plasma reduced glutathione. In athletes exercising in hypoxia, redox status was shifted in favor of
oxidation reactions (GE: ↑ total oxidant status, ↓ redox ratio), leading to increased oxidation/nitration of proteins (GE: ↑
advanced oxidation protein products (AOPP), ↑ ischemia-modified albumin, ↑ 3-nitrotyrosine, ↑ S-nitrosothiols; TT: ↑ AOPP)
and lipids (GE: ↑ malondialdehyde). Concentrations of nitric oxide and its metabolites (peroxynitrite) were significantly higher
in the plasma of hypoxic exercisers with an associated increase in inflammatory mediators (GE: ↑ myeloperoxidase, ↑ tumor
necrosis factor-alpha) and lysosomal exoglycosidase activity (GE: ↑ N-acetyl-β-hexosaminidase, ↑ β-glucuronidase). Our study
indicates that even a single intensive exercise session disrupts the antioxidant barrier and leads to increased oxidative and
nitrosative damage at the systemic level. High-intensity exercise until exhaustion (GE) alters redox homeostasis more than the
less intense exercise (TT, near the anaerobic threshold) of longer duration (20:2 ± 1:9min vs. 61:1 ± 5:4min—normoxia;
18:0 ± 1:9min vs. 63:7 ± 3:0min—hypoxia), while hypoxia significantly exacerbates oxidative stress, inflammation, and
lysosomal dysfunction in athletic subjects.
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1. Introduction

An inevitable consequence of functioning under aerobic
conditions is the production of reactive oxygen (ROS) and
nitrogen species (RNS). ROS and RNS are typical by-
products of oxygen metabolism and important messengers
in cellular signal processing. Under physiological conditions,
ROS and RNS are involved in energy metabolism, erythro-
poiesis, muscle contraction, and other biochemical processes
[1–3]. The signaling activity of free radicals is based on the
modulation of several transcription factors, e.g., NF-κB
(nuclear factor kappa-light-chain-enhancer of activated B
cells) and HIF-1 (hypoxia-inducible factor-1), which results
in S-nitrosylation of proteins and induction of second-
order transmitter formation, as well as changes in cellular
redox status [4–6]. However, ROS and RNS overproduction
and/or insufficient antioxidant defense can cause redox
imbalance, leading to cellular damage by oxidation and
nitration. Such a state is defined as oxidative and nitrosative
stress, which plays an essential role in many contemporary
diseases, including metabolic [7, 8], neurodegenerative [9,
10], autoimmune [11, 12], and neoplastic disorders [13,
14]. Interestingly, factors inducing oxidative and nitrosative
stress involve physical exercise [2, 15–17]. It was shown that
overproduction of ROS/RNS occurs both during and after
training [2, 15, 16]. A direct source of free radicals is the
activity of mitochondrial enzymes and membrane oxidases
(e.g., NADPH oxidase (NOX)), disturbances of ion homeo-
stasis (especially iron and calcium ions), or changes in lyso-
somal function. The rate of ROS formation depends on the
intensity and duration of exercise, the degree of training of
the subjects, their age, sex, and diet [2, 15, 16, 18, 19]. It
was shown that regular long-term aerobic exercise, especially
at high intensity, is responsible for a significant increase in
oxidative stress through intensified oxygen consumption
[19–21]. Lipid peroxidation of muscle cells results in
decreased fluidity and higher permeability of cellular mem-
branes and enhanced oxidation of proteins and their tissue
aggregation, as well as ROS-mediated DNA injury, causing
an inflammatory response, delayed muscle soreness, and
the release of intramuscular enzymes into the blood [15,
22, 23]. Nevertheless, little is known on redox homeostasis,
nitrosative stress, and inflammatory response after acute
physical intervention.

Nowadays, altitude/hypoxic training is becoming
increasingly popular in sports [24–27]. Exposure to hypoxia
leads to stimulation of HIF-1, which, apart from regulation
of erythropoiesis and angiogenesis, is also a regulator of
activity of glycolytic enzymes, mainly phosphofructokinase
(PFK-1) [28, 29]. Therefore, improvements in aerobic and
anaerobic capacity may occur. However, hypoxia and subse-
quent reoxygenation are also responsible for ROS/RNS
overproduction, during prolonged exposure to altitude, as
well as during intermittent hypoxic training [29–31]. This
is caused by disruption of the mitochondrial respiratory
chain, disturbances in arachidonic acid metabolism, or
migration/activation of immune cells during regular physical
activity [24, 25, 30, 31]. Nevertheless, there is a lack of
studies evaluating the relationship between antioxidant

systems, oxidative and nitrosative cell damage, inflamma-
tion, and lysosomal function under normoxic and hypoxic
conditions. We speculate that even acute physical exercise
can induce oxidative stress and inflammation, and hypoxia
can exacerbate these disorders. As interest in high-altitude
sports grows, it is essential to understand the differences in
redox homeostasis between various protocols of acute phys-
ical intervention. Previous studies have examined only a few
aspects of redox homeostasis [30, 32, 33] and ultimately have
not systematically studied the effects of normoxia and hyp-
oxia during acute exercise. Therefore, the present study is
aimed at evaluating the relationship between (1) enzymatic
and nonenzymatic antioxidant barrier, (2) total antioxidant/
oxidant status, (3) oxidative and (4) nitrosative cell damage,
(5) biomarkers of inflammation, and (6) lysosomal function
in different protocols (different intensity and duration)
performed under normoxic and hypoxic conditions.

2. Materials and Methods

2.1. Participants. The investigation conformed with the
principles outlined in the Declaration of Helsinki and was
approved by the Bioethics Committee of the Medical Uni-
versity of Bialystok (approval no. R-I-002/325/2019). All
subjects gave their informed consent before their inclusion
in the study.

Fifteen well-trained male competitive athletes (12
cyclists and 3 triathlonists) aged 25:4 ± 8:4 years, with BMI
of 21:6 ± 1:8 kg/m2, body fat content of 9:2 ± 2:1%, and
VO2max of 61:4 ± 3:1mL/kg/min were recruited for the
study. Their average training experience was 6:3 ± 2:0 years.
Only candidates with a valid medical certificate confirming
the absence of contraindications to the practice of competi-
tive sport activity were accepted.

