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Radiotherapy produces excessive reactive oxygen species (ROS), which can lead to DNA damage and apoptosis in tumor cells,
thereby killing malignant cells. Chlorogenic acid (CGA) is a well-known antioxidant in coffee due to its strong ability to
remove ROS. However, the effect of CGA on radiotherapeutic efficacy remains unclear. In this study, we showed that CGA
could hinder the therapeutic effect of radiotherapy by inhibiting radiation-induced apoptosis and DNA damage via scavenging
excessive ROS and activating the NF-E2-related factor 2 (Nrf2) antioxidant system in hepatocellular carcinoma (HCC) cells
and a murine model. The knockdown of Nrf2 reversed CGA-mediated radiation resistance in HCC cells. In conclusion, CGA
might be a potential tumor-protective compound upon irradiation and reduce the efficacy of radiotherapy via ROS scavenging
and Nrf2 activation.

1. Introduction

Radiotherapy (RT) is a widely used modality in cancer treat-
ment, applied in more than 50% of all patients with cancer
with a cure rate of 40% [1, 2]. However, the complete
responses of RT remain only 15% in hepatocellular carci-
noma (HCC) [3]. RT resistance has always been an issue
in HCC treatment, leading to a high mortality rate of
HCC, especially in developing countries [3].

RT exerts its cytotoxicity mainly through the production
of reactive oxygen species (ROS). The intracellular antioxi-
dant system is closely related to the outcome of RT. This sys-
tem is activated by the binding of master transcription factor
NF-E2-related factor 2 (Nrf2) to the antioxidant response
element of a series of cytoprotective genes, including heme
oxygenase-1, NAD(P)H:quinone oxidoreductase-1, glutare-
doxin 1, and thioredoxin 1 [4–8]. All of these enzymes are
characterized by their ability to reverse oxidative damage
and stress. Drugs or compounds that amplify the Nrf2 sys-
tem are considered potential defenders of various endoge-

nous and exogenous stresses such as hypoxia,
inflammation, ultraviolet irradiation, and ionizing radiation
[9–13]. Recent studies have found that Nrf2 activation by
Se-hormetic agents promoted hematopoietic progenitor cell
regeneration and increased the survival of irradiated mice
following exposure to high doses of radiation [14, 15].

Chlorogenic acid (CGA) is one of the most abundant
phenolic acid compounds in coffee and tea. It has been
reported to have robust antioxidant activity [16–18] as well
as many other pharmacological activities, such as anti-
inflammatory [17], antidiabetic [19], hepatoprotective [20],
and antitumor [21], in many preclinical and clinical studies.
It is currently under clinical investigation to prevent diabe-
tes, dyslipidemia, metabolic syndrome, endothelial dysfunc-
tion, and overweight, and treatment of solid tumors. Besides,
many previous studies have demonstrated significant cyto-
protective effects of CGA attributed to the activation of the
Nrf2 pathway [18, 22–25].

However, the role of CGA in tumor radiotherapy
remains unknown. The present study found that CGA
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Figure 1: Continued.
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Figure 1: Radiation induced oxidative stress and cytotoxicity in HCC cells. (a), (b) Fluorescence-activated cell sorting (FACS) results of ROS
levels in Huh7 and Hep3B cells at the indicated time points after a single dose of 8Gy as determined using DCFH-DA probes. (c) Colony
formation assays in HCC cells with indicated doses of RT. The crystal violet staining of one representative experiment. (d), (e) Quantitation
of ROS levels in (a and b). (f) Quantification of colony formation rates of control. (g) Dynamic changes of apoptosis within 24 h after a single
dose of 8Gy in Huh7 and Hep3B cells. (h) Quantitation of apoptosis levels at the indicated time points in (g). (i) Quantitation of early
apoptosis levels in at indicated time points in (g). (j) Quantitation of late apoptosis levels in HCCs at the indicated time points at
indicated time points in (g). Error bars indicate means ± SEM for three independent experiments. ns (not significant), ∗P < 0:05, ∗∗P <
0:01, and ∗∗∗ P < 0:001 comparing with the control group.
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Figure 2: Continued.
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hindered the therapeutic effect of radiotherapy in HCC both
in vitro and in vivo. Specifically, CGA ameliorated RT-
induced cell death, DNA damage, and apoptosis by scaveng-
ing excessive ROS and activating Nrf2 and its downstream
protective genes in HCC.

