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Bisphenol A (BPA) is one of the environmental endocrine disrupting toxicants and is widely used in the industry involving
plastics, polycarbonate, and epoxy resins. This study was designed to investigate the toxicological effects of BPA on
hematology, serum biochemistry, and histopathology of different organs of common carp (Cyprinus carpio). A total of 60 fish
were procured and haphazardly divided into four groups. Each experimental group contained 15 fish. The fish retained in
group A was kept as the untreated control group. Three levels of BPA 3.0, 4.5, and 6mg/L were given to groups B, C, and D
for 30 days. Result indicated significant reduction in hemoglobin (Hb), lymphocytes, packed cell volume (PCV), red blood cells
(RBC), and monocytes in a dose-dependent manner as compared to the control group. However, significantly higher values of
leucocytes and neutrophils were observed in the treated groups (P < 0:05). Results on serum biochemistry revealed that the
quantity of glucose, cholesterol, triglycerides, urea, and creatinine levels was significantly high (P < 0:05). Our study results
showed significantly (P < 0:05) increase level of oxidative stress parameters like reactive oxygen species (ROS) and
thiobarbituric acid reactive substances (TBARS) and lower values of antioxidant enzymes (superoxide dismutase (SOD),
catalase (CAT), peroxidase (POD) in treated groups (4.5mg/L and 6mg/L)) in the brain, liver, gills, and kidneys. Our study
depicted significant changes in erythrocytes (pear shaped erythrocytes, leptocytes, microcytes, spherocytes, erythrocytes with
broken, lobed, micronucleus, blabbed, vacuolated nucleus, and nuclear remnants) among treated groups (4.5mg/L and 6mg/L).
Comet assay showed increased genotoxicity in different tissues including the brain, liver, gills, and kidneys in the treated fish
group. Based on the results of our experiment, it can be concluded that the BPA exposure to aquatic environment is
responsible for deterioration of fish health, performance leading to dysfunction of multiple vital organs.
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1. Introduction

BPA is an estrogenic endocrine distorting chemical being
used in manufacturing of polycarbonate and epoxy resins
[1–3]. It is also present in dental sealants, water and baby
bottles, food and beverage packaging, paper coatings, flame
retardants, and adhesives [4, 5]. In 2011, by considering
the BPA lethality, The European Commission (EC) has
banned its use in the production of polycarbonate and infant
feeding bottles. Despite of regulations on BPA, a variety of
BPA analogues are being extensively manufactured and
applied worldwide. However, predominantly BPA is still
one of the most analogues that contaminate aquatic ecosys-
tems causing health-related threats to the aquatic life [6–8].
BPA discharges into water environment not only from daily
useable but also from landfill sites and waste water treatment
plants [9]. Considering the effects of anthropogenic and
local attributes of aquatic ecosystems, BPA toxicity has been
reached at maximum level with geometric means. According
to meta-analysis, the recorded values of BPA in fresh water
is 42.3 (63,640) ng L−1, in brackish water is 28.6 (5,100) ng
L−1, and in sea water is 17.7 (1,918) ng L−1 [10]. Conse-
quently, it is difficult for aquatic organism such as tiny fish,
plants, spineless creatures, and vertebrates to escape from
the harmful impact of BPA [11, 12]. In human, BPA expo-
sure below the level of average exposure (50 to 4μg/Kg
weight/day) is more lethal as compared to high unpredicted
doses [13, 14]. BPA, like other intestinal phenols, and glucu-
ronic acid have ability to get absorbed and ingested by
human gastrointestinal tract and liver cells and may be
excreted in urine [15, 16]. Furthermore, due to estrogenic
activity, its pre- and postnatal exposure can decrease serum
testosterone and erythropoietin production level in animals
which results in increase in destruction of red blood cells
by decreasing the concentration of hemoglobin [17–19]. It
can also be stored in adipose tissues due to its lipophilic
nature [20–22]. Among aquatic animals, fish are highly sen-
sitive to different pollutants including BPA which is mainly
absorbed through the skin, gills, and alimentary route and
get absorbed into the body tissues by disrupting the physio-
logical and biochemical processes. A number of studies
regarding effects of BPA on the growth, behavior, morpho-
logical characters, genotoxicity, biochemical, and histologi-
cal changes in fish were reported [23–27]. BPA may also
change the gene expression pattern throughout the develop-
ment of body organs and is strongly influenced by both
genetic and environmental factors [28, 29]. It can cause the
alteration of calcium homeostasis by inhibiting the calcium
regulating hormones in goldfish [30]. It may also increase
the lymphocyte production at high concentrations of 500–
1,000mg/L which may ultimately inhibit macrophage pro-
duction in goldfish [31]. Liver and kidneys of fish can also
be damaged with the increase of creatinine level when they
were subjected to the continuous exposure of BPA [32, 33].
Moreover, BPA contaminated fish have also been served as
the bioindicators of aquatic environments [34]. In environ-
mental studies, the detection of different biomarkers in
response of adverse effects of BPA has been proven as a sen-
sitive and reliable end point [35].

