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Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered
signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many
chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting
fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic
options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along
therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration
in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein,
we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation
and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.

1. Introduction

Aging is a biological course in which cellular function declines
in a time-dependent manner, leading to reduced quality of life
[1]. Aging is a multifaceted process in which a combination of
environmental and genetic factors plays a role. Notably, the
global population of people over the age of 65 is growing rap-
idly and is expected to reach 1.6 billion by the year 2050 [2].
Accordingly, aging is the principal risk factor for many ill-
nesses such as cancer, cardiovascular disorders and neurode-
generative diseases like Alzheimer’s disease. Therefore, most
elderly are being treated for a variety of chronic diseases and
are suffering from side effects of the drugs [2]. Specifically,
only a 2% hindrance in the progression of aging, comparing
with treatment of a disabling illness such as cancer would
end up to a 10 million rise in healthier individuals and saving
a large amount of budget [3]. Hence, identifying smart thera-
peutic options that uphold the process of aging on one hand
and simultaneously cease or decelerate the progression of
age-related illnesses is of great significance [4]. Considering
the main hallmarks of aging, genetic damage is among the

most important factors. Endogenous and exogenous causes
can affect DNA integrity and stability by causing mutations
and deletions in mitochondrial and nuclear DNA. Although
the body has its compensatory mechanisms for dealing with
these changes, nuclear defects can lead to premature aging
syndrome and genome instability [5, 6].

Telomere curtailment is another hallmark which con-
tributes to age-related deterioration and accelerated aging
caused by pathological telomere dysfunction. Telomere
lengths are heterogeneous in chromosomes, cells, and popu-
lations. Telomere length decreases when human cells prolif-
erate and its length determines cellular life [5, 7].

In addition to the role of telomere curtailment in the pro-
cess of aging, various epigenetic alterations happen in the pro-
cess of aging as well which includes changes in DNA
methylation patterns, posttranslational modification of histone,
and chromatin remodeling. These changes can affect transcrip-
tion, translation, stabilization, and degradation of molecular
components. These processes can lead to cancer, inflammation,
osteoporosis, neurodegenerative diseases, and diabetes. Conse-
quently, they can increase morbidity and accelerate aging [5, 8].
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Another common feature of aging is proteostasis which is
characterized by the presence of nonnative protein aggregates
in different tissues. Studies show that improving cellular pro-
teostasis increases longevity and delays the progression of
age-related diseases. Chaperons and proteolytic systems are
the main players in proteostasis maintenance. These compo-
nents decide the fate of the unfolded proteins [5, 9].

Regulation of nutrient-sensing mechanisms and path-
ways has been also linked to longevity since simple organic
compounds such as glucose, lipids, and amino acids are
involved in producing energy or are considered main con-
stituents of cellular biomass. Different pathways are involved
in nutrient sensing including the IGF-1, mTOR, AMPK, sir-
tuins, and insulin signaling pathways. Mutations and genetic
disorders reduce the function of growth hormone, IGF-1
receptor, and other signaling molecules such as AKT,
mTOR, and FOXO [5, 10].

Mitochondria are important organelles in nearly all
eukaryotic cells that play an important role in energy metab-
olism as well as other cellular processes. The efficacy of the
mitochondrial respiratory chain and ATP generation
declines as organisms and cells grow. Oxidative stress is
the cause or consequence of mitochondria dysfunction.
ROS generated by mitochondria may affect many intracellu-
lar components such as mtDNA. Thus, it can accelerate
aging and age-related diseases in mammals [5, 11].

Alteration in intercellular communication including
neuronal, endocrine, or neuroendocrine changes can also
affect the mechanical and functional characteristics of all tis-
sues. Inflammatory cytokines and the processes involving
ROS production, along with contagious aging in cell-cell
contacts, are types of impaired intercellular communication
that accelerate aging [5].

Cellular senescence is another important element
involved in aging and age-related diseases and is defined as
arresting a stable cell cycle in diploid cells and limiting their
proliferative time. Cellular senescence increases cell cycle
inhibitors and causes impaired tissue regeneration [5, 12].

Many cellular and signaling pathways are involved in the
process of aging amid in which mTOR, SIRT1, and AMPK
pathways are the most highlighted. Activation of SIRT1
and AMPK pathways along with inhibition of the mTOR
pathway will cause antiaging effects. mTOR is considered
the most influential mediator in extending lifespan and
slowing aging down. Together with these mentioned path-
ways, the processes of autophagy and inflammation are also
significantly crucial in the process of aging. Beside life style
modifications, various drugs and natural products may ren-
der the process of aging.

In this review, we have emphasized on the mechanisms
of aging, the involved signaling pathways, and the drugs
and natural products with antiaging properties and dis-
cussed the possible implications for antiaging therapeutic
interventions.

2. Factors Affecting Aging

2.1. Calorie Restriction (CR). Calorie restriction (CR) is
decreasing dietary intake below energy needs of the body,

despite the fact that optimal nutrition is maintained. [13]. In
CR, the amount of calories received is reduced by 60-90% over
a period of time, but malnutrition does not occur [14]. CR can
affect nutrient signaling, energy metabolism, and autophagy.
Additionally, CR exhibits anti-inflammatory and protective
neurovascular effects as well as reducing the metabolic rate
[14, 15]. To date, CR is the only nutritional intervention which
is recognized to attenuate aging [16–18]. CR slows down
metabolism. People with higher metabolic rates have shorter
lifespans [19, 20]. Metabolic rate is the energy consumed by
a resting organism to maintain body functions such as meta-
bolic homeostasis, heart rate, blood pressure, respiration, cell
regeneration, nervous system activity, and ion gradient main-
tenance [21]. Metabolic dysfunction that occurs with age can
be due to the accumulation of ROS that can disrupt cellular
and molecular structures [5]. Thus, CR can reduce metabolic
rate and as the result oxidative stress declines in cells and tis-
sues. Ultimately CR improves metabolic health and increases
longevity [18].

Following aging, changes occur in neurotransmitters and
the neuromodulatory system. CR can exert its antiaging
effects by regulating these changes and affecting the neuro-
modulatory system [22, 23]. It can also regulate peripheral
hormones such as insulin and leptin and metabolic parame-
ters such as glucose [24–26], which ultimately leads to
reduction of insulin signaling. Studies in different species
have shown that decreased insulin signaling leads to
increased life expectancy [27–29]. When blood levels of
insulin and glucose incline, glucose is absorbed by peripheral
cells and is converted to ATP. As a consequence of increase
in the level of ATP a direct by-product of ATP, ROS, rises.
Therefore, lower levels of blood glucose and insulin will
end up to lower levels of ROS produced in the cells [30].
Insulin also sends positive growth and proliferative signals,
leading to cell growth and division. Following an increase
in metabolism, ROS is produced in the mitochondria, and
the time to repair and replace damaged or aging molecules
is reduced. These rapid cell division rates can be detrimental
even though there is enough energy to produce daughter
cells. Therefore, CR may increase longevity by reducing cell
division rates and maintaining cellular health [16].

Increased signaling of hormone/IGF-1 pathway leads to
aging as well by increasing cell growth and proliferation. As
the speed of cell proliferation increases, the body fails to detect
all defects. CR has been shown to reduce the signaling of hor-
mone/IGF-1 pathway and by this means alter cell growth and
proliferation in order to maintain cellular repair and health
[31, 32]. Since a report from a human study has found no
change in circulating IGF-1 levels, it can be concluded that
the effect of CR on IGF-1 may only be observed in animal
models and not humans or that CR increases health span by
acting on pathways other than IGF-1 [16, 31, 33].