2. Materials and Methods

2.1. Materials and Cell Culture. The chlorogenic acid was
dissolved >98% pure (Sigma, C3878). Antibodies below used
were listed in supplemental materials (available here).

Huh7, Hep3B, LO2, and Hep1-6 cell lines were obtained
from Shanghai Institutes for Biological Science, China. Cells
were cultured in high-glucose DMEM (Invitrogen, CA,
USA), blent with 10% fetal bovine serum (Invitrogen, CA,
USA), 100μg/ml streptomycin, and 100U/ml of penicillin.
The tumor cell culture dishes were placed in the humid incu-
bator with 5% CO2 and 95% air at 37 °C. Experiments were
performed on cells of passage less than 15.

2.2. Treatment with Chlorogenic Acid. CGA was dissolved in
dimethyl sulphoxide (DMSO) to a stock solution (10mM)
and kept at − 80 °C. The working solution was freshly
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Figure 2: CGA shielded HCC cells from RT-induced cytotoxicity by reducing apoptosis and ROS levels. (a) Colony formation assays with
the indicated treatments. Huh7 cells were first pretreated with or without 10 μM CGA for 2 h and then exposed to a single dose of 4Gy or
sham irradiation. The crystal violet staining of one representative experiment. (b) Quantification of colony formation rate of control. (c)
Flow cytometry of annexin/PI double-stained of control, CGA, RT, and combination treatment. (d) Quantification of the percent of
apoptosis cells in indicated groups in (c). (e) Flow cytometry results of ROS levels in Huh7 cells with CGA or RT treatment,
combination treatment compared to control. (f) Quantification of ROS levels in indicated groups in (e). Error bars indicate means ±
SEM for three independent experiments. ns (not significant), ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗ P < 0:001 comparing with the control group.
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Figure 3: Continued.

6 Oxidative Medicine and Cellular Longevity



prepared before being added to the culture medium. The
final DMSO concentration was lower than 0.1% for
in vitro co-incubation. For the CGA treatment group, the
CGA-containing medium was replaced by a fresh culture
medium after the indicated hours of incubation. For the
co-treatment group, the CGA-containing medium was
added 2 hours before RT.

2.3. Assessment of Cell Viability. Cell viability was deter-
mined using the Cell Counting Kit-8 (Beyotime, Shanghai,
China) according to the manufacturers’ instructions. Briefly,
5 × 103 cells were seeded in a well of 96-well flat-bottomed
plate and incubated for 24h and then placed in serum-
starved conditions for a further six hours. Subsequently, dif-
ferent concentrations of CGA were added to treat the cells
for 24 h, and then 10% CCK-8 dye was added to each well
maintained for another 1.5 h. Viable cells were detected by
measuring the absorbance at 450nm by a microplate reader
(BioTek ELx800, USA). Every experiment was run in sextu-
plicate and performed for three times [26].

2.4. Clonogenic Assays. Clonogenic survival analysis was
conducted as previously described [27, 28]. The colonies
containing more than 50 individual cells are counted.

2.5. Radiation Therapy. RT was delivered using a RS-2000
Biological Irradiator (Rad source, Alpharetta) at a dose rate
of 2Gy/minute as previously described. Focal irradiation
was delivered to inoculated tumors via lead shielding [29].

2.6. Measurement of Intracellular ROS. Total intracellular
ROS was determined by staining cells with dichlorofluores-
cein diacetate (DCFH-DA, Beyotime) [30]. After pretreat-
ment with CGA for 24h, cells were washed with PBS and
incubated with 10μM DCFH-DA at 37 °C for 30min. Cells
were then washed twice with PBS and analyzed by flow
cytometry in 30 minutes (BD, AccuriTM C6). The data were

analyzed with FlowJo7.6.1 software (Verity Software House,
USA).