2.2. Experimental Design. The subjects were tested on two
occasions, separated by 14 days, in normoxic and hypoxic
(FiO2 = 16:5%, equivalent to 2,000m asl) conditions applied
in random order. The tests were performed in a laboratory
room equipped with a normobaric hypoxia system (AirZone
25, Air Sport, Poland) allowing to freely manipulate the
oxygen concentration in the room air. Temperature (19°C),
humidity (50%), and CO2 concentration (700–800 ppm)
were controlled and held constant. The study participants
were blinded to exercise conditions. The athletes were
instructed to maintain their regular diet and supplementa-
tion throughout the experiment and avoid caffeine intake
for 24 h preceding each test. All participants arrived at the
camp one day before the start of each test series and con-
sumed the same meals throughout their stay (40 kcal/kg/d,
50% carbohydrates, 20% proteins, and 30% fats).

On the first day of each stay, two hours after a light
breakfast, the subjects performed graded cycling exercise
beginning with a workload of 120W, which was subse-
quently increased by 40W every 3 minutes until volitional
exhaustion. The total duration of exposure to hypoxia dur-
ing this test was ~35min. On the second day, following
24 h of rest and two hours after a light breakfast, the athletes
performed a simulated 30 km individual time trial (TT) in a
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mountainous terrain. The TT was preceded by a 15min
warm-up, carried out according to the individual prefer-
ences of the athletes, under the same oxygen concentration
as during the main exercise. The total duration of exposure
to hypoxia during this test was ~90min. Both tests were
performed on subjects’ personal bicycles connected to an
electromagnetic bicycle trainer (Cyclus 2, RBM Elektronik-
Automation GmbH, Leipzig, Germany). During each test
series, the athletes were allowed to consume water ad libi-
tum. The oxygen saturation of arterial blood (SpO2) and
heart rate (HR) was measured using the WristOx2 pulse
oximeter (Nonin Medical Inc., Plymouth, USA).

2.3. Blood Collection. Blood samples were taken from the
antecubital vein into 4mL EDTA tubes at three-time points:
before the exercise, immediately after its completion, and
following 30min of rest. They were kept on ice until centri-
fugation at 375× g for 10min at 4°C. Platelet-rich plasma
was transferred to a fresh plastic tube, and the leukocyte-
rich buffy coat was thoroughly removed. Separated erythro-
cytes were suspended in ice-cold PBS and centrifuged at
800× g for 10min, and the upper layer and the remaining
buffy coat were discarded. Red blood cells were then
resuspended in PBS and flash-frozen in liquid nitrogen.
Platelet-rich plasma was centrifuged at 2000× g for 10min
to sediment platelets. The supernatant was then transferred
to a fresh plastic tube and recentrifuged at 5000× g for 10
minutes to obtain platelet-free plasma. All samples were
stored at -80°C until analysis.

2.4. Biochemical Assays. All reagents were of analytical grade
and purchased (unless otherwise stated) from Sigma-Aldrich
(Nümbrecht, Germany, or Saint Louis, MO, USA). Redox
determinations were performed in duplicate assays: assess-
ment of antioxidant enzymes in erythrocyte samples and
assessment of nonenzymatic antioxidants, oxidative and
nitrosative stress products, inflammatory mediators, and
lysosomal enzymes in the plasma samples. The absorbance
and fluorescence were determined using an Infinite M200
PRO multimode microplate reader (Tecan Group Ltd.,
Männedorf, Switzerland). The results were then standard-
ized to 1mg of total protein content, as reported in several
other publications [34–40]. The total protein level was eval-
uated with the bicinchoninic acid (BCA) method, using a
commercial kit (Thermo Scientific PIERCE BCA Protein
Assay (Rockford, IL, USA)), with bovine serum albumin
(BSA) as a standard. Redox determinations were performed
no more than two months after the samples were frozen.

2.5. Enzymatic Antioxidant Barrier. Catalase (CAT, E.C.
1.11.1.6) activity was measured with the method developed
by Aebi [41], by evaluation of hydrogen peroxide decompo-
sition, measured spectrophotometrically at the wavelength
of 240nm. One unit of CAT was defined as the amount of
the enzyme which is needed to decompose one nmol of
hydrogen peroxide within 1 minute. The results are pre-
sented as nmol H2O2/min/mg protein.

The activity of glutathione peroxidase (GPx, E.C.
1.11.1.9) was determined using Paglia and Valentine’s

method [42] based on the conversion of NADPH (reduced
nicotinamide adenine dinucleotide) to NADP+ (nicotin-
amide adenine dinucleotide cation). The measurements were
performed spectrophotometrically at 340 nm. One unit of
GPx was represented as the amount of the enzyme necessary
to catalyze the oxidation of 1μmol of NADPH within 1
minute [43]. The results are presented as mU/mg protein.

Glutathione reductase (GR, E.C. 1.8.1.7) activity was eval-
uated spectrophotometrically with theMize and Langdon [44]
method at the wavelength of 340nm. It was assumed that one
unit of GR catalyzing oxidation of 1μmol of NADPHwithin 1
minute. The results are presented as mU/mg protein.

The activity of superoxide dismutase (SOD, E.C.
1.15.1.1) was determined with the spectrophotometric
method, according to Misra and Fredovich [45]. The absor-
bance changes accompanying adrenaline oxidation to adre-
nochrome were measured at the wavelength of 480nm.
One SOD unit corresponds to the amount of enzyme reduc-
ing adrenaline oxidation by 50%. The results are presented
as mU/mg protein.

2.6. Nonenzymatic Antioxidant Barrier. The uric acid (UA)
concentration was measured spectrophotometrically at the
wavelength of 490nm using the commercial kit (Quanti-
ChromTMUric Acid Assay Kit DIUA-250; BioAssay Sys-
tems, Hayward, CA, USA) according to the manufacturer’s
instructions. The results are presented as μmol/mg protein.

The concentration of reduced (GSH) and oxidized
(GSSG) glutathione was evaluated colorimetrically. The
determination was based on the enzymatic reaction between
NADPH, DTNB (5,5′-Dithiobis-(2-nitrobenzoic acid), and
GR. In order to determine GSSG concentration, the samples
were incubated with 2-vinylpiridine to inhibit glutathione oxi-
dation after neutralization with 1M chlorhydrol triethanola-
mine to pH6-7. The concentration of GSH was calculated as
a difference in the levels of total glutathione and GSSG. The
measurements were taken at the 412nm wavelength [46, 47].
The results are presented as μmol/mg protein.