Although the mechanisms of CR that lead to increased
life span are not fully understood, the epigenetic mecha-
nisms have recently been highlighted in this regard. Epige-
netic changes ensue with aging, which can also be
associated with the progression of age-related diseases.
Although studies related to the function of epigenetic mod-
ifications in CR-associated longevity do not have a long
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history, however, by studying and clarifying the process, we
can offer promising opportunities to postpone human aging
and delay age-related diseases [34]. Epigenetic mechanisms
can dynamically influence the regulation of gene expression.
Three general types of epigenetic changes that are consid-
ered as the main regulators of the aging process include
DNA methylation, histone modifications, and noncoding
RNAs [5, 35–37]. DNA methylation is one of the most
important epigenetic modifications. Studies have shown that
CR can affect the expression of age-related genes through
DNA methylation [38]. As we age, genomic DNA methyla-
tion patterns change which may lead to age-related diseases
[39–41]. The relationship between the amount of DNA
methylation in the gene control region and gene activation
is inverse [42, 43]. The DNA methylation process is regu-
lated by DNA methyltransferases (DNMTs) such as
DNMT1, DNMT3a, and DNMT3b [44, 45]. DNA methyla-
tion regulates gene expression and maintains DNA integrity
and the stability of many biological processes such as geno-
mic imprinting, cell proliferation, and aging [46, 47]. 5-
Methylcytosine is a product of DNA methylation. Aging
causes significant changes in the distribution of 5-
methylcytosine in the genome, which can eventually lead
to a reduction in global DNA methylation [48–50]. As we
age, decline in DNA methylation occurs. However, the pro-
moter regions of many specific genes tend to change from
unmethylated to methylated. This can lead to gene silencing,
which may propagate tumor formation or aging-related
genes [49, 51]. Hence, in general, two major changes in
DNA methylation occur in the aging process which include
a global decrease and a local increase in DNA methylation.
These contents may indicate the essential role of age-
related DNA methylation changes in the aging process [34].

Another epigenetic marker involved in the aging process
is histone modification. Histones are proteins that help form
the nucleosome, which is the basic structure of chromatin.
Histones form octamer cores that cause DNA to be wrapped
around them. Histone tails can be affected by posttransla-
tional modifications (PTHMs) which can eventually lead to
changes in chromatin structure. Among various types of his-
tone modification, acetylation and methylation are the most
prominent ones that are effective in the aging process. These
modifications mostly occur in the core, the amino- and car-
boxyterminal tails, and rarely in globular domains. It is clear
that histone modifications play a key role in most biological
processes involved in DNA manipulation and expression. It
has been observed that during aging, changes in the distribu-
tion and abundance of these histone modifications occur.
Whether these changes are the causes or consequences of
aging is still debatable, although it is widely accepted that
there is a specific link between these processes [52–54]. His-
tone modifications can be catalyzed by specific enzymes,
including sirtuins, which affect the aging process [55]. It
has been observed that sirtuin activation is followed by CR
and increased NAD levels. Beneficial effects on lifespan
and improving CR-related longevity are exerted, though
not exclusively, by epigenetic mechanisms associated with
the sirtuin signaling [56–58]. SIRT1-dependent histone
modifications in response to CR can be important mediators

in the effects of CR on longevity, especially with the ability to
regulate the expression of key genes involved in metabolic
pathways. p16INK4a gene is a cyclin-dependent kinase
inhibitor that accumulates during the aging process and
can be considered as a biomarker of senescence. SIRT1 can
play a role in regulating cellular senescence by regulating
p16INK4a gene expression. Following CR, sirtuin is acti-
vated and binds directly to the gene promoter and exerts
its deacetylating effect, reducing p16INK4a gene expression,
thereby inhibiting cellular senescence and increasing cellular
lifespan [59, 60].

The third type of epigenetic change that is considered as
the main regulators of the aging process is the microRNAs
(miRNAs). miRNAs are a broad class of small noncoding
RNA molecules. miRNAs can detect base pairs within 3′-
UTR in the target gene and thus regulate posttranscriptional
gene expression [61]. By binding miRNAs to the target gene,
it recruits the multiprotein complex RNA-induced silencing
complex (RISC). The RISC can cleave the target gene
[62–64]. Studies have shown that miRNAs are expressed dif-
ferently during aging [65]. Different miRNAs have been
identified, and studies have shown that they are regulated
during mammalian aging by comparing their tissue-
specific expression in mice of different ages. In addition, it
has been shown that many miRNAs can play a role in con-
trolling aging in a variety of human cell lines, and the func-
tion of some of these miRNAs in regulating cellular aging
has helped elucidate the underlying mechanisms of aging
[66, 67]. CR has been shown to have the ability to affect
the expression of different age-dependent miRNAs in differ-
ent tissues [68].

It has been shown that the use of drugs and substances
that mimic the effects of CR can also create similar beneficial
effects of CR in the body. These substances are called CR
mimetics (CRMs). CRM compounds include metformin,
rapamycin, resveratrol, spermidine, aspirin, hydroxy citric
acid, berberine, quercetin, curcumin, myricetin, nicotin-
amide, piceatannol, and perhexiline maleate [14]. However,
not all CRMs have the same effects on lifespan as CR itself.
Some CRMs have fewer effects, and the effects of some
CRMs are gender dependent [14]. The combination of some
CRMs can have a synergistic effect on longevity, such as the
combination use of rapamycin and metformin or the combi-
nation use of resveratrol and spermidine [69, 70].

2.2. Gut Microbiome. Development of the gut microbiome
begins in infancy or even within the mother’s uterus and is
influenced by the mother’s microorganisms or the environ-
ment. It can be said that diet is the most important factor
in the growth and maintenance of gut microbiome configu-
ration throughout life. Gut microbiome has a great impact
on various aspects of human health [71]. Today, more atten-
tion has been paid to the gut microbiome, and it has been
found that the gut microbiome can be effective in causing
many diseases. Gut microbiome can play a role in maintain-
ing brain function and normal brain growth. Gut micro-
biome regulation can be effective in treating some
neurological disorders such as Alzheimer’s and Parkinson’s
disease and Traumatic brain injury (TBI) [72].
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Older individuals have a different gut microbiome than
healthy adults. It is unclear whether the change in the gut
microbiome that occurs with age is a cause or consequence
of aging [71]. Due to the relationship between gut micro-
biome, nutrition, and inflammation, it has been found that
using a proper diet and food interventions to diversify the
gut microbiome and positively regulate it will increase lon-
gevity and promote health in old age [73]. Probiotics and
prebiotics are promising candidates for developing and
maintaining the gut microbiome and increasing longevity
and health in the process of aging [71]. Additionally, taking
certain medications can affect the gut microbiome, and
microbiome-drug-host interactions should generally be con-
sidered. Metformin has a beneficial role in the development
and maintenance of the gut microbiome and can therefore
reduce age-related degenerative pathologies [74]. In a study
on db/db mice, the effect of berberine and metformin on
the gut microbiome was investigated. Metformin and ber-
berine have shown to improve intestinal barrier structure,
reduce intestinal inflammation, and modify the gut micro-
biome. Furthermore, the number of bacteria producing
short-chain fatty acids such as Ruminococcus, Coprococcus,
and Butyricimonas was increased after treatment with met-
formin and berberine and the number of opportunistic path-
ogens such as Proteus and Prevotella decreased [75]. These
all support the beneficial effects of certain medications such
as metformin on gut microbiome which may lead to health-
ier aging and increased longevity.

2.3. Cellular Senescence. Cellular senescence is the state of
constant inhibition of cell proliferation or the fundamentally
irreversible growth arrest of a cell. Cellular senescence is
considered an essential process contributing to physiological
dysfunctions associated with aging and age-related diseases
and is a pivotal biological process which underlies aging.
Normal cells become senescent following oxidative stress,
mitochondrial damage, etc. A senescent cell can cause tumor
suppressor activation, apoptosis resistance, frequently
increased protein synthesis, profound chromatin changes,
and irreversible replicative arrest. Drugs that target cellular
senescence can have beneficial effects in delaying aging and
age-related diseases [76–78].

Senescent cells are identified by several features such as
increased activity of senescence-associated β-galactosidase
(SA-β-GAL) and senescence-associated secretory phenotype
(SASP). SASP involves many proinflammatory cytokines,
chemokines, growth factors, and proteases that have the
potential to cause aging [79]. SASP produced by the senes-
cent cells, leads to damage to the cell itself and the surround-
ing healthy cells [80]. As SASP is associated with accelerated
aging and inflammatory conditions, substances and drugs
that inhibit SASP can be effective in ameliorating the effects
of aging. The mechanism of action of SASP inhibitors is
through inhibition of Wnt/β-catenin and inhibition of Janus
kinase (JAK) and also by inducing antioxidant effects. SASP
inhibitors include melatonin, astaxanthin, Ganoderma lucid,
equol, klotho, and ruxolitinib.

Apoptosis is induced in senescent cells by substances
called senolytics. By triggering and killing senescent cells,

senolytics delay the process of aging. Senolytics exert their
effects through three different mechanisms. They inhibit
the Bcl-2 family and the PI3K/AKT pathway and regulate
FOXO. Senolytic compounds include navitoclax, panobino-
stat, catechins, dasatinib, quercetin, and fisetin [81].