2.7. Cell Apoptosis Analysis. Cell apoptosis was evaluated by
flow cytometry after staining with an annexin V-FITC- PI
apoptosis detection kit (Keygen Biotech, Nanjing, China),
according to the manufacturer’s instructions. Fluorescence
was measured using a flow cytometer (FACScan, Becton
Dickinson, USA). The data were analyzed with FlowJo7.6.1
software (National Institutes of Health).

2.8. Confocal Analysis. Huh7 cells were grown on coverslips
and treated with or without CGA, followed by exposure to
single irradiation. Twenty-four hours later, cells were fixed
in 4% PFA, followed by cell permeabilization with 0.5% Tri-
ton X-100 and blocked with 1% BSA and 0.5% goat serum in
phosphate-buffered saline (PBS). Cells were incubated with
the anti-phospho-Histone H2A.X (S139) or anti-53BP1 anti-
body overnight, followed by incubation with Alexa Fluor 488
secondary antibody (Boster, BA1127). Slides were mounted
using anti-fading reagent with DAPI (Solarbio, S2110) and
analyzed using a Leica TCS SPE confocal laser scanning
microscope (Leica, Heidelberg, Germany). Fluorescence
was excited with a 488nm line and collected with a 517nm
filter. The LAS AF software (Leica, Heidelberg, Germany)
was used for image acquisition.

2.9. Nrf2 Translocation. Cells were treated without and with
CGA for 0, 0.5, 3, and 6h. The cytoplasmic and nuclear pro-
teins of each sample were obtained using the Minute™ Cyto-
plasmic & Nuclear Extraction Kits for Cells from Invent
(Inventbiotech, SC-003). 60μg of each sample was loaded
onto a 12-20% SDS-PAGE gel and transferred onto a PVDF
membrane. The membranes were incubated with the Nrf2
antibody overnight at 4 °C and were then incubated with
the appropriate secondary antibodies at room temperature
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Figure 3: CGA decreased RT-induced DNA damage. (a), (b) γ-H2AX cell staining and quantification of the percentage of γ-H2AX positive
cells in DMSO group, low and high CGA concentration group, RT group, and combination treatment group. (c), (d) 53BP1 staining and
quantification of 53BP1 foci in cells in DMSO group, low and high CGA concentration group, RT group, and combination treatment
group. Error bars indicate means ± SEM for three independent experiments. ns (not significant), ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗ P <
0:001 comparing with the control group.
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for one hour. GAPDH and H3 were used as a cytoplasmic
and nuclear marker, respectively. Detection was performed
using the ECL Western blotting detection system (Thermo
Scientific, Rockford, IL). The immunoblot was analyzed with
Image J software.

2.10. Transient Transfection of Small RNA Interference. The
Huh-7 cells were transfected with Nrf2 siRNA synthesized
by GenePharma (Shanghai, China) using Lipofectamine®
3000 reagents (Invitrogen, Carlsbad, CA, USA) following
the manufacturer’s instructions. After 24h of transfection,
the cells were treated with RT, CGA, or combination
treatment.

2.11. Quantitative Real-Time Polymerase Chain Reaction
(PCR) Analysis. Total RNA was extracted by using triazole
reagent (Invitrogen, USA) according to the manufacturer’s
instructions. One-step qRT-PCR was done with TaKaRa
One-Step SYBR® PrimeScriptTM PLUS RT-PCR Kit on Ste-
pOne real-time PCR machine by ΔΔCt method. Oligonucle-
otide primers for Nrf2 (forward, 5′- AAGAATAAAGTCGC
CGCCCA -3′; reverse, 5′-AGATACAAGGTGCTGAGCCG-
3′) were synthesized by Sangon Biotech (Shanghai, China).
Reaction parameters were as follows: step 1, 42 °C for
5minutes; step 2, 95 °C for 10 seconds; step 3, 95 °C for 10
seconds; step 4, 50 °C for 30 seconds; and step 5, 72 °C for
30 seconds. Step 3 to step 5 was repeated for 35 cycles. The
level of Nrf2 mRNA was analyzed by StepOne Software ver-
sion 2.1. The relative amount of Nrf2 was normalized to the
amount of endogenous β-actin.