Oxidation/reduction potential (redox ratio) was calcu-
lated based on the formula = ½GSH�2/½GSSG� [48].

2.7. Antioxidant Status. Total antioxidant capacity (TAC)
was determined by the Erel’s method [49]. 2,2-Azinobis (3-
ethylbenzene-thiazoline-6-sulfonate) (ABTS) was mixed
with potassium persulfate and incubated at room tempera-
ture for 12 hours to obtain ABTS+. In the next step, 1mL
of ABTS+ was added to 10μL of samples, and the absorbance
was read 735nm wavelength. Results of decolorization were
linear with increasing Trolox concentrations. The results are
presented as μmol/mg protein.

Total oxidant status (TOS) was evaluated colorimetri-
cally by Erel’s method [50], using the oxidation reaction of
Fe2+ to Fe3+ ions. Fe3+ ions were then detected using xylenol
orange. The results are presented as nmol H2O2 equivalent/
mg protein.

The oxidative stress index (OSI) was calculated using the
formula: OSI = ½TOS, μmolH2O2 equivalent/L½/½TAC, mmol
Trolox/L� × 10 [51, 52].
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2.8. Oxidative Stress. The concentration of thiobarbituric
acid reactive substances (TBARS) was measured colorimetri-
cally using thiobarbituric acid (TBA) method. 1,1,3,3-Tetra-
ethoxypropane was used as the standard, and determination
was performed at 535nm [53, 54]. The results are presented
as μmol/mg protein.

The spectrophotometric detection evaluated the concen-
tration of advanced oxidation protein products (AOPP).
Potassium iodide and acetic acid were added to the wells,
and the absorbance was read immediately at 340nm [55,
56]. The results are presented as μmol/mg protein.

Ischemia modified albumin (IMA) concentration was
determined colorimetrically at 470nm. The determination
was based on the measurement of the exogenous cobalt
(Co2+) binding facility of human plasma albumin [57, 58].
The results are presented as μmol/mg protein.

2.9. Nitrosative Stress. Nitrate/nitrite (NOx) concentration
was determined spectrofluorimetrically. Stable decomposi-
tion products of nitric oxide (NO) from the Griess reaction
were evaluated by measuring absorbance at 543nm wave-
length [59]. The results are presented as μmol/mg protein.

The peroxynitrite level was determined spectrophotome-
trically by measurement of the absorbance of nitrophenol at
the wavelength of 320nm. The nitrophenol production
resulted from the decomposition of peroxynitrite followed
by nitration of glycyltyrosine and 4-hydroxyphenyloacetic
acid (4-HPA) [60, 61]. The results are presented as μmol/
mg protein.

3-Nitrotyrosine (3-NT) level was measured using the
ELISA method. According to the manufacturer’s instruc-
tions, a commercial kit (Nitrotyrosine ELISA; Immundiag-
nostik AG, Bensheim, Germany) was used. The results are
presented as μmol/mg protein.

S-Nitrosothiol concentration was measured spectropho-
tometrically based on the reaction of the Cu2+ ions with
the Griess reagent [62]. The solution was shaken and incu-
bated for 20 minutes, after which the absorbance was mea-
sured at 490nm [63]. The results are presented as nmol/
mg protein.

2.10. Inflammation and Lysosomal Function. Myeloperoxi-
dase (MPO, EC 1.11.2.2) activity was analyzed spectrophotom-
etrically using sulfanilamide hexadecyl trimethylammonium,
ortho-dianisidinedihydrochloride, and hydrogen peroxide
[37, 64]. The absorbance was measured at 450nm. The results
are presented as mU/mg protein.

The tumor necrosis factor-alpha (TNF-α) level was
determined by the ELISA method using a commercially
available kit (EIAab Science Inc. Wuhan; Wuhan, China)
according to the manufacturer’s instructions. The results
are presented as pg/mL.

The activity of N-acetyl-β-hexosaminidase (HEX, EC
3.2.1.52) and β-glucuronidase (GLU, EC 3.2.1.31) was
estimated colorimetrically at 405nm using 4-nitrophenyl-
N-acetyl-β-glucosaminide (HEX) and 4-nitrophenyl-β-D-
glucuronide (GLU) as a substrate reaction [65, 66]. The
results are presented as pKat/mg protein.

2.11. Statistical Analysis. Statistical analysis was performed
using GraphPad Prism 8.4.3 for macOS (GraphPad Soft-
ware, Inc. La Jolla, USA). The normality of the distribution
was assessed using the Shapiro–Wilk test, while homogene-
ity of variance used the Levene test. For comparison of quan-
titative variables, the two-way analysis of variance (ANOVA)
followed by the original FDR method of Benjamini and
Hochberg was used. Multiplicity adjusted p value was also cal-
culated. The relationship between the assessed biomarkers was
evaluated using the Pearson correlation coefficient. The statis-
tical significance level was set at p < 0:05.

The number of subjects was determined based on our
previous experiment, assuming the test power = 0:8 and
α = 0:05 (online ClinCalc sample size calculator). Erythrocyte
GSH-Px, plasma GSH, TAC, TBARS, AOPP, and peroxyni-
trite were used for calculations, and the minimum number
of subjects should be 13 (in one group).

3. Results

3.1. Exercise Performance. The duration of the GE under
normoxic conditions was 20:2 ± 1:9min, and the maximal
work rate amounted to 5:1 ± 0:3W/kg of body weight. The
SpO2 was 98:0 ± 0:8 and 91:9 ± 3:0% at rest and at the end
of the exercise, respectively. The heart rate at the point of
exhaustion was 193 ± 8 bpm. In hypoxia, the average
duration of the exercise was 18:0 ± 1:9min, whereas the
maximal work rate was 4:6 ± 0:4W/kg. The SpO2 was
93:3 ± 3:4 and 84:3 ± 5:4% at rest and at the point of
exhaustion, respectively. The heart rate at the end of the
exercise was 190 ± 9 bpm.