3. Signaling Pathways Involved in Aging

Sirtuin1 (SIRT1-silent mating type information regulation 2
homolog), mechanistic target of rapamycin or mammalian tar-
get of rapamycin (mTOR), and Adenosine monophosphate-
activated protein kinase (AMPK) are the main pathways that
affect aging. SIRT1, mTOR, and AMPK are not only affected
by exercise, CR, various drugs, etc., but are also regulated by
each other. By activating SIRT1 and the AMPK pathways and
inhibiting the mTOR pathway, antiaging effects can be
observed. AMPK and SIRT1 activate each other and inhibit
mTOR. On the other hand, mTOR activates AMPK and SIRT1
[82–84]. AMPK can activate SIRT1 following an increase in
NAD+ levels [85]. AMPK also inhibits mTORC1 both directly
and indirectly. AMPK can inhibit mTORC1 directly and by
phosphorylating the raptor. By activating Tuberous Sclerosis
Complex 2 (TSC2), AMPK eventually causes inhibition of
mTORC1 [86]. Activation of SIRT1 leads to deacetylation of
liver kinase B)LKB1) and ultimately leads to activation of
AMPK [85]. Although many parts of the connection between
SIRT1 andmTOR are not yet fully understood, it is known that
SIRT1 can inhibit mTOR by acting on TSC2 [87]. The three
main mentioned pathways involved in the aging process are
depicted in Figure 1.

3.1. mTOR Signaling Pathway. mTOR is a serine/threonine
protein kinase a member of the PIKK (phosphatidylinositol-
kinase-related kinases) family that is produced by two differ-
ent protein complexes, mTORC1 and mTORC2 [88]. The
two complexes are different in structure and function.

The protein components of mTORC1 include the
following:

(1) mTOR and regulatory-associated protein of TOR
(raptor)

(2) Mammalian lethal with sec-13 protein 8 (mLST8)

(3) Proline-rich Akt substrate 40 kDa (PRAS40)

(4) DEP-domain containing mTOR-interacting protein
(DEPTOR) [89].

mTOR, raptor, and mLST8 are core components of
mTORC1. PRAS40 and DEPTOR are inhibitory subunits
of mTORC1 [90].

The protein components of mTORC2 include the
following:

(1) mTOR and stress-activated protein kinase-
interacting protein 1 (mSIN1)

(2) Rapamycin insensitive companion of mTOR
(Rictor)

(3) Protein observed with Rictor 1 and 2 (protor1/2)
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(4) DEP-domain containing mTOR-interacting protein
(DEPTOR)

(5) Mammalian lethal with sec-13 protein 8 (mLST8)
[89].

Protein synthesis can be controlled by mTORC1.
mTORC1 has translational control by phosphorylating
translation regulators eukaryotic initiation factor 4E (eIF4E)
binding protein 1 (4E-BP1) [91, 92] and ribosomal protein
S6 kinase 1 (S6K1) [92]. A study that was performed
in vivo showed that homozygous mutation in ribosomal S6
protein kinase 1 (S6K1) increases lifespan [93]. mTOR can
also be involved in the regulation of autophagy via the
Unc-51-Like Autophagy Activating Kinase 1 (ULK1) path-
way [94].

mTORC2 has the ability to control several members of the
AGC kinase subfamily downstream of its pathway. These
AGC kinases include Akt/protein kinase B (PKB), serum-
and glucocorticoid-induced protein kinase 1 (SGK1), and pro-
tein kinase C-α (PKC-α). mTORC2 regulates survival/metab-
olism of cells as well as regulating cell shape by affecting the
actin cytoskeleton. Cell survival effect of mTORC2 is due to
its ability to activate Akt and SGK1 [89, 95]. mTORC2 can also
regulate actin cytoskeleton organization. This function occurs
through the activation of PKC-α, paxillin, and small GTPases,
Rho and Rac [89]. mTORC2 induces phosphorylation and
regulation of Akt/PKB. Rictor, as a protein component of
mTORC2, directly phosphorylates Akt. Akt is involved in cel-
lular processes such as apoptosis, survival, growth, prolifera-
tion, and metabolism [96]. mTORC2 can directly activate
SGK1. SGK1 is a kinase that controls ion transport and
growth. SGK1 is activated by mTORC2 and controls FoxO1/

3a phosphorylation, ultimately leading to cell survival and cell
proliferation [97, 98, 89].

Influencing factors in the upstream of mTOR that con-
trol mTORC1 function include intracellular and extracellu-
lar signals [99]. Factors affecting mTORC1 function
include oxygen, ATP, amino acids, metabolic intermediates,
glucose, energy, stress, hormones, and growth factors (such
as insulin/IGF1) [90, 100, 99]. mTORC2 is more affected
by growth factors and insulin/PI3K signaling [90]. Upstream
of mTORC1 is the AKT/TSC1/2 pathway. TSC2 negatively
regulates mTORC1, and Rheb binding to GTP is required
for mTORC1 functionality [101]. mTORC1 plays a key role
in regulating protein, lipid, and nucleotide synthesis. It also
controls the process of autophagy. Thus, mTORC1 balances
anabolism and catabolism under the influence of environ-
mental factors and intracellular and extracellular signals
[90]. In addition to biosynthesis pathways and autophagy,
mTOR pathways have regulatory roles in mRNA translation,
endoplasmic reticulum stress, mitochondrial function, cell
stem regulation, and immune and stress responses. There-
fore, mTOR pathways are influential in many aging-related
processes [100, 102].

Additionally, longevity-dependent phenotypic features
may be related to mTOR signaling pathways. Differences in
gene expression andmTOR protein content are related to spe-
cies longevity. In long-lived animals, mtor gene expression is
decreased but Raptor gene expression is increased. There is
also a difference in the protein content of mTOR in long-
lived animals. As the mTOR protein content decreases, the
Raptor protein declines and PRAS40 is increased. In long lived
animals, it has been observed that phosphorylation of mTOR-
Ser2448/mTOR protein increases and PRAS40Thr246/PRAS40
decreases. There is a negative association between protein con-
tent of mTOR and PRAS40 with degree of phosphorylation.
Arginine and methionine and metabolites of methionine
(SAM and homocysteine) are mTOR activators; therefore,
they have a negative relationship with longevity. Moreover,
FKBP12 (fkbp1a gene expression) which is a receptor for
immunosuppressant drugs like rapamycin as a regulatory fac-
tor has negative relationship with longevity [102].

3.2. Sirtuin Signaling Pathway. Sirtuins are nicotinamide
dinucleotide- (NAD+-) dependent deacylases. There are
seven mammalian sirtuins, SIRT1–7. Sirtuins have different
subcellular localizations. SIRT1 is mostly nuclear; however,
some of its isomers have also been detected in the cytoplasm
[103]. SIRT1 is able to regulate the metabolic pathway and
cellular senescence, cell survival, circadian rhythms, control-
ling gene expression, endothelial functions, and inflamma-
tion [104]. SIRT1 works by deacetylating the lysine groups
in proteins. These proteins can be histone or nonhistone,
such as transcription factors that include FOXO, p53,
PGC-1α, MyoD, FOXO, NF-κB, and Nrf2 [105]. SIRT1
plays a major role in regulating cellular senescence, and
when activated, it ultimately causes antiaging effects. In gen-
eral, SIRT1 exerts its antiaging effects by affecting various
parts of the cellular process, such as mitochondria homeo-
stasis, metabolism, autophagy, apoptosis, DNA repair, and
the regulation of oxidative stress [106].