2.12. Western Blot Analysis. Protein extraction was per-
formed in Radioimmunoprecipitation assay buffer (RIPA)
(Auragene, Changsha, China) and centrifuged at
13000 rpm for 20min at 4 °C. Protein concentrations were
determined using a BCA protein assay kit (Auragene,

Changsha, China). Proteins were separated on 4%-20% gels
and then blotted onto nitrocellulose membranes and probed
with the first antibody, followed by the appropriate second-
ary antibodies (Boster, Wuhan, China). Immunodetection
was accomplished via the ECL plus western blotting detec-
tion system (Auragene, Changsha, China). The signal inten-
sity was determined using the Image J software.

2.13. Animal Assay. Six-week-old C57BL/6 mice weighing
19-23 g were obtained from the Animal Core Facility of
Nanjing Medical University (Nanjing, China) and main-
tained in laminar flow cabinets under SPF conditions under
a 12-h dark/light cycle. The mice were acclimatized for at
least one week before the experiment. Hep1-6 cells (5 × 105
cells) were subcutaneously injected into the right flank of
the mice. After the tumor reached 50mm3, mice were ran-
domly assigned to four groups. RT was delivered using RS-
2000 Biological Irradiator (Rad source, Alpharetta) the day
after grouping (8Gy, twice a week) [31]. For CGA group,
CGA (60mg/kg) dissolved in saline (100 ul) was given by
intraperitoneal injection. For the combination group, CGA
(60mg/kg) was intraperitoneally injected 2 hours prior to
RT (8Gy, twice a week). For control and RT treated group,
the same volume of saline was injected during the treatment
period. All animal experiments are conducted according to
the institutional guidelines of the Animal Care Committee
(The First Affiliated Hospital, Zhejiang University School
of Medicine, Zhejiang, China).

2.14. Histology. The liver of mice was dissected after eutha-
nasia, then washed in ice cold PBS and fixed in 10%
neutral-buffered formalin for 24h. Next, tissues were dehy-
drated using a concentration gradient of alcohol prior to
paraffin embedding. Sections of tissues (5μm) were prepared
for staining with hematoxylin and eosin (H&E). Images were
captured using a fluorescent microscope (Olympus BX51).
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Figure 4: Involvement of Nrf2 signaling in the radioresistance effect of CGA. (a) The protein expression levels of Nrf2, SOD2, and GLRX
after incubation with indicated concentrations of CGA (0, 1, 10, and 20μM) or with 10μM CGA for indicated time (0, 0.5, 3, 6 h). (b)
Cytoplasmic and nuclear expression of Nrf2 after incubation with CGA for indicated hours (0, 0.5, 3, and 6 h) and (c) quantification of
relative nuclear expression of Nrf2. (d, e) Representative images of 53BP1 staining in HCC cells transfected with scrambled siRNA or
Nrf2 siRNA under DMSO, CGA or RT treatment, and combination treatment. (f) Quantification of 53BP1 foci in HCC cells transfected
with scrambled or Nrf2 siRNA, respectively. (g, h) Colony formation assay after a single dose of 4Gy or combination of CGA with a
single dose of 4Gy treatment in cells transfected with scrambled siRNA or Nrf2 siRNA. (i) Quantification of colony numbers in cells
transfected with scrambled or Nrf2 siRNA, respectively. Error bars indicate means ± SEM for three independent experiments. ns (not
significant), ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗ P < 0:001 comparing with the control group.
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2.15. Statistical Analysis. Statistical analyses were performed
by Student’s t-test or one-way analysis of variance using
GraphPad Prism 7.0 software (La Jolla, CA, USA). The data
shown in the study were obtained in at least three indepen-
dent experiments, and all results represent the mean ± SEM.
Differences with P values <0.05 were considered statistically
significant.