The duration of the TT in normoxia was 61:1 ± 5:4min,
and the average work rate was 3:6 ± 0:3W/kg of body
weight. The SpO2 amounted to 97:8 ± 2:0 and 93:6 ± 2:3%
at rest and at the end of the exercise, respectively. The aver-
age heart rate was 176 ± 9, 177 ± 8, and 179 ± 10 bpm after
10, 20, and 30 km of the TT, respectively. Under hypoxic
conditions, the TT lasted 63:7 ± 3:0min, whereas the aver-
age work rate was 3:3 ± 0:2W/kg. The SpO2 was 93:3 ± 3:8
and 86:5 ± 2:7% at rest and at the end of the TT, respec-
tively. The mean heart rate was 174 ± 11, 176 ± 13, and
180 ± 12bpm after 10, 20, and 30km of the TT, respectively.

3.2. Enzymatic Antioxidant Barrier. In normoxia, after the
(GE) activity of glutathione reductase (GR) increased by
9% (p = 0:0464), while after 30 minutes of resting, the
activity of catalase (CAT) rose 25.4% (p = 0:0003), and the
activity of glutathione peroxidise (GPx) decreased by 13%
(p = 0:0081), all comparing to the preexercise activity. In
hypoxia, the postexercise activity of CAT and superoxide
dismutase (SOD) was consecutively 28% (p = 0:0002) and
59.8% (p < 0:0001) greater than preexercise. After resting,
the activity of CAT was 41.6% higher (p < 0:0001) than
before the GE, and SOD activity was 33.9% lower
(p < 0:0001) comparing to the evaluation performed imme-
diately after exercise. When comparing the enzymatic
activity in groups exercising hypoxia to those exercising nor-
moxia, the CAT activity was 24% higher (p = 0:0088) before
the GE. In postexercise measurement, the activity of CAT
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was 6% higher (p < 0:0001), the activity of GPx was 12.1%
lower (p = 0:0175), and the activity of SOD was 71.7% greater
(p < 0:0001). Moreover, the activity of CAT after resting was
41.6% higher (p < 0:0001) in hypoxia (Figure 1, GE).

After 30 km TT in normoxia, the activity of CAT and
SOD after the exercise rose 18.8% (p = 0:0386) and 17.1%
(p = 0:046) consecutively, and after resting for 30 minutes,
the activity of GPx and SOD increased by 15.2%
(p < 0:0001) and 22.3% (p = 0:01), respectively, all compar-
ing to the activity before exercising. If compared to the post-
exercise value, after resting, the activity of GPx decreased by
24.4% (p = 0:0009). After the exercise in hypoxia, there was a
significant increase in the activity of CAT (17.2%; p = 0:0242)
and SOD (47.9%; p < 0:0001). Furthermore, the activity of
SOD after resting was 24.4% lower (p = 0:0009) than after the
exercise. Before TT, the activity of CAT in hypoxia was 18.9%
(p < 0:0001) greater than in normoxia and 17.4% (p = 0:0233)
greater after the exercise, while the postexercise SOD activity
was 10.5% (p = 0:003) lower in hypoxia than in normoxia.
Evaluation taken 30 minutes after the end of TT revealed that
in hypoxia, the activity of GPx and SOD was significantly lower
than in normoxia—18.7% (p < 0:0001) and 19.9% (p = 0:0051),
respectively (Figure 1, TT).

3.3. Nonenzymatic Antioxidant Barrier. There were no sig-
nificant changes in concentration of uric acid (UA), reduced
(GSH), and oxidized (GSSG) glutathione or value of redox
ratio in normoxia after GE compared to those values before
exercise. However, after 30 minutes rest, the concentration
of UA increased by 18.7% (p = 0:0058), while concentration
of GSH and redox ratio lessened by 11.9% (p = 0:0031) and
24.8% (p = 0:0017) consecutively, comparing to preexercise
values. Redox ratio decreased also in comparison to postex-
ercise value (18%, p = 0:0343). In hypoxia, comparing to the
measurements taken before exercise, immediately after GE,
concentration of UA increased by 23.6% (p = 0:0006), and
concentration of GSH and redox ratio decreased by 18%
(p = 0:0002) and 31.1% (p = 0:0053) consecutively after the
exercise. After 30 minutes of resting, redox ratio was 33.5%
lower (p = 0:0028). Moreover, concentration of GSH and
redox ratio was significantly lower in hypoxia than in nor-
moxia both before (GSH 15%, p = 0:0002; redox ratio
29.3%, p < 0:0001) and after (GSH 30%, p < 0:0001; redox
ratio 51.3%, p < 0:0001) GE, as well as after 30 minutes rest
(GSH 19.7%, p < 0:0001; redox ratio 37.4%, p = 0:0004)
(Figure 2, GE).

In normoxia, the concentration of GSH and redox ratio
declined significantly after 30km time trial—19% (p < 0:0001)
and 31.6% (p < 0:0001), respectively. Thirtyminutes after finish-
ing the TT, UA concentration raised by 18.8% (p = 0:0143), and
concentration of GSH (13%, p = 0:0048) and redox ratio
(25.8%, p = 0:0009) decreased significantly compared to the
values observed before conducting the time trial, while the
GSSG concentration increased by 7.79% (p = 0:0366) compar-
ing to the measurement taken immediately after the exercise.
In hypoxia, 30km time trial affected significantly the content
of UA (increased by 22.3%, p = 0:0018), GSH (decreased by
35%, p < 0:0001), and redox ratio (decreased by 55%,
p < 0:0001). After resting, there was a significant decrease in

GSH concentration (27.5%, p < 0:0001) and redox ratio
(48.8%, p < 0:0001) in comparison to those before TT, while
GSSG content was 7.8% higher (p = 0:038) than right after
the exercise. Moreover, postexercise content of UA was 27%
greater (p = 0:0003) in hypoxia than in normoxia, while the
concentration of GSH and redox ratio was significantly lower
in hypoxia—24.2% (p < 0:0001) and 39.7% (p = 0:0005),
respectively. After 30 minutes of resting, GSH content and
redox ratio were 20.9% (p = 0:0001) and 36.8% (p < 0:0001)
lower in hypoxia than in normoxia (Figure 2, TT).