Caloric restriction
fasting

exercise

mTOR

AMPK SIRT1

TSC2

NAD+

Figure 1: Three main signaling pathways involved in aging. SIRT1,
mTOR, and AMPK are the three main pathways influencing the
aging process that are not only influenced by CR, exercise, and
fasting but are also regulated by each other. AMPK and SIRT1
activate each other and inhibit mTOR. mTOR also activates
AMPK and SIRT1. AMPK can activate SIRT1 following an
increase in NAD + levels. AMPK can inhibit mTORC1 both
directly and indirectly. AMPK can inhibit mTORC1 directly by
phosphorylating the raptor and indirectly by activating TSC2.
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3.3. AMPK Signaling Pathway. AMPK is a complex consist-
ing of α, β, and Ƴ subunits. α is a catalytic subunit, and β
and Ƴ are regulatory subunits. AMPK is activated by phos-
phorylation of threonine 172 in the amino-terminal kinase
domain of the α-subunit [107]. AMPK is a highly protected
sensor that is sensitive to increasing AMP and ADP levels
[108]. It is activated when the cellular energy level is low.
AMPK affects many physiological processes and ultimately
leads to increased energy production and reduced ATP
usage [107]. AMPK has a regulation site for both ATP and
AMP. The presence of AMP and ATP leads to activation
and inhibition of AMPK, respectively [109]. Factors such
as glucose deprivation and CR can increase the AMP to
ATP ratio by reducing ATP production and ultimately lead-
ing to AMPK activation. On the other hand, exercise also
increases AMP to ATP ratio by increasing ATP consump-
tion thus activating AMPK [110]. Upstream molecules of
AMPK include Ca2+/calmodulin-dependent protein kinase
kinase β (CaMKKβ), liver kinase B1 (LKB1), and transform-
ing growth factor-β-activated kinase 1 (TAK1) that can
phosphorylate and activate AMPK [111]. Increased ROS
production as well as increased intracellular Ca2+ levels as
a consequence of inflammatory stimuli can lead to increased
CaMKKβ activity. LKB1 expression increases via an increase
in AMP to ATP ratio [112, 113]. Upstream of the AMPK
pathway also includes phosphatases such as protein phos-
phatase 2A (PP2A) and protein phosphatase 2C (PP2C),
which avert persistent activation of AMPK by dephosphory-
lating AMPK [114, 115]. Additionally, the downstream
pathways of AMPK include SIRT1, TSC1/2, p53, GLUT1/
GLUT4, ACC1, SREBP1, ULK1, and HuR.

AMPK has antiaging effects through various mecha-
nisms. It regulates autophagy and reduces inflammation
and oxidative stress. As a consequence of phosphorylation
and activation of ULK1 via AMPK, the autophagy cascade
initiates. Therefore, one of the mechanisms by which AMPK
affects autophagy is by directly activating ULK1. AMPK can
also indirectly affect ULK1 and autophagy by inhibiting
mTORC1 and blocking its inhibitory effect on ULK1 [116,
117, 110]. AMPK also activates SIRT1, so it can exert its
antiaging role by affecting FOXO, PGC1α, p53, NF-κB,
and Nrf2 indirectly [108].

Human antigen R (HuR) is involved in regulating the
expression of genes whose expression decreases during
senescence. Increased HuR expression in senescent cells
leads to the maintenance of the “young cell” phenotype.
Decrease in HuR expression also highlights the senescent
phenotype. It has been shown that AMPK can lead to pre-
mature senescence by suppressing RNA-binding protein
HuR. In general, AMPK probably plays a negative role in
the aging process via this mechanism [118, 111].

AMPK inhibits mTOR by affecting TSC1/2, so it can also
exert its antiaging effects indirectly via this pathway [86].
AMPK is able to activate p53, leading to restriction of cell
proliferation. p53 usually inhibits cell transfer from G1 to S
phase. There is a point of view that when cell proliferation
is restricted, mutation accumulation does not occur in the
cells and malignancy is prevented [119, 120]. AMPK can
phosphorylate thioredoxin-interacting protein (TXNIP)

and TBC domain family member 1 (TBC1D1) thus, translo-
cating GLUT1 and GLUT4 [121]. Therefore, activation of
AMPK can lead to increased GLUT4 and GLUT1 transloca-
tion and ultimately increasing glucose uptake [111]. Acetyl-
CoA carboxylase 1 (ACC1) is a rate-limiting enzyme in the
synthesis of fatty acids. It can convert acetyl-CoA to
malonyl-CoA. AMPK can inactivate ACC1 by direct phos-
phorylation. Therefore, AMPK also plays a role in control-
ling cellular lipid metabolism by inhibiting ACC1 [110,
122]. Sterol regulatory element binding protein 1 (SREBP1)
is a transcriptional regulator for lipid synthesis. AMPK can
inhibit SREBP1 by phosphorylation. Therefore, AMPK
inhibits transcription of lipogenic enzymes by inhibiting
SREBP1 [123].

Figure 2 depicts an overview of the upstream and down-
stream of AMPK pathway.

4. Drugs with Antiaging Properties

4.1. Rapamycin. Rapamycin was first identified as an anti-
fungal metabolite [124] and was found in a bacterium
(Streptomyces hygroscopicus) that inhabited in the Easter
Island (Rapa Nui) soil [124]. Immunosuppressive, antipro-
liferative, and anticancer properties of rapamycin was later
on discovered [125]. The Food and Drug Administration
(FDA) approved rapamycin as the first pharmacological
agent that influences longevity in the mammalian spe-
cies [126].

As said previously, mTOR plays a substantial role in
aging and longevity. The role of mTOR signaling pathway
in longevity and extend of life span has been studied in Cae-
norhabditis elegans [127, 128], Drosophila melanogaster
[129], Saccharomyces cerevisiae [130, 131], and mice
[132–135] [136]. In general, inhibition of the mTOR path-
way, either genetically or pharmacologically, has shown to
increase lifespan in different species [137]. The antiaging
effects of rapamycin are exerted through various mecha-
nisms, but the main route of action of rapamycin on the
aging process is through inhibition of mTOR pathway. As
mentioned, activation of SIRT1 and AMPK occurs following
inhibition of mTOR, so rapamycin can also be indirectly
effective in the aging process by activating SIRT1 and AMPK
following inhibition of the mTOR pathway [82, 84, 138].
Regarding the inhibition of mTOR pathway, rapamycin
inhibits both mTORC1 and mTORC2. However, its effect
on mTORC2 is more complex. mTORC2 is rapamycin-
insensitive. Rapamycin can inhibit mTORC2 indirectly and
under prolonged exposure [139, 140]. Rapamycin binds to
the cyclophilin FKBP12 and creates FKBP12-rapamycin
complex. FKBP12-rapamycin complex interacts with FRB
domain (FKBP12-rapamycin binding domain) of mTOR
and ultimately inhibits mTORC1 activity [141, 142]. ULK1,
elf4E, and S6K are downstream molecules of the mTORC1
pathway that regulate protein and nucleotide synthesis, as
well as autophagy [91–94]. AKT and SKG1 are located
downstream of the mTORC2 pathway, which are involved
in cell survival, cell proliferation, and metabolism [89].
Figure 3 depicts antiaging mechanisms of rapamycin.
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Mutation in mTOR or FKBP12 leads to rapamycin insen-
sitivity, since it reduces the ability of rapamycin to bind to its
target. Defects or mutations in mTOR-regulator proteins such
as 4E-BP, S6K1, P27 Kip1, and PP2A-related phosphatases may
also cause rapamycin resistance. Other influential factors in
rapamycin resistance include the status of p53, ataxia telangi-
ectasia mutated (ATM), and PTEN/AKT (phosphatase and
tensin homolog/protein kinase B) [143].

Rapamycin exerts its antiaging properties in the follow-
ing manners:

(1) Prolonging lifespan and slowing down aging.

(2) Prolonging lifespan by influencing nonaging factors
such as metabolic diseases and fatal neoplastic dis-
eases [144]

Studies in different species have shown that rapamycin is
also effective in a wide range of age-related conditions such as
immunosenescence, age-related neurodegeneration, Alzhei-
mer’s disease, Huntington’s disease, and Parkinson’s disease,
age-related macular degeneration (AMD), musculoskeletal dis-
orders, cardiovascular diseases (CVDs), and age-related cancers
[145]. An important characteristic of rapamycin is its anticancer
properties which may also affect longevity [146–149].

Functions of many organs and associated systems are
affected during aging. The immune system function
decreases as a matter of aging. In this regard, on one hand
the body’s ability for clearing senescent cell decreases, and
on the other hand, it does not have its former ability to fight
infections. As known, mortality rate from infectious diseases
is higher in older ages, which may be due to reduced
immune function in old ages. One of the mechanisms by
which the immune system is rejuvenated is the activation
of autophagy. Inhibition of mTOR pathway can increase
autophagy and therefore may be effective in increasing
immune function during the aging process [145, 150, 151].