3. Results

3.1. Radiation Induced Elevated Apoptosis and Cytotoxicity
by Generating ROS in HCC Cells. We irradiated HCC cells
with a single dose of 8Gy to measure the dynamic changes
of oxidative stress after RT. The flow cytometry outcomes
showed that ROS levels increased 1 h after RT and then
reached a peak within 4 h after RT. Later on, ROS levels
began to recover and stayed at relatively high levels com-
pared with those in non-irradiated cells (Figures 1(a), 1(b),
1(d), and 1(e)). Generally, ROS levels in both cell lines

showed similar dynamic change patterns. We further
checked the apoptosis percentage at a series of time points
in HCC cell lines to determine the cytotoxicity of RT. In
the Huh7 cell line, the apoptotic cell rate reached a peak in
8 h and recovered to the regular status 24 h after irradiation,
as revealed by annexin V and propidium iodide staining
(Figures 1(g)–1(i)). Similarly, in the Hep3B cell line, the apo-
ptotic cell rate reached a peak in 8 h and remained high 24 h
after RT (Figures 1(g)–1(i)). We also conducted colony for-
mation assays with Huh7 cells and observed a dose-
dependent reduction in colony formation abilities
(Figures 1(c) and 1(e)). These results suggested that RT
induced a quick elevation of ROS and apoptosis level and
exhibited dose-dependent cytotoxicity in HCC cells.

3.2. CGA Attenuated Radiation-Induced ROS and Apoptosis
in HCC Cells Rather in Normal Hepatocytes. We treated
HCC cell lines (including Huh7 and Hep3B) with various
concentrations of CGA to evaluate the cytotoxicity of CGA
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Figure 5: CGA conferred radioresistance of HCC in vivo. (a) The treatment schedule was illustrated in the diagram. (b) Body weight of mice
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in vitro. Twenty-four hours later, the cell cytotoxicity was
determined using the CCK8 assay. As shown in
Figures S1A and S1B, the incubation with CGA at
concentrations lower than 100μM exerted no effect on cell
viability. We pretreated cells with CGA or the equivalent
volume of DMSO for 2 h before exposing them to RT to
test the effects of CGA on irradiated cells (Huh7, Hep3B,
and LO2). The results showed that the pretreatment with
10μM CGA significantly decreased RT-induced
cytotoxicity in HCC cell lines, but not in normal
hepatocytes LO2 (Figures 2 and S2). The clonogenic
survival assay was used to explore the effect of CGA on
RT-induced cell death. Compared with the RT treatment,
CGA pretreatment significantly increased the number of
colonies after RT (Figures 2(a) and 2(b)). Furthermore, the
intracellular ROS level and apoptosis were measured by
flow cytometry to investigate whether oxidative stress was
involved in the cytoprotective effectiveness of CGA. Based
on our understanding of the dynamic changes of oxidative
stress induced by RT in Figure 1, we collected cells 4 h and
8h after RT to test their levels of ROS and apoptosis. As
shown in Figures 2(c) and 2(d), pretreatment with 10μM
CGA for 2 h significantly decreased the level of apoptosis
after exposure to 8Gy irradiation. Similarly, a marked

reduction of the ROS level (P < 0:05) was observed in the
CGA pretreatment group, as shown in Figures 2(e) and 2(f)
(P < 0:01). However, in LO2 cells, there was no significant
difference in ROS level between the irradiation group and
CGA pretreatment group (Figure S2A). As shown in
supplemental Figure 2(b), LO2 cells were first pretreated
with or without 10μM CGA for 2h and then exposed to a
single dose of 0, 8, 10, and 12Gy or sham irradiation; CGA
pretreatment group showed no significantly increased in cell
viability compared with the corresponding no-CGA treated
groups. These results indicated that CGA, as a nontoxic
antioxidant, could attenuate cytotoxicity induced by RT via
reducing apoptosis and ROS levels in HCC cells.

3.3. CGA Decreased Radiation-Induced DNA Damage. Since
RT functions mainly through DNA damage, we further
explored whether CGA-mediated increase in survival was
due to decreased DNA damage rates. The immunofluores-
cence staining of γ-H2AX and 53BP1 foci were used to
determine the effect of CGA on DNA damage because they
were crucial mediator proteins involved in DNA damage
[32]. We found that the percentage of γ-H2AX-positive cells
increased rapidly and massively after irradiation and showed
a significant decrease after CGA pretreatment, no matter at
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DNA damage, improves HCC genomic stability, thereby reducing the therapeutic effect of RT.
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high or low concentrations (Figures 3(a) and 3(b)). Besides,
we also calculated 53BP1 foci numbers in HCC cells after
DMSO, CGA, RT, and combination treatment. As shown
in Figures 3(c) and 3(d), the number of 53BP1 foci rapidly
increased after RT, while only a few foci were present in cells
without RT. In line with what we observed in the detection
of γ-H2AX foci, the cells pretreated with CGA before RT
showed less 53BP1 foci sustained after 24 h than DMSO-
treated cells (Figures 3(c) and 3(d)). These results suggested
that CGA could efficiently reduce RT-induced DNA dam-
age, whether at a high or a low concentration.