3.4. Antioxidant Status. Total oxidant status (TOS) was raised
by graded exercise until exhaustion in normoxia by 31.9%
(p = 0:0485), while total antioxidant capacity (TAC) and oxi-
dative stress index (OSI) were not affected. Moreover, after
30 minutes of resting, TOS increased by 51.9% (p = 0:0016),
and OSI increased by 55.8% (p = 0:0023) comparing to the
preexercise. In hypoxia, both TAC and TOS were elevated
after exercising—by 20.8% (p = 0:0025) and 29.7%
(p = 0:0228), respectively. There were also significant rises of
all described measurements after 30 minutes of rest in relation
to the values observed before the exercise (TAC—13.6%,
p = 0:044; TOS—56.5%, p < 0:0001; OSI—37.1%, p = 0:0276).
TOS was also 20.6% higher (p = 0:0399) after resting than
immediately after GE. Furthermore, postexercise TAC was
26.2% greater (p = 0:0003) in hypoxia than in normoxia,
whereas both TAC and TOS values after resting were higher
in hypoxia as well (26.4%, p = 0:0442; 28%, p = 0:009, respec-
tively) (Figure 3, GE).

In normoxia, total antioxidant capacity was increased by
30 km time trial by 34.8% (p = 0:0023) while oxidative stress
index was elevated by 39.7% (p = 0:0021). After resting, TAC
was raised by 16.9% (p = 0:0006) compared to preexercise
values and by 19.9% (p = 0:0001) compared to postexercise
measurement. OSI was 28.4% (p = 0:0021) lower after rest-
ing than immediately after TT. Hypoxia did not affect post-
exercise markers’ values, but resting for 30 minutes led to
12.6% growth (p = 0:0104) comparing to the preexercise
analysis. There were no significant differences between pre-
exercise values comparing normoxia and hypoxia, although
postexercise TAC was 10.3% higher (p = 0:0392) in hypoxia
than in normoxia (Figure 3, TT).

3.5. Oxidative Stress. Graded exercise until exhaustion in
normoxia did not influence oxidative stress marker concen-
tration assessed directly after exercise. However, there were
significant changes in TBARS (24% increase compared to
preexercise value, p = 0:0017) and ischemia modified protein
(IMA) (15.9% increase compared to postexercise value,
p = 0:0121) contents when measured after 30 minutes of rest.
In hypoxia, TBARS concentration was elevated by 25.8%
(p = 0:0002), and advanced oxidation protein product (AOPP)
content was increased by 18.8% (p < 0:0001) immediately after
exercise. After the rest, the significant increase of the concen-
tration of all evaluated substances was observed—TBARS by
42.2% (p < 0:0001), AOPP by 43.8% (p < 0:0001), and IMA
by 27.6% (p < 0:0001) comparing to the values before GE and
TBARS by 13% (0.0141), AOPP by 21% (p < 0:0001), and
IMA by 17.2% (p = 0:0003) comparing to the values after GE.
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Figure 1: Effect of graded exercise until exhaustion (GE) and 30 km time trial (TT) on the enzymatic antioxidant barrier in normoxia and
hypoxia. CAT: catalase; GPx: glutathione peroxidase; GR: glutathione reductase; SOD: superoxide dismutase. a, p < 0:05 vs. the value before
exercise in normoxia; b, p < 0:05 vs. the value after the exercise in normoxia; c, p < 0:05 vs. the value after the exercise and 30min of rest in
normoxia; d, p < 0:05 vs. the value after the exercise in hypoxia; e, p < 0:05 vs. the value after the exercise in hypoxia; f, p < 0:05 vs. the value
after the exercise 30min of rest in hypoxia.
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Figure 2: Effect of graded exercise until exhaustion (GE) and 30 km time trial (TT) on the nonenzymatic antioxidant barrier in normoxia
and hypoxia. GSH: reduced glutathione; GSSG: oxidized glutathione; UA: uric acid. a, p < 0:05 vs. the value before exercise in normoxia; b,
p < 0:05 vs. the value after the exercise in normoxia; c, p < 0:05 vs. the value after the exercise and 30min of rest in normoxia; d, p < 0:05 vs.
the value after the exercise in hypoxia; e, p < 0:05 vs. the value after the exercise in hypoxia; f, p < 0:05 vs. the value after the exercise 30min
of rest in hypoxia.
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Figure 3: Effect of graded exercise until exhaustion (GE) and 30 km time trial (TT) on antioxidant status in normoxia and hypoxia. OSI:
oxidative stress index; TAC: total antioxidant capacity; TOS: total oxidant status. a, p < 0:05 vs. the value before exercise in normoxia; b,
p < 0:05 vs. the value after the exercise in normoxia; c, p < 0:05 vs. the value after the exercise and 30min of rest in normoxia; d, p < 0:05
vs. the value after the exercise in hypoxia; e, p < 0:05 vs. the value after the exercise in hypoxia; f, p < 0:05 vs. the value after the exercise
30min of rest in hypoxia.
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There were also no differences between preexercise concentra-
tions in normoxia and hypoxia, while contents of all described
substances were significantly higher in hypoxia than in normo-
xia after the GE—TBARS 29.4% (p < 0:0001), AOPP 16.5%
(p = 0:0032), and IMA 20.1% (p = 0:0016)—and after 30
minutes of resting—TBARS 29.7% (p < 0:0001), AOPP 21%
(p < 0:0001), and IMA 21.5% (p = 0:0001) (Figure 4, GE).

After 30 km time trial in normoxia, the concentration of
TBARS was increased by 21.5% (p = 0:0034), and the con-
tent of AOPP was 12.9% (p = 0:0401) higher. After 30
minutes of rest, the TBARS concentration was elevated by
16.1% (p = 0:0267). In hypoxia, all postexercise oxidative
stress markers’ concentrations were elevated—TBARS by
42.7% (p < 0:0001), AOPP by 49% (p < 0:0001), and IMA
by 19.4% (p = 0:0101). Directly after the exercise, but after
30 minutes, the content of TBARS decreased by 11.5%
(p = 0:0328). There were no differences between preexercise
values in hypoxia and normoxia. The concentration of
AOPP after TT in hypoxia was 24.2% greater (p < 0:0001)
than in normoxia. After the rest, the contents of AOPP
and IMA were also higher in hypoxia—39% (p < 0:0001)
and 15.7% (p = 0:0407) consecutively (Figure 4, TT).