Regarding the effect of mTOR pathway on CNS function,
it is documented that hyperactivation of mTOR is associated
with brain dysfunction and cognitive deficit. mTORC1 has
precise control over protein synthesis and degradation
through the ULK1, S6K, and 4EBP1 pathways. The mTOR
pathway also influences the progression of neuronal degrada-
tion by regulating inflammatory responses [152, 153, 145]. A
study has shown that lifelong rapamycin administration in
mice prevents age-related cognitive decline, which may be
due to suppression of IL1-β. Neurological diseases that can
be good candidates for treatment with mTOR inhibitors
include neurodegenerative diseases such as Alzheimer’s dis-
ease, Parkinson’s disease, and Huntington’s disease with the
hallmark of abnormal protein accumulation.

Old age is linked to CVDs, and the incidence of CVDs
increases with age. Studies in mice have shown that rapamycin
can have beneficial effects on CVDs [145]. Rapamycin can slow
or reverse the progression of age-related hypertrophy, as well as
improve the ventricular function of the aging heart [154]. Rap-
amycin exerts its cardioprotective effects by reducing pressure
overload-induced cardiac hypertrophy [155] which can also
lead to suppression of experimental aortic aneurysm growth
[156]. Rapamycin also appears to reduce age-related inflamma-

tion in the heart [157]. All together supports the beneficial
effects of rapamycin on the cardiovascular system and related
CVDs.

Although rapamycin is an FDA-approved drug which
possesses antiproliferative characteristics, due to its immu-
nosuppressive properties, it may cause serious side effects.
Thus, its safety of long-term use is still questionable, and
its widespread application is limited. In this regard, other
pharmacological compounds that act as mTOR inhibitors
with less side effects may provide advantages over rapamycin
and are discussed thoroughly in the upcoming sections.

4.2. Resveratrol. Resveratrol (trans-3,4′,5, trihydroxystilbene)
is a stilbene found profoundly in peanuts, grapes, bilberries,
blueberries, and cranberries. Resveratrol belongs to the poly-
phenol family exerting medical properties [158]. It has been
suggested that eating foods rich in polyphenols may have the
ability to prevent certain diseases. Resveratrol has been effec-
tive in a majority of illnesses including CVDs, diabetes, neuro-
logical disorders, cancer, and aging [159]. Studies have shown
that resveratrol has beneficial effects on longevity in Drosoph-
ila melanogaster [160], Caenorhabditis elegans [160], Saccha-
romyces cerevisiae [161], Nothobranchius furzeri [162], and
Honey bees [163]. Many studies have also been performed
on mice, rats, and human cells [164].

The antiaging effect of resveratrol can be both by post-
poning aging and by delaying the onset of age-related dis-
eases [165].

Like many other illnesses, neurodegenerative diseases are
affected by age. Hallmarks of aging that affect neurodegenera-
tion include mitochondrial dysfunction, cellular senescence,
stem cell exhaustion, genomic instability, telomere attrition,
epigenetic alterations, loss of proteostasis, and deregulated
nutrient sensing [166]. Disorders such as memory loss or cog-
nitive impairments that occur following aging can be due to
oxidative stress, inflammation, and apoptosis in neurons as
well as dysregulation in autophagy [167, 166]. The antiaging
effect of resveratrol in neurodegenerative diseases is due to
its neuroprotective effects and by means of reducing inflam-
mation and oxidative stress in neurons, as well as increasing
neurogenesis and secretion of neurotransmitters [164].

Among the age-related diseases, CVDs are remarkably
frequent. The protective role of resveratrol on CVDs has
been reported. Consumption of red wine which is rich in
resveratrol has been reported to reduce the incidence of
CVDs [168]. Resveratrol encompasses its cardioprotective
effects by regulating the renin-angiotensin system (RAS)
and increasing nitric oxide (NO) production, as well as
reducing oxidative stress [164].

Cancer is among the illnesses which is highly affected by
age. Various studies have examined the effect of resveratrol
on different cancers such as colon cancer [169], ovarian can-
cer [170], gastric cancer [171] and prostate cancer [172],.
Resveratrol induces its antineoplastic properties by inducing
apoptosis and preventing cell proliferation. Resveratrol also
prevents metastasis and inhibits cell migration [164].

The antiaging effect of resveratrol is exerted through sev-
eral mechanisms. Resveratrol mimics the effects of CR and
shows positive effects of CR in the aging process [51]. It
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can have antiaging effects by inducing inhibitory effects on
inflammation, improving mitochondrial function, suppress-
ing oxidative stress, and regulating apoptosis [164]. Another
antiaging mechanism of resveratrol is through the activation
of SIRT1. Activation of SIRT1 regulates gene transcription
of peroxisome proliferator-activated receptor-γ (PPAR-γ)
coactivator-1α (PGC-1α). It therefore increases the antioxi-
dant capacity of tissues and improves mitochondrial func-
tion [173, 174]. As dysfunction of mitochondria leads to
apoptosis, SIRT1 prevents apoptosis by improving mito-
chondrial function [175]. SIRT1 has also antioxidant effects
following increased expression of glutathione peroxidase
(GSH-PX) and superoxide dismutase (SOD) [175], which
lead to antiaging effects. SIRT1 regulates PGC-1α activity
and subsequently regulates some downstream transcription
factors, including estrogen-related receptor (ERR), PPAR,
mitochondrial transcription factor A (Tfam), and nuclear
respiratory factor (NRFs) and therefore controls fatty acid
oxidation and mitochondrial function [176, 177]. Moreover,
SIRT1 counteracts oxidative stress by deacetylating FOXO.
Following deacetylation of FOXO, the expression of catalase
(CAT) and manganese superoxide dismutase (MnSOD)
increases. As a result, it counteracts oxidative stress and
helps DNA repair. FOXO reduces oxidative stress damage
in another way as well. Following deacetylation, FOXO is
degraded (by Ubiquitination) so it loses its ability to induce
cell death. By this means, FOXO regulates apoptosis and
inhibits oxidative stress and cell proliferation [178, 179].
SIRT1 also controls apoptosis and oxidative stress by inhi-
biting p53. SIRT1 deacetylates p53, which in turn increases
MnSOD expression. Eventually, the antioxidant capacity
increases and regulates cellular apoptosis. In general, p53
controls the expression of many genes and can play a role
in differentiation, apoptosis, regulation of metabolism,
induction of senescence, and increase in cell survival [180].
SIRT1 can also play a role in longevity by inhibiting NF-
κB signaling pathway and in two different ways [181]: first
by inhibiting inflammation and second by controlling apo-
ptosis. In general, NF-κB plays an important role in inflam-
matory responses. SIRT1 directly targets the p65 subunit in
NF-κB and regulates the expression of inflammatory factors
such as IL-1, IL-6, IL-8, and TNF-α [182, 181]. Thus, SIRT1
is involved in the process of aging by inhibiting inflamma-
tion. NF-κB can control apoptosis by regulating the expres-
sion of Bcl-2 family, TNFR-associated factor (TRAF1,
TRAF-2) genes, and the inhibitor of apoptosis proteins
(IAPs) which are all categorized as antiapoptosis-related
genes [183, 182]. Another mechanism by which SIRT1
applies its role on aging is by stimulating Nrf2. Nrf2 is a
transcription factor that increases the expression of its
downstream genes, which leads to increased activity of anti-
oxidant enzymes such as SOD and CAT [164] which can
eventually inhibit ROS production. Thus, oxidative stress is
inhibited, and antioxidant effects are observed [184]. Nrf2
can also have anti-inflammatory effects by reducing the
activity of inflammatory cytokines such as IL-1 and TNF-α
[185]. Hence, in general, it can be said that the antiaging
effects caused by Nrf2 seek to inhibit oxidative stress and
inhibit inflammation [164].

Another target of resveratrol is AMPK [182]. AMPK can
be activated by metformin and resveratrol as well as in the
conditions such as lack of energy and CR [108]. Activation
of AMPK by resveratrol occurs when intracellular calcium
levels increase [186]. SIRT1 and AMPK can stimulate each
other and affect each other’s activity. AMPK can activate
SIRT1 following an increase in NAD+ levels. As said,
NAD+ is considered a cofactor in SIRT1 activity [85]. On
the other hand, AMPK reduces oxidative stress and prevents
proliferative dysfunction by activating FOXO [187]. AMPK
prevents aging by affecting FOXO, PGC1α, p53, NF-κB,
and Nrf2. In general, following the activation of AMPK, oxi-
dative stress decreases, autophagy increases, and inflamma-
tion is inhibited. Thus, AMPK affects aging through
various mechanisms [108].