3.4. CGA Suppressed Radiation-Induced Cell Damage via
Nrf2 Activation. With the help of a compound-gene interac-
tion database and online bioinformatics tools, we found that
Nrf2 might be the key target of CGA (Figure S3). We treated
HCC cells with a series of concentrations of CGA (1, 10, and
20μM) for 24 h. The protein expression levels of Nrf2 and its
target genes SOD2 and GLRX significantly increased in the
presence of CGA (Figure 4(a)). We also found that Nrf2
and its target genes were induced time-dependently (right
panel in Figure 4(a)). We extracted cytoplasmic and
nuclear proteins at indicated hours (0, 0.5, 3, and 6h) after
CGA treatment to identify nuclear translocation. In the
cytoplasm, Nrf2 expression slowly decreased as more Nrf2
moved into the nucleus (Figures 4(b) and 4(c)). These
results indicated that CGA also enhanced the nuclear
translocation of Nrf2. Next, we used siRNA to confirm
whether CGA conferred radioresistance by inducing Nrf2
activation. Nrf2 knockdown efficiency was verified by
quantitative polymerase chain reaction and Western blot
analysis, as shown in Figure S4. As expected, Nrf2
knockdown abolished the CGA-mediated reduction in RT-
induced DNA damage (Figures 4(d)–4(f)). We also tested
whether Nrf2 knockdown affected the colony formation
ability of HCC cells. We plated the same number of cells
transfected with scrambled-siRNA or Nrf2-siRNA before
irradiation. In Nrf2 siRNA–transfected cells, CGA-
mediated radiotherapy resistance disappeared
(Figures 4(g)–4(i)). These data verified that the primary
radioresistance mechanism of CGA was through Nrf2
activation and Nrf2 knockdown blocked the CGA-
conferred radioresistance effects in HCC cells.

3.5. CGA Reduced Radiation-Induced Tumor Inhibition in
HCC Xenografts. We injected Hep1-6 cells subcutaneously
into the right leg and exposed xenografts to saline treatment,
CGA treatment, RT treatment, and CGA+RT treatment to
examine the suppression of radiation-induced tumor inhibi-
tion by CGA in vivo. The experimental design is schema-
tized in Figure 5(a). No significant difference in body
weight was found among the four groups (Figure 5(b)).
The tumor weight of mice in the RT group decreased signif-
icantly, while no significant difference was observed in the
volume of mice in the CGA+RT group compared with the
control group (Figure 5(c)). The combined treatment group
showed a significant gain of tumor volume compared with
the RT group, implying a CGA-conferred radio-resistant
effect (Figure 5(d)). Consistent with ex vivo results, CGA

suppressed radiation-induced tumor inhibition in the HCC
mouse model. In addition, we also found there were no sig-
nificant difference in liver morphology and serum ALT,
AST, BUN, and LDH level between normal mice and CGA
treated, RT treated, and CGA+RT treated mice (Supple-
mental Figures 5 and 6). The above data suggest that CGA
may have limited effect during irradiation in mice normal
liver.

4. Discussion

This study was novel in demonstrating that CGA, previously
regarded as a chemopreventive drug in several types of can-
cer, might confer radioresistance in HCC through modulat-
ing the ROS/Nrf2 signaling pathway. The schematic diagram
of the mechanism is summarized in Figure 6.