3.6. Nitrosative Stress. Besides 29.8% increase (p = 0:0014) in
peroxynitrite level after 30 minutes of resting in relation to
the pre-GE value and 18.8% decrease (p = 0:0291) in
S-nitrosothiol concentration after the rest compared to the
measurement conducted directly after exercise, there was
no other influence of GE in normoxia on nitrosative stress
markers. In hypoxia, the 3-nitrotyrosine (3-NT) level was
elevated by 15.9% (p = 0:0223) after the exercise. After rest-
ing, levels of peroxynitrite and 3-NT and concentration of
S-nitrosothiols increased by 15.6% (p = 0:0397), 41.1%
(p < 0:0001), and 31.2% (p = 0:0034), respectively, in com-
parison to the preexercise evaluation. Moreover, 3-NT level
and S-nitrosothiol content were greater after 30 minutes of
resting than immediately after exercise (21.8%, p = 0:0004;
29%, p = 0:0055 consecutively). Comparing the group
exercising in hypoxia to the group exercising in normox-
ia—in hypoxia, before exercise, the content of NOx was
20.2% higher (p = 0:0144), and the level of peroxynitrite
was 21.1% greater (p = 0:0219). In comparison, after exercise,
the NOx concentration and peroxynitrite level were 20.3%
(p = 0:007) and 16.4% (p = 0:0393) higher, and S-nitrosothiol
concentration was 17.3% lower (p = 0:044). Furthermore, 30
minutes after finishing the exercise, NOx concentration, 3-NT
level, and S-nitrosothiol content were also significantly higher
in hypoxia—18.5% (p = 0:0133), 25.4% (p < 0:0001), and
31.4% (p = 0:0055), respectively (Figure 5, GE).

After a 30 km TT in normoxia, the only significant
change was 16.4% (p = 0:0083) increase in peroxynitrite
level. In hypoxia, the level of peroxynitrite rose 13.5%
(p = 0:0252) after the exercise, while the level of 3-NT
increased by 13.1% (p = 0:0193) after 30 minutes of rest,
both comparing to the preexercise levels. Moreover, before
the exercise, the concentration of 3-NT was 12.7% higher
(p = 0:0228) in hypoxia than normoxia. No other significant
changes were observed (Figure 5, TT).

3.7. Inflammation and Lysosomal Function. After graded
exercise until exhaustion in normoxia, there were no signif-
icant changes in the activity of myeloperoxidase (MPO),
level of tumor necrosis factor-alpha (TNF-α), or the activity
of N-acetyl-β-hexosaminidase (HEX) and β-glucuronidase
(GLU). After 30 minutes of resting, level of TNF-α and the
activity of GLU increased by 36.6% (p = 0:0279) and 33.3%
(p = 0:0322) comparing to preexercise, and the level of
TNF-α rose 35% (p = 0:033) comparing to postexercise value
as well. In hypoxia, the activity of all examined enzymes,
as well as the level of TNF-α, increased after resting
comparing to the measurement taken before exercise
(MPO—52.4%, p = 0:0002; TNF-α—71%, p < 0:0001;
HEX—47.7%, p < 0:0001; GLU—105.4%, p < 0:0001). The
level of TNF-α and activity of HEX and GLU were signif-
icantly higher after rest also comparing to the assessment
performed directly after exercise—43.9% (p = 0:0014),
47.7% (p < 0:0001), and 84.7% (p < 0:0001), respectively.
No significant differences between inflammation and lyso-
somal function markers between values in normoxia and
hypoxia were observed in measurements performed before
and after GE. However, after 30 minutes, activity of all
investigated enzymes and level of TNF-α were higher in
hypoxia than in normoxia—MPO 34.4% (p = 0:005),
TNF-α 28.3% (p = 0:0161), HEX 46% (p < 0:0001), and
GLU 34.9% (p = 0:0031) (Figure 6, GE).

After 30kmTT in normoxia, the activity of GLU increased
by 29.8% (p = 0:038) considering pre-TT values. In hypoxia,
the level of TNF-α raised by 38.3% (p = 0:0109) subsequently
to the exercise, while after 30 minutes, the activity of GLU
raised by 6.4% (p = 0:0012) comparing to the activity before
exercise and by 9% (p < 0:0001) comparing to the activity
directly after exercise, and the activity of HEX increased by
17.2% (p = 0:043) in relation to postexercise measurement.
Comparing exercising in hypoxia to exercising in normoxia,
the preexercise GLU activity in hypoxia was 31.7%
(p = 0:0279) higher, while the postexercise activity of MPO
was 33.6% (p = 0:454) greater too. After resting, the activity
of GLU was also 7.2% higher (p = 0:0002) in hypoxia
(Figure 6, TT).

3.8. Correlations. The results of correlation analysis are
shown in Figure 7. Of particular note is the negative correla-
tion between GSH and TOS levels (r = −0:465; p = 0:001)
and the positive correlation between peroxynitrite and TOS
(r = 0:458; p = 0:001) in the GE group in normoxic condi-
tions. In the GE group in hypoxia, AOPP levels correlated
positively with 3-NT content (r = 0:571; p < 0:0001) and
GLU activity (r = 0:62; p < 0:0001), whereas IMA levels cor-
related with 3-NT (r = 0:55; p < 0:0001) and GLU (r = 0:487;
p < 0:0001). Interestingly, UA concentration was also corre-
lated negatively with WRmax (r = −0:326; p = 0:029). In the
TT group in normoxia, GSH concentration (r = −0:496;
p < 0:0001) and redox ratio (r = −0:496; p = 0:001) corre-
lated negatively with CAT activity, whereas in hypoxia,
UA concentration correlated positively with SOD activity
(r = 0:487; p = 0:013), and GSH correlated negatively with
TBARS (r = −0:486; p < 0:0001) and AOPP level (r = −0:605;
p = 0:0001). Similarly, redox ratio correlated negatively with
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Figure 4: Effect on graded exercise until exhaustion (GE) and 30 km time trial (TT) on oxidative stress in normoxia and hypoxia. AOPP:
advanced oxidation protein products; IMA: ischemia modified albumin; TBARS: thiobarbituric acid reactive substances. a, p < 0:05 vs. the
value before exercise in normoxia; b, p < 0:05 vs. the value after the exercise in normoxia; c, p < 0:05 vs. the value after the exercise and
30min of rest in normoxia; d, p < 0:05 vs. the value after the exercise in hypoxia; e, p < 0:05 vs. the value after the exercise in hypoxia; f,
p < 0:05 vs. the value after the exercise 30min of rest in hypoxia.