Resveratrol can also exert its antiaging effects by inhibit-
ing mTOR. Resveratrol can increase the expression of Rictor,
a component of mTORC2, thereby activating Akt pathway
and inducing autophagy. It can also eventually inhibit
mTORC1 [188]. Resveratrol can also activate the PI3K/
Akt/mTOR pathway, thereby inducing apoptosis [189].
The effects of resveratrol on mTOR can vary at different
doses. Low doses of resveratrol can inhibit mTOR phosphor-
ylation in serine 2448, but high doses of it can increase
mTOR phosphorylation in serine 2481 [188].

Mechanistic effects of resveratrol on longevity are
depicted in Figure 4.

4.3. Metformin. Metformin (1,1-dimethyl biguanide) is a
biguanide and an FDA-approved antidiabetic for the first-
line treatment of type 2 diabetes. Metformin is derived from
Galega officinalis and has a natural base. Metformin can
lower plasma glucose levels and reduce the amount of glu-
cose absorbed by the body and the amount of glucose pro-
duced by the liver. Metformin also enhances tissue
sensitivity to insulin [190]. The substantial role of metfor-
min by numerous mechanisms in various illnesses has been
reported [191–193]. The effect of metformin on life span has
been documented in C. elegans (cocultured with Escherichia
coli) [194–196], mice [197–199], and human [200, 201].
However, in studies performed on rat [202] and Drosophila
melanogaster [203], no effect regarding the increase of life-
span was observed with metformin [203].

The protective role of metformin in reducing the risk of
CVDs, dementia, cancer, and neurodegenerative diseases has
repeatedly been reported. However, studies on longevity and
mechanisms of aging have been proposed in recent decades.
So human aging can be targeted while avoiding many age-
related consequences at the same time.

Antiaging effects of metformin are governed by several
mechanisms. In general, metformin activates AMPK [204,
205] and inhibits mTOR [206], downregulates IGF-1 signal-
ing, reduces insulin levels [207], and inhibits electron trans-
port chain (ETC) and mitochondrial complex 1 [208].

Cellular uptake of metformin happens via organic cation
transporter 1 (OCT1). Metformin inhibits mitochondrial
complex 1 in the ETC, which in turn leads to the antiaging
effects of metformin by two mechanisms, AMPK-
dependent and AMPK-independent [209, 210]. In AMPK-
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independent pathway, following the reduction of ROS and
advanced glycation end products (AGEs), DNA damage is
reduced and oxidative stress is inhibited [209]. In the
AMPK-dependent pathway, following inhibition of mito-
chondrial complex I, an increase in the AMP/ATP ratio is
observed, which leads to AMPK activation [210]. ULK1,
PGC-1α, mTOR, and SIRT1 are present in the downstream
of AMPK, which can be effective in the aging process
[211]. Activation of PGC-1α increases antioxidant capacity
and mitochondrial biogenesis [174]. Autophagy is induced
following the activation of the ULK1 pathway [212]. As a
consequence of AMPK activation, mTOR is inhibited and
SIRT1 is activated. p53, FOXO, and NF-κB as the down-
stream molecules of SIRT1 are the among the main players
in longevity [212]. Following inhibition of the p53 pathway,
oxidative stress is reduced and apoptosis is regulated [180].
Additionally, inhibition of NF-κB also inhibits inflammation
and apoptosis [181]. FOXO has beneficial effects on the
aging process by regulating apoptosis and creating stress
defense [179]. The effect of AMPK on mTOR is through
TSC2. Downstream molecules of mTORC1 are elf4E and
S6K, which play substantial antiaging by regulating transla-
tion and transcription. Protein synthesis is regulated by
elf4E and S6K. S6K is also involved in the synthesis of
nucleic acids [91]. Another antiaging mechanism applied
by mTOR is via the ULK1 pathway. mTOR is involved in
the regulation of autophagy through the ULK1 pathway
[94]. Other mechanisms involved in the antiaging properties
of metformin include Nrf2/glutathione peroxidase 7 (GPx7),
which reduces stem cell exhaustion and inflammation. Met-
formin exerts its antiaging effects by acting on the Nrf2/

GPx7 pathway, which increases GPx7 expression. GPx7 is
an antioxidant enzyme whose expression is stimulated by
Nrf2. As cells age, a decrease in the expression of Nrf2 and
GPx7 is observed, which causes the accumulation of markers
of oxidative stress [213].

Metformin also inhibits inflammation and reduces inflam-
matory cytokines by inhibiting the NF-κB signaling pathway
[209]. Another anti-inflammatory mechanism of metformin
is by reducing inflammatory cytokines and increasing nonin-
flammatory cytokines. Metformin can decrease TNFα, IL-6,
and IL-1, which are inflammatory cytokines, and increase
IL-10 and IL-4, which are anti-inflammatory cytokines
[214]. It has been found that the level of proinflammatory
cytokines such as TNF-α and IL-6 and the level of acute phase
proteins such as serum amyloid A (SAA) and C-reactive pro-
tein (CRP) have been doubled or quadrupled in the elderly
compared to the young [215]. That is suggestive of the role
of aging in the rise of these markers. Inflammatory cytokines
play a role in diseases that develop in old age. High levels of
IL-6 are known to be a risk factor for thromboembolic compli-
cations. TNF-α has also been shown to play a role in Alzhei-
mer’s disease, diabetes, and atherosclerosis [216]. There are
probably several mechanisms involved in age-related inflam-
mation. Many of the factors that are responsible for the up rise
in the age-related inflammation are associated with age. There
is a potential decrease in the function of the immune system,
which leads to an increase in inflammatory conditions. The
prevalence of inflammatory diseases also increases with age.
As aging happens, oxidative stress, which plays an influential
role in causing inflammation, increases. ROS activates toll-
like receptors (TLRs) on immune cells, which eventually leads
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to the activation of the inflammatory cascade [217]. Metfor-
min can increase thioredoxin reductase (TrxR) expression in
the AMPK-FOXO3 pathway, thereby reducing the intracellu-
lar amount of ROS [218].

Another antiaging mechanism of metformin is through
inhibition of insulin/IGF1 signaling pathway. Following
downregulation in insulin/IGF1 signaling, protein synthesis
and apoptosis are regulated, and oxidative stress is inhibited.
Inhibition of insulin/IGF1 signaling leads to inhibition of
mTORC1 [209, 219]. Factors that reduce insulin/IGF1 sig-
naling, such as CR and metformin, have been shown to
increase lifespan and delay the onset of age-related dis-
eases [220].

The antiaging effect of metformin is related to changes in
protein synthesis in mitochondria and intrinsic mitochondrial
function [221]. High doses of metformin severely damage
mitochondrial function and worsens mitochondrial function,
so not only antiaging properties is not observed but it may also
lead to cell damage [203]. Metformin in low doses causes mild
damage to mitochondrial function. Therefore, the energy level
decreases and AMPK is activated. On the other hand, an adap-
tive hormonal response is created, which increases the toler-
ance to toxic substances [222]. Therefore, the antiaging

effects of metformin occurring at low doses and high doses
of metformin do not have beneficial antiaging effects.

In sum, metformin affects longevity by controlling protein
and nucleic acid synthesis, inhibiting inflammation, reducing
oxidative stress, regulating apoptosis, controlling mitochon-
drial function, and reducing DNA damage. Figure 5 shows
antiaging effects of metformin on different cellular pathways.