Reports documented sublethal toxicity effects of BPA in
fresh water carp (Aristichthys nobis) including hematologi-
cal, biochemical, erythrocytes, organs, and nuclear changes
[12]. Addressed information of bisphenol A persistent toxic-
ity is not sufficient regarding antioxidant enzymes, oxidative
stress markers, erythrocytes, and nuclear changes in Cypri-
nus carpio. Studies have highlighted that investigation of
hematobiochemical parameters and morphological changes
in erythrocyte of fish are reliable and useful tools for moni-
toring to toxic effects of different environmental pollutants
[36–38]. Therefore, current study is aimed at exploring the
potential toxic effects of BPA on the blood, brain, liver, gills,
and kidneys of C. carpio.

In light of the abovementioned observations, the current
study was planned to investigate the toxic effects of BPA on
the common carp (Cyprinus carpio). C. carpio is an impor-
tant fish used as food, having high fecundity/hatchability
rate and easy to culture in intensive and semi-intensive cul-
tures [39]. More importantly, C. carpio farming employs
more than 400.000 people in Pakistan [40]. According to lit-
erature, BPA effects specifically on C. carpio are scarce.
Therefore, we select the fresh water fish common carp as a
model animal to determine the toxicological effects of BPA
at low levels. Current study is aimed at exploring the alter-
ations in histopathological, hematobiochemical, oxidative
stresses, and antioxidants pattern in common carp subjected
to bisphenol A exposure. We also highlighted the erythro-
cytes changes and genotoxicity (nuclear changes) in com-
mon carp exposure to BPA toxin.

2. Experimental

2.1. Ethical Statement. The present study was performed in
the laboratories of Department of Zoology and Department
of Pathology (Faculty of Veterinary and Animal Sciences),
The Islamia University of Bahawalpur. All the standard pro-
tocols for the preparation of chemicals and reagents were
used in the whole experiment. The ethics of animals han-
dling provided by the Institutional Bioethics Committee
(IBC) of The Islamia University of Bahawalpur, Pakistan,
were strictly followed.

2.2. Chemicals. All the analytical grade chemicals used in this
research were attained from Merck (Germany) and Sigma-
Aldrich, (St. Louis, Missouri, USA). The crystalline white
powder of BPA (CAS registry No. 80-05-7, purity of 99%)
was acquired from commercial scientific store at Lahore,
Pakistan.

2.3. Experimental Design. A total of 60 common carps
(Cyprinus carpio), active and apparently healthy, with the
weight ranging from 200 to 250 g were obtained from the
local fisheries complex of district Bahawalpur, Pakistan. All
fish were brought to laboratory in plastic bags with appro-
priate hatchery water and oxygen and then left to glass aqua-
ria (25″L × 45″W × 35″H) for acclimatization under
standard laboratory conditions at ±25°C temperature for
15 days. The pH of water, different other water quality pro-
file, was determined prior to start of experimental research,
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and aerators were maintained in the all aquaria. Following
acclimatization, all fish were randomly divided into four
groups and were kept in 100 L water in glass aquaria (15 fish
in each) with constant photoperiod of 12/12hday-night
cycle, where group A was the control group while B-D were
the treated groups. All the aquaria were supplied with oxy-
genators to maintain sufficient supply of oxygen to experi-
mental fish. Different sublethal concentrations of BPA (3,
4.5 and 6mg/L) were selected and poured in each aquarium
in accordance with the previous study [41]. After every third
day, water of each aquarium was replaced with the fresh
water. All the fish were daily given 30 CP (crude protein),
and the daily feed intake was set to 3% of the fish body
weight. All behavioral changes, clinical signs, and mortality
rate were observed throughout the experimental period.