10 Oxidative Medicine and Cellular Longevity



Figure 5: Effect on graded exercise until exhaustion (GE) and 30 km time trial (TT) on nitrosative stress in normoxia and hypoxia.
3-NT: 3-nitrotyrosine; NOx: nitrate/nitrite. a, p < 0:05 vs. the value before exercise in normoxia; b, p < 0:05 vs. the value after the exercise in
normoxia; c, p < 0:05 vs. the value after the exercise and 30min of rest in normoxia; d, p < 0:05 vs. the value after the exercise in
hypoxia; e, p < 0:05 vs. the value after the exercise in hypoxia; f, p < 0:05 vs. the value after the exercise 30min of rest in hypoxia.
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Figure 6: Effect on graded exercise until exhaustion (GE) and 30 km time trial (TT) on inflammation and lysosomal function in normoxia
and hypoxia. GLU: β-glucuronidase; HEX: N-acetyl-β-hexosaminidase; MPO: myeloperoxidase; TNF-α: tumor necrosis factor-alpha. a,
p < 0:05 vs. the value before exercise in normoxia; b, p < 0:05 vs. the value after the exercise in normoxia; c, p < 0:05 vs. the value after the
exercise and 30min of rest in normoxia; d, p < 0:05 vs. the value after the exercise in hypoxia; e, p < 0:05 vs. the value after the exercise in
hypoxia; f, p < 0:05 vs. the value after the exercise 30min of rest in hypoxia.
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TAC (r = −0:451; p = 0:001), TBARS (r = −0:468; p = 0:001),
and AOPP (r = −0:615; p < 0:0001) concentrations (Figure 7).

4. Discussion

Our study is the first to evaluate the effect of different acute
exercise protocols performed under normoxia and hypoxia
on antioxidant status, oxidative and nitrosative damage,
inflammation, and lysosomal function. We have shown that
both graded exercise until exhaustion (GE) and 30 km time
trial (TT) impair the efficiency of antioxidant systems and
induce oxidative and nitrosative stress, with hypoxia causing
more significant disruption in redox homeostasis and
inflammation.

In recent years, there has been a marked increase in
interest in mountain sports [67]. Apart from its undoubted
advantages, this type of activity is not without health risks.
Limited oxygen diffusion through the pulmonary capillaries

contributes to tissue hypoxia and the overproduction of free
radicals [32, 67]. ROS sources under these conditions
include primarily reduced partial pressure of oxygen in the
air (hypobaric hypoxia), intense physical activity, and auto-
oxidation of catecholamines. Although various adaptive
mechanisms can partially compensate for tissue hypoxia
(e.g., hyperventilation, tachycardia, increased cardiac output,
and enhanced hemoglobin and erythrocytes content), the
most effective blood response does not appear until several
days later [32].

The present study generally demonstrated the strength-
ening of enzymatic antioxidant systems during hypoxic
exercise (GE: ↑ CAT, ↑ SOD; TT: ↑ CAT vs. normoxia).
Changes in the enzymatic antioxidant barrier may reflect
various functional/pathophysiological states. The initial
increase in enzyme activity is usually adaptation to higher
production of ROS and RNS, whereas the subsequent
decrease results from depletion of the antioxidant reserves.
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Figure 7: Correlation heat maps between redox and exercise parameters.
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Of particular note are the erythrocyte enzymes (GPx and
CAT) that degrade hydrogen peroxide. GPx plays a key role
in H2O2 degradation at physiological concentrations by
reducing hydrogen peroxide with the simultaneous conver-
sion of GSH to its oxidized form (GSSG). However, under
H2O2 overproduction, CAT exhibits greater enzymatic
activity as evidenced by the Michaelis–Menten constant
(Km) for GPx (1 × 10−6M) and CAT (2:4 × 10−4M) [68,
69]. Although we did not directly assess the rate of free rad-
ical formation, the increase in CAT and decrease in GPx
activity (versus normoxia) indicate a higher intensity of
oxidative processes during hypoxic exercise. Enhanced
plasma TOS in hypoxia also supports this hypothesis. It is
well known that TOS determines the total amount of
oxidants in a biological system [50]. Considering that free
radicals can mutually enhance their production, TOS pro-
vides more information than evaluation of individual ROS/
RNS separately. However, what could constitute an
additional source of free radicals in hypoxic exercise? During
tissue hypoxia (as during tissue ischemia), xanthine dehydroge-
nase is converted to XO, donating an electron to molecular
oxygen. The reaction catalyzed by XO produces superoxide
anions and hydrogen peroxide [2, 30, 31, 70], explaining the
increase in SOD and CAT activity under hypoxic exercise.
However, overactivation of nitric oxide synthases (NOS), espe-
cially inducible NOS (iNOS), also occurs in these conditions
[71, 72]. Excess nitric oxide (NO) concentrations inhibit cyto-
chrome oxidase activity, which in turn intensifies O2

-• produc-
tion [73, 74]. If the full O2 supply is restored, there is an
increased formation of ROS referred to as the “oxygen para-
dox” [75, 76]. Therefore, enhanced CAT activity observed in
our study is not surprising (increase at each time interval versus
normoxic exercise). Interestingly, the activity of antioxidant
enzymes (CAT, SOD) and total oxidative capacity (TOS,
OSI) were also relatively higher in high-intensity exercise until
exhaustion (GE). If O2 supply to the cells is insufficient, energy
is produced in the low-efficiency process of anaerobic glycoly-
sis, leading to an increase in H+ ions and lactate concentrations.
The consequence is the loss of ability to maintain ionic homeo-
stasis, particularly an increase in the extracellular concentration
of K+ and the accumulation of Na+ and Ca2+, which is respon-
sible for ROS overproduction [77, 78].