4.4. Lithium. Lithium is an alkali metal that is present in trace
amounts in the body [223]. Lithium is mainly used to treat
bipolar disorder [224]. Lithium with its autophagy regulation
mechanism is used in various diseases such as Alzheimer’s,
Huntington’s, Parkinson’s, and Prion’s diseases [225] and
has shown a significant role in reduction of mortality rate than
other drugs used in bipolar disorder [226]. The antiaging effect
of lithium may be related to autophagy regulation, increasing
telomere length, and enhancement of mitochondrial function
in the brain [227]. Inositol monophosphatase (IMPase) and
glycogen synthase kinase-3(GSK-3) contribute to the role of
lithium in the regulation of autophagy. Phosphorylation on
serine 9 residue of glycogen synthase kinase-3β inhibits its
activity. Following its inhibition, the level of Bif-1 increases
and autophagy is induced. GSK-3β upregulates AMPK, and

Metformin

IGF-1
receptor

Insulin
receptor OCT1

Ras/Raf

MEKs

ERKs

ELK1

IRS-1/2

PI3K

AKT

P53

Regulate gene
transcription-regulation

protein synthesis

Proliferation

Apoptosis ↓oxidative
stress

FOXO mTORC1

inhibit ETC, inhibit
mitochondrial

complex I

AMPK-dependent

TSC2 PGC-1𝛼 ULK1

AMPK-independent

↓ROS ↓AGEs

ULK1

S6K 4E-BP1

elF4E

Autophagy
Nucleotide
synthesis

Protein
synthesis

AMP/ATP

Mitochondrial
biogenesis

Autophagy

SIRT1

P53 NF- κB FOXO

Apoptosis ↓inflammation

Apoptosis,
↓oxidatives

tress

↓oxidative stress,
↓DNA damage

NF- κB

↓inflammation

Nrf2

GPx7

↓inflammation,
stem cell

exhaustion

↓inflammatory
cytokines:

TNF-𝛼
IL-6
IL-1

↑anti-inflammatory
cytokines:

IL-4
IL-10
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AMPK also affects GSK-3β. GSK-3β activates TIP60 (HIV-
Tat interactive protein) and ULK1 under special serum depri-
vation conditions. The ULK1 complex affects Amber1,
Beclin1, Bakor, Vps15, and Vps34 and induces autophagy.
Lithium also inhibits IMPase and causes inositol and inosi-
tol-1,4,5-triphosphate depletion. Increased inositol inhibits
autophagy so lithium with reverse function can induce
autophagy [225].

Telomeres protect base pairs during cellular division.
Aging causes shortening of telomere length until it becomes
too short to divide and cellular senescence happens [228].
Lithium may increase telomere length [229, 230]. Addition-
ally, lithium increases complex I and complex II activities in
the mitochondrial respiratory chain and improves oxidative
function. It may also reduce and prevent mitochondrial dis-
orders as well [231].

Figure 6 demonstrates cellular pathways through which
lithium affects autophagy and longevity.

4.5. Spermidine. Spermidine is a natural polyamine that is
essential for cell proliferation and growth. Spermidine con-
tent is found in abundance in plant and fungal products
such as legumes, vegetables, mushrooms, and whole-grain
products. The antiaging mechanism of spermidine is associ-
ated with improved effects on various organs such as the
liver and kidney and the immune and cardiovascular sys-
tems. Spermidine, as a polycation, binds to molecules such
as DNA, RNA, and lipids, so it can play an important role
in cellular functions [232]. Spermidine affects autophagy,
inflammation, DNA stability, transcription, and apoptosis
[233] [234]. The effect of spermidine on aging has been
investigated and proven in Drosophila melanogaster, Sac-
charomyces cerevisiae, C. elegans, and mice [232, 235].

According to previous studies, spermidine can cause
autophagy in multiple organs such as the liver, heart, and
muscles. Spermidine induces autophagy by regulating the
expression of autophagy-related genes such as Atg7, Atg15,
and Atg11. Increased expression of elF5A and transcription
factor EB (TFEB) by spermidine also induces autophagy.
The process of autophagy begins with the inhibition of pro-
tein acetylation. Spermidine initiates autophagy by reducing
the expression of EP300 acetyltransferase [234].

The anti-inflammatory properties of spermidine is
through the reduced phosphorylation of Akt and MAPK,
which occurs by inhibiting the translocation of the NF-κB
p65 subunit. Spermidine regulates lipid levels by interfering
with the conversion of adipocytes to mature adipocytes. Its
mechanism occurs through ANP32 blockade and its effect
on HUR and PPA2Ac. As PP2AC activity decreases, HUR
translocation occurs and HUR binds to C/EBP-β in the
nucleus. Afterwards, PPAR-γ 2 and SREBP-1c are expressed.
Following expression of these factors, adipocyte cells become
mature, and the expression of major markers such as FAS
and GLUT4 increases. Changes in the lipid profile modulate
oxidative damage and membrane fluidity as well as signaling
which may affect aging [232]. Spermidine may also be
involved in reducing myopathy and skeletal muscle aging
along with exercise through its effect on D-Gal and reduced
apoptosis [236].

Antiaging mechanisms of spermidine are shown in
Figure 7.

4.6. Pterostilbene. Pterostilbene (trans-3,5-dimethoxy-4′
-hydroxystilbene) is an analogue of resveratrol from blue-
berries, which is obtained by both natural extraction and
biosynthesis. Pterostilbene has anti-inflammatory, antioxi-
dant, and antitumor effects [237] and can prevent skin aging
[238]. One of the antiaging mechanisms of pterostilbene is
due to its beneficial effects in aging-related diseases. Pterostil-
bene has neuroprotective and cardiovascular protective effects.
Pterostilbene has also been shown to act as an anticancer agent
[239]. A study in aged rats found that pterostilbene improved
memory consolidation and cognitive performance [240]. The
anti-inflammatory effects of pterostilbene seek to inhibit
MAPK and decrease the levels of proinflammatory cytokines
such as TNF-α, IL-1β, and IL-6 [241].

In a study investing the effect of pterostilbene on sepsis-
induced liver injury, it was found that pterostilbene activates
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SIRT1, so it can also affect FOXO1, p53, and NF-κB. Pteros-
tilbene also decreases the levels of inflammatory cytokines
such as TNF-α and IL-6, decreases myeloperoxidase
(MPO) activity, and increases Bcl-2 expression. Accordingly,
pterostilbene can have anti-inflammatory and antiapoptotic
effects [242]. In chondrocytes, pterostilbene can activate
Nrf2 and subsequently inhibit IL-1β, thereby reducing
ROS production. It also reduces the levels of COX-2, NO,
and PGE2, exerting anti-inflammatory effects and inhibiting
oxidative stress [243]. Pterostilbene increases SOD and GSH
and reduces ROS production through Nrf2 signaling path-
way, thereby producing antioxidant effects [244]. Pterostil-
bene can exhibit Nrf2-dependent antioxidant responses
thus preventing UVB-induced skin damage. The anticarci-
nogenic and antioxidant action of Pterostilbene in the skin
seeks to maintain the skin’s antioxidant defense and inhibit
oxidative stress caused by UVB [238]. Pterostilbene sup-
presses LPS-induced NF-κB p65 nuclear translocation, caus-
ing downregulation of IL-18, IL-6, VEGF (vascular
endothelial growth factor), matrix metalloproteinases
(MMP-2 and MMP-9), and NO [245]. Pterostilbene can also
scavenge free radicals, thereby protecting DNA, proteins,
and lipids from damage [246].

In sum, the antiaging effects of pterostilbene and the
effects of pterostilbene on age-related diseases are proposed
to be mediated by activating SIRT1 and Nrf2 and suppress-
ing NF-κB, reducing inflammatory cytokines and inhibiting
free radicals.

Antiaging mechanism of pterostilbene is depicted in
Figure 8.

4.7. Melatonin. Melatonin (N-acetyl-5-methoxytryptamine)
is a hormone in the pineal gland that affects many physio-
logical functions. Melatonin secretion gradually decreases

with aging [247]. Melatonin secretion is also related to light
intensity and is released in the dark environment; however,
the secretion ceases when exposed to light [248]. Melatonin
is involved in the regulation of the circadian rhythm and
also exerts antioxidant effects [249]. It has been shown that
maintaining the circadian rhythm or consuming melatonin
can have beneficial effects on prolonging lifespan [250].
One of the antiaging mechanisms of melatonin is due to its
antioxidant effects and reduction of oxidative stress, which
leads to improved mitochondrial function. Melatonin has
the ability to scavenge toxic free radicals and decrease ROS
and can indirectly stimulate antioxidant enzymes such as
GPx, glutathione reductase (GRd), and SOD [251]. Melato-
nin also exerts its antiaging effects by increasing SIRT1
expression [252, 253]. Activation of SIRT1 by melatonin also
regulates downstream molecules involved in the aging pro-
cess and age-related diseases. SIRT1 causes deacetylation in
PGC-1α, FOXO, p53, NF-κB, and Nrf2 [254, 255] and acti-
vates PGC-1α. PGC-1α can increase mitochondrial biogene-
sis and improve mitochondrial function [174]. PGC-1α can
also induce antioxidant enzymes and ultimately reduce
ROS production [255]. SIRT1 promotes anti-inflammatory
and antioxidant effects by activating the Nrf2 pathway.
Nrf2 increases the expression of antioxidant enzymes thus
reducing ROS and inhibiting oxidative stress [256, 257].
Another mechanism of reduction of oxidative stress is
through deacetylation of FOXO by SIRT1. FOXO can also
be involved in regulation of apoptosis [179]. Melatonin also
affects p53 through activation of SIRTI. SIRT1 deacetylates
p53 thus inhibiting p53 activity. Following inhibition of the
p53 pathway, apoptosis is induced and senescence cells are
reduced [180, 258]. SIRT1 can also inhibit inflammation
and reduce senescence cells by inhibiting the NF-κB path-
way [259].