HCC is a leading cause of cancer-related death world-
wide and is a major health problem, especially in developing
countries [3]. RT plays an important role in the treatment
and survival of patients with HCC, but the efficacy is limited
in some patients manifested as radiation resistance. RT trig-
gers DNA damage, for the most part through the generation
of free radicals that cause a variety of DNA lesions. Antiox-
idant agents capable of removing free radicals and activating
the Nrf2 antioxidant pathway have been reported to have the
radioprotective ability in fibroblasts and bone marrow
hematopoietic cells [15, 33]. However, whether antioxidants
affect the therapeutic effect of RT on tumors is rarely
elucidated.

CGA, a major polyphenol compound with robust anti-
oxidant ability, exists naturally in various agricultural prod-
ucts such as coffee and tea [16]. So far, CGA has been
engaged in 16 clinical trials, including treatment for diabetes,
dyslipidemia, metabolic syndrome, endothelial dysfunction,
and overweight conditions, in addition to six cancer treat-
ment trials. No clinical trial of the use of CGA in liver cancer
has been conducted yet. Previous laboratory studies have
found direct free radical scavenging activity and anti-HCC
ability of CGA [21, 23]. The in vitro and in vivomodels were
established in our study to investigate the effects of CGA
during RT treatment on HCC.

First, we tested whether CGA incubation alone exerted
cytotoxicity effects on HCC cells; we found it nontoxic
within a concentration of 100μM in several HCC cell lines
(Huh7 and Hep3B). In addition, we found that HCC cells
were quite sensitive to RT in vitro. A serial of doses of RT
from 2 to 6Gy inhibited clonogenic survival by more than
70% (P < 0:0001). Next, we pretreated HCC cells with
CGA for 2 h and then exposed them to RT. Compared with
the control treatment, CGA preincubation significantly
increased the survival rate of HCC cells after RT (P < 0:05
). Subsequently, we observed the dynamic changes of oxida-
tive stress induced by RT [1] and found that ROS and apo-
ptosis reached a peak within 8 h. In the control group,
CGA did not change the basal ROS level and apoptosis per-
centage of HCCs. However, pretreatment with CGA at non-
cytotoxic concentrations significantly eliminated the rapid
and robust increase in ROS and apoptosis induced by RT.
These results were in accordance with the previously
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established antioxidant properties of CGA [18, 23, 34, 35].
However, it is interesting that these phenomena were not
observed in normal hepatocyctes LO2 cells (Supplemental
Figure 2). Besides, we also studied the effect of CGA on
RT-induced DNA damage. Compounds with antioxidant
characteristics have been shown to exert protective effects
against DNA damage [14]. Also, under CGA pretreatment,
the expression of γ-H2AX and 53BP1 decreased after RT.

Since RT is linked to ROS generation and ROS levels are
mainly mediated by the Nrf2 signaling pathway [8, 36], we
proposed that CGA might counteract the effects of RT by
removing radicals and activating the Nrf2 signaling pathway.
To verify our hypothesis, we treated cells with different doses
of CGA and extracted cytoplasmic and nuclear proteins
from CGA-treated cells. The net effect included activated
Nrf2 and its downstream target genes and decreased ROS
levels. Furthermore, the blockade of the Nrf2 signaling path-
way with Nrf2 siRNA reversed the aforementioned CGA-
mediated decrease in RT-triggered DNA damage and
growth inhibition. Finally, we explored whether CGA
affected the efficacy of RT in vivo. We found that the addi-
tional administration of CGA reduced radiation-induced
HCC growth inhibition by decreasing tumor apoptosis. Pre-
viously, Yan et al. [21] reported results opposite to ours that
CGA could prevent the progression of HCC in HepG2 (p53
wild-type) cells derived from xenograft nude mice. However,
we used p53 mutant Huh7 cells in animal models, which
suggested that p53 might play an important role in the
CGA-mediated prevention of HCC. Further exploration is
underway to elucidate the influence of p53 loss on CGA-
mediated radioresistance.

In conclusion, this study provided in vitro and in vivo
evidence that CGA hindered the treatment efficacy of RT
on HCC. In vitro, CGA inhibited RT-induced ROS genera-
tion, apoptosis, and DNA damage. In vivo, CGA promoted
HCC growth after RT treatment. The possible molecular
mechanism involved ROS scavenging, Nrf2 nuclear translo-
cation, and downstream signaling pathway activation.
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