The signaling effects of hydrogen peroxide are associated
with proteins recording changes in cellular redox status. The
molecules responsible for transmitting the H2O2 signal to
the nucleus are low molecular weight thiols, of which
reduced glutathione is an essential intracellular source [79,
80]. Therefore, it is not surprising that GSH concentrations
were significantly lower in athletes exercising in hypoxia
compared to normoxia. Since GSSG concentrations and
GR activity were unchanged, the decrease in GSH concen-
tration may be due to the oxidation of enzymes responsible
for glutathione synthesis or the formation of S-conjugates
with glutathione and proteins. In addition to its antioxidant
role, GSH participates in DNA replication and apoptosis and
regulates the thiol groups of proteins in their reduced state
[81, 82]. Therefore, maintenance of adequate GSH levels is
crucial for proper cellular function. In our study, despite

strengthening the antioxidant barrier under hypoxia, there
was a redox imbalance in favor of oxidative reactions (GE:
↑ TOS, ↓ redox ratio). This results in enhanced oxidation
of plasma proteins (GE: ↑ AOPP, ↑ IMA; TT: ↑ AOPP)
and lipids (GE: ↑ TBARS), which indicates the occurrence
of systemic oxidative stress. This may be confirmed by the
negative correlation between GSH concentration and
TBARS and AOPP and between redox ratio and TAC,
TBARS, and AOPP. Of particular note is the increase in
IMA levels during hypoxic exercise. IMA is the earliest bio-
marker of tissue ischemia, whereas decreased oxygen satura-
tion, ischemic reperfusion, acidosis, sodium/calcium pump
dysfunction, and higher oxidative stress are factors causing
conformational changes of albumin [57]. The increase in
total antioxidant capacity may also be controversial (GE: ↑
TAC both after exercise and hypoxia vs. normoxia). Never-
theless, 70-80% of plasma TAC represents nonenzymatic
uric acid (UA), with a robust prooxidant effect in high
concentrations [83, 84]. UA can generate free radicals by
reacting with peroxynitrite or forming alkylated proteins,
lipids, and carbohydrates [85]. Higher UA concentrations
were observed in previous studies after one-time and regular
high-intensity physical training [2, 20, 86–88]. UA is the end
product of purine catabolism formed in a XO-catalyzed
reaction from xanthine. Under hypoxic/ischemic conditions,
hypoxanthine formed from ATP decomposition is accumu-
lated in the cell and then metabolized to xanthine with the
generation of ROS/RNS upon reperfusion [89, 90].

The H2O2 production may also be affected by nitric
oxide metabolism [91, 92]. In our study, higher NOx bio-
availability with a concomitant increase in CAT activity
could be explained by intensified peroxynitrite (ONOO-)
formation influenced by an acute hypoxic intervention.
Indeed, the superoxide radicals formed in the XO-catalyzed
pathway react with NO to generate the highly reactive
ONOO- [92]. Peroxynitrite is a powerful oxidizing and
nitrating agent that initiates lipid peroxidation and oxida-
tion of thiols/aromatic amino acids with an efficiency of at
least 1000-fold higher than hydrogen peroxide [93, 94].
Tyrosine residues are particularly sensitive to ONOO- dam-
age; hence, the increase in 3-NT concentrations (both after
exercise and in hypoxic conditions) is not surprising. Inter-
estingly, peroxynitrite formation occurs typically under
increased systemic inflammation [93, 94]. This may be sup-
ported by the results of our study (GE: ↑ NO, ↑ ONOO-, ↑
MPO, ↑ TNF-α). Of particular note is higher MPO activity
after hypoxic exercise. Indeed, MPO is released by neutro-
phils and monocytes during inflammatory cell activation
[95]. It is involved in hypochlorous acid production, which
exacerbates oxidative stress and initiates acute inflammation
[95, 96]. It is well known that higher secretion of cytokines,
chemokines, and growth factors is a physiological response
to decreased arterial blood O2 saturation and microdamage
of muscle fibers. Activated neutrophils and macrophages
can remove fragments of damaged muscle tissue induced
by NO and H2O2 signaling [97, 98]. Simultaneously, IL-1,
IL-2, IL-6, and TNF-α may stimulate white blood cells to
produce significant amounts of NO through prolonged
iNOS activation [99, 100]. In these conditions, XO and
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NOX are also induced, which, by positive feedback,
enhances nitrosative cell injury (GE: ↑ NOx, ↑ ONOO-, ↑
3-NT). A consequence of enhanced inflammatory response
and oxidative/nitrosative stress can be damage to the lyso-
somal membrane and the release of lysosomal enzymes into
the circulation (GE: ↑ HEX, ↑ GLU). Interestingly, lysosomal
dysfunction, mitochondrial energy metabolism, and impaired
ion homeostasis are essential sources of ROS during physical
exercise [101–103]. However, NO signaling activity may also
depend on protein S-nitrosylation, as evidenced by increased
S-nitrosothiols under hypoxic conditions. It is well known that
NO-mediated protein S-nitrosylation plays a vital role in the
adaptation to endurance exercise/hypoxia by increasing the
PGC-1α (peroxisome proliferator-activated receptor gamma
coactivator 1-alpha) expression [104, 105]. Nevertheless,
enhanced S-nitrosylation can also end in the formation of pro-
tein disulfide and a nitroxyl residue, which irreversibly alters
the biological properties of proteins.

Physical exercise is indicated in both health and disease.
Although our study does not explain it, individuals with dis-
eases with oxidative stress etiology (e.g., metabolic, neurode-
generative, and immune diseases) should be cautious during
acute hypoxic training. This may exacerbate disturbances in
redox homeostasis and inflammation. Antioxidant supple-
mentation during acute hypoxic exercise also remains an
open question.

Unfortunately, our work has numerous limitations.
These include the relatively small number of participants
and the evaluation of only selected biomarkers of oxidative
stress, inflammation, and lysosomal function. Our study also
does not explain the molecular mechanisms responsible for
the observed redox disturbances. Research on nonprofes-
sional athletes is also essential.

To summarize, our study shows that even a single ses-
sion of physical exercise disrupts the enzymatic and nonen-
zymatic antioxidant barrier leading to enhanced oxidative
and nitrosative damage at a systemic level. High-intensity
exercise of short duration alters redox homeostasis more
than prolonged aerobic exercise, while hypoxia significantly
exacerbates oxidative stress, inflammation, and lysosomal
dysfunction in athletic subjects. Although we have reported
the most commonly assessed circulating redox biomarkers,
further studies are needed to elucidate the molecular basis
of the observed relationships. Studies on larger groups of
athletes are also advisable.
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