2.4. Hematobiochemical Parameters. At day 30, blood sam-
ples from caudal vein of each treated and control fish were
collected by using 26-gauge hypodermic needle and then
kept in anticoagulant EDTA coated glass tubes for process-
ing the hematology [42]. All the experimental fish were
anaesthetized using clove oil (4.5mg/L) to reduce the stress
and for collection of blood samples. Various blood parame-
ters including total erythrocyte count, toal and differential
leukocyte count, and pack cell volume were measured [43].
For serum separation, blood samples placed in anticoagulant
EDTA coated tubes were first placed in ice and then centri-
fuged at 2500× g for 10 mins. The supernatant were ali-
quoted for analyzing the serum biochemical parameters
including urea, albumin, creatinine, glucose, cholesterol,
and triglycerides by following the protocols of available
commercial kits (M/S Randox Company) with the help of
chemistry analyzer [44, 45].

2.5. Histopathological Analysis. For histopathological analy-
sis, all fish were given anesthesia with isoflurane in a separate
chamber for dissection. The vital organs such as brain, gills,
heart, kidneys, and liver were immediately removed from all
fish groups and handled with the standard protocol devised
by [46]. Concisely, samples were rinsed in isotonic saline
solution and preserved in the neutral buffered formaldehyde
(pH7.2) solution. After preservation of all tissue samples,
ascending ordered alcoholic solutions were used to dehy-
drate them and finally embed them in the paraffin wax. A
rotatory microtome (Shandon Finesse, Italy) was used to
slice the 4-5μm thick sections from all the tissues. All sec-
tions were kept to dry on a slide warmer at 37°C, deparaffin-
ized in xylene, and again set to dehydrate it through a series
of ascending ordered alcohol solutions. Finally, all sections
were stained with standard hematoxylin and eosin (H&E)
methods, cleared in xylene again, and mounted in DPX
mountant medium. Sections of all the test specimens were
observed under light microscope (Leica, Germany).

2.6. Genotoxicity (Nuclear Damage) Evaluation. For mor-
phological and nuclear changes in erythrocytes of treated
groups, fine thin blood film was prepared without anticoag-
ulants. To study the erythrocytes morphology, approxi-
mately 1500 red blood cells were observed from each fish

using light microscope [47], We used comet assay to study
the nuclear damage in tissues including brain, liver, gills,
and kidneys [48, 49]. Electrophoresis was performed at
25V for 30min [50]. Following electrophoresis, slides were
neutralized with chilled 0.5M Tris buffer (ph 7.5). Finally,
the ethidium bromide-stained slides were visualized under
fluorescence microscope at ×400 magnification power.

2.7. Oxidative Stress Parameters and Antioxidant Enzyme
Estimation. To study the biochemical parameters, fish of
each control and treatment groups were dissected at day
30. Brain, liver, gills, and kidneys of dissected fish were
placed in ice chilled saline solution. Each tissue was prepared
for estimation of reactive oxygen species (ROS), reduced glu-
tathione (GSH), thiobarbituric acid reactive substances
(TBARS), and antioxidant enzymes including peroxidase
(POD), catalase (CAT), and superoxide dismutase (SOD).
Oxidative stress parameters in the brain, liver, kidney, and
gills were estimated following the reported studies earlier
including ROS [51], GSH [52], and TBARS [53]. Antioxi-
dant enzymes in the brain, liver, gills, and kidneys of treated
and control fish were determined according to documented
protocol earlier including POD, CAT [54], and SOD [55].

2.8. Statistical Analysis. Data was analyzed by ANOVA using
SPSS (SPSS Inc., Illinois, USA) program. Mean ± SE values
for hematological, biochemical, nuclear changes in erythro-
cytes, oxidative stresses, and antioxidant enzymes among
control and treated groups were compared by Tukey’s test.
Calculated values of P < 0:05 were considered statistically
significant.

3. Results

3.1. Physical and Blood Biochemical Responses. No clinical
signs/abnormalities and mortality were observed in the
untreated control group-A. The treated groups with low to
high doses of BPA (3, 4.5, 6mg/L) showed different mild
to severe (dose and time dependent) physical responses like
loss of equilibrium, operculum movement, faintness, chan-
ged skin color (black spots on body surface), a regular secre-
tion of mucosa from gills and mouth, tremor of fins, jerking
with uneven swimming, lying on one side while swimming,
air gulping, and bulging of eyes. Severity of different clinical
and behavioral signs including loss of equilibrium, tremor of
fins, operculum movement, mucous secretion, and dark skin
color was increased with increased time for the fish exposed
to 4.5mg/L and 6mg/L of BPA.

In hematological analysis of the controlled group, the
values of all parameters including hemoglobin, erythrocytes,
leucocytes, lymphocytes, packed cell volume (PCV), neutro-
phils, and monocytes were found normal. However, in BPA
exposed groups, the values of hemoglobin, erythrocytes, lym-
phocytes, PCV, and monocytes were found significantly
decreased depending on the dose concentration when com-
pared with the control group (P < 0:05), while gradually
increased values of leucocytes and neutrophils were observed
in treated groups when compared to the control group
(Table 1). According to biochemical analysis of BPA exposed
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groups, the values of glucose, cholesterol, triglycerides, creati-
nine, and urea were observed significantly high as compared
to the control group (P < 0:05) while albumin protein was
observed gradually decreased in dose-dependent manner as
compared to the control group (Table 1).

3.2. Gross and Histopathological Studies. At necropsy level,
no gross abnormalities were observed in visceral organs
including the brain, gills, heart, kidneys, and liver of the
untreated control group, and the fish kept in group B was
exposed to the low concentration of BPA. Grossly, a dose-
and time-dependent moderate to severe pathological lesions
including degeneration and necrosis of neurons, edema and
disorganization of cardiac muscles, loss of hepatocytes integ-
rity, disruption of gill’s primary and secondary lamellae,
deformed renal tubules, and increased bowman space were
observed in visceral organs (brain, gills, heart, kidneys, and
liver) of fish kept in groups C and D. Histopathological
observation of different sections of the brain of treated fish
showed moderate to severe microscopic changes
(Figures 1(a)–1(e)). Among few prominent changes includ-
ing necrosis and degeneration of neurons, congestion and
microgliosis were also observed in the brain of various
treated fish (Figure 1(a)). Histopathological observations of
the gills sections showed the moderate to severe uplifting
and disruption of primary and secondary lamellae, fusion
of secondary lamellae, congestion, disruption, and ruptured
cartilaginous cord as well as severe hemorrhages shown in
(Figure 1(b)). Disorganization of cardiac muscles, edema,
and necrosis of cardiac cells was seen in heart’s tissue sec-
tions (Figure 1(c)). Microscopic changes including increased
bowman space, moderate to severe congestion, pyknosis,
necrosis, and inflammation in tubular cells in kidney sec-
tions were evident in various treated groups of fish
(Figure 1(e)). The degenerated hepatocytes, atrophy, cyto-
plasmic vacuolation, eccentric nuclei, fatty infiltration,

necrosis, and congestion were observed in liver tissues of
the treated fish (Figure 1(d)).

3.3. Morphological and Nuclear Changes in Erythrocytes. Our
study results clearly depicted the significant morphological
changes in erythrocytes among treated groups (4.5 and
6mg/L) (Table 2). The rate of different morphological and
nuclear changes like pear shaped erythrocytes, leptocytes,
microcytes, spherocytes, and erythrocytes with fragmented
nucleus, lobed nucleus, micronucleus, blabbed nucleus, vac-
uolated nucleus, and nuclear remnants in red blood cells of
fish exposed to 4.5 and 6mg/L BPA exhibited significantly
increased at day 30 as compared to the untreated group
(Table 2). The values of erythrocytes with lobed, broken
nucleus (BR), blabbed nucleus, nuclear remnants, micronu-
cleus, and pear shaped erythrocytes significantly increased
in fish exposed to 4.5 and 6mg/L BPA at day 30 of the exper-
iment (Figures 2(a) and 2(b)).

3.4. Oxidative Stress Parameters, Antioxidant Enzymes, and
Genotoxicity. Current study results depicted the significantly
increased generation of ROS and TBARS in brain tissue of
fish treated with 4.5 and 6mg/L concentrations of BPA at
day 30 of trial (Table 3). The contents of TBARS and ROS
increased significantly in brain tissue of treated fish. No sig-
nificant differences were reported among the control group
and fish exposed to 3mg/L BPA. Antioxidants enzymes
(SOD, CAT and POD) in our study were significantly
reduced in brain tissue of