Pterostilbene
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Figure 8: Antiaging mechanisms of pterostilbene by means of various pathways. Pterostilbene is involved in longevity with its anti-
inflammatory and antioxidant effects. Pterostilbene activates SIRT1 and Nrf2 and inhibits NF-κB. Following activation of SIRT1, FOXO
is also activated and P53 is inhibited.
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Figure 9 demonstrates cellular pathways involved in the
antiaging effects of melatonin.

4.8. Aspirin. Acetylsalicylic acid or aspirin is obtained from
the bark of the willow tree. Aspirin has a variety of medical
uses. One of the main uses is to prevent secondary CVDs. It
also has analgesic and antitumor properties [260, 261]. The
antiaging effects of aspirin on C. elegans, mice, and Dro-
sophila melanogaster have been investigated [262, 263]. Life-
span increases when germ cell progenitors become ablated.
One of the proposed antiaging mechanisms of aspirin is
through its effect on the reduction of germline stem cells
[262]. Another proposed mechanism is improving intestinal
barrier function by restricting the K63-linked ubiquitination
and preventing intestinal immune deficiency [264].

4.9. Fisetin. Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a natural
compound in the category of flavonoids. It is found in fruits
and vegetables such as cucumber, strawberries, kiwi, apple,
grape, kale, onion, and persimmon [265]. Fisetin has been
shown to have antiaging and anti-inflammatory, antioxidant,
anticancer, and antimicrobial effects [266, 267]. Fisetin has
beneficial effects on various illnesses [268]. Fisetin can be an
important molecule against several neurological diseases such
as Alzheimer’s, Parkinson’s, and Huntington’s diseases as well
as schizophrenia, vascular dementia, and TBI [269]. With its
anti-inflammatory effects and reduction of oxidative stress
and modulation of p25, fisetin can reduce cognitive deficits
and be effective in Alzheimer’s disease [270, 271]. An increase
in p25 levels has been observed in the brains exposed to vari-
ous neurotoxic stimuli, β-amyloid (Ab) peptides, and oxida-
tive stress [272]. As noted, one of the mechanisms by which
Fisetin exerts its neuroprotective effects is by preventing an
increase in the harmful level of p25 [269]. P25 is the proteo-
lytic fragment of p35 that is involved in the activation of
Cyclin dependent kinase 5 (Cdk5). P35 is a regulatory subunit
for Cdk5. Cdk5 is a serine/threonine kinase which is involved
in brain development and has the ability to phosphorylate

postsynaptic or presynaptic substrates in neurons. Cdk5 activ-
ity is controlled by binding to p35 or p39 regulatory subunits.
p25 has a higher diffuse subcellular distribution than p35 and
also has a longer half-life [272]. In Alzheimer’s disease, the
regulation of the Cdk5-p35 complex in neurons is impaired
and an imbalance in p25/p35 and p25 expression is
increased [269].

As mentioned, Fisetin can reduce age-related decline in
brain function. This action can also be due to its antioxidant
and anti-inflammatory effects. Fisetin can have a direct antiox-
idant effect and maintain mitochondrial function in the exis-
tence of oxidative stress and increase glutathione levels in
cells. It has also anti-inflammatory effects against microglial
cells by inhibition of 5-lipoxygenase and decreasing the pro-
duction of lipid peroxides and inflammatory products [273].
Fisetin can prevent neuroinflammation, neurodegeneration,
and memory impairment by reducing oxidative stress. These
functions are mediated by preventing the accumulation of
ROS, inhibiting inflammatory cytokines, and regulating
endogenous antioxidant mechanisms [274]. Fisetin can also
reduce the effect of oxidants produced by the c-Jun N-
terminal protein kinase (JNK) and NF-κB signaling pathways
[275, 276]. Fisetin can reduce the expression of pro-apoptotic
markers such as cleaved-caspase-3, cleaved-PARP-1, and Bax
in mice’s brain and may also increase the expression of antia-
poptotic markers such as Bcl-2 [274]. Fisetin regulates the
expression of p53 and subsequently induces apoptosis. p53 is
involved in apoptosis, cell cycle, and DNA repair by regulating
the expression of various genes. Fisetin can also be involved in
apoptosis by activating the MAPK pathway [277]. It also
exhibits neuroprotective and neurotrophic effects and
improve cognition by activating the Ras-ERK cascade in neu-
rons [278, 279].

Along the neuroprotective effects, fisetin also exhibits
cardioprotective properties [267]. Consumption of flavo-
noids such as fisetin is beneficial on vascular health and
reduces the risk of CVDs such as coronary heart disease
[280, 281].
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Figure 9: Cellular pathways involved in antiaging effects of melatonin. Melatonin exerts its antiaging effects through the activation of SIRT1
and its antioxidant effects. Following activation of SIRT1, FOXO and Nrf2 and PGC-1α are activated and P53 and NF-κB are inhibited.
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Fisetin is considered as a CRMs [282]. As previously
mentioned, these substances have similar effects to CR, such
as reducing the risk of age-related diseases and increasing
lifespan. CR regulates the pathways of intracellular signals
that lead to antiaging effects [283]. It can activate SIRT1
and AMPK and inhibit mTOR [284]. By these means, fisetin
can have antiaging properties and has beneficial effects in
age-related diseases [282].

Fisetin has senolytic effects as well by inhibiting the
PI3K/AKT pathway [285]. Downstream molecules of the
mentioned pathway are involved in different parts of cellu-
lar processes by acting on the Akt/mTOR pathway [286]
that eventually leads to elimination of senescent cells
[287]. A study in mice found that taking fisetin reduces
oxidative stress and inflammation and removes senescent
cells; thus, tissue homeostasis is restored and lifespan is
increased [285].

5. Conclusion

Aging is an unavoidable biological process characterized by
progressive time-dependent deterioration of the cells and cel-
lular function which leads to age-related diseases, decreased
life span and quality of life. In other words, aging is the driving
factor of numerous age-related diseases. Accordingly, some
interventions may hinder and delay the process of aging;
hence, it might not be an inevitable fate. Since death from
age-related diseases limits longevity, a true antiaging drug
must withhold or postpone age-related diseases.

Modern medicine has improved quality of life, yet in order
to reach the point to hamper the process of aging, precise
knowledge of the mechanisms involved will be needed. In this
regard, the exact underlying mechanisms of aging stay mainly
illusive to date. Various drugs with different mechanisms have
been repurposed as antiaging agents although not yet
approved.While a majority of these treatments have been sug-
gested to provide beneficial effects against aging and as a con-
sequence hindering age-related diseases, they still lack
sufficient clinical data regarding their favorable effects as well
as side effects especially in the elderly.

It is noteworthy that treatments for age-related diseases
are effective solely in a particular illness. However, utilizing
antiaging drugs by decelerating the process of aging would
prevent or delay not only one specific age-related disease
but may hinder age-related diseases.

Earlier therapeutic plans relied generally on affecting
oxidative stress and limiting it by the use of drugs with anti-
oxidant properties. Alongside, CR mimetics open a new
venue in hindering the aging process and ameliorating age-
related diseases. However, new pharmacological approaches
which have been introduced to target the process of aging
mainly focus on the major pathways involved in aging
including activation of AMPK and SIRT1 and inhibition of
the mTOR pathways, which are assumed to play pivotal
roles in upholding longevity by inserting antiaging proper-
ties and not just by preventing age-related diseases.

If these repurposed drugs be approved as antiaging treat-
ments, the advantages which will be met over the conven-
tional drugs used to treat late-life illnesses is that by

hindering the process of aging, age-related diseases will by
far decease and as a consequence human health will be
improved and the lifespan would be extended. Moreover,
less is spent for curing such diseases and the economic bur-
den will reduce remarkably.

This review focused on the antiaging mechanisms of dif-
ferent drugs as well as natural products on the process of
aging in the light of hope that someday, in the near future,
a smart remedy for healthy aging will be attained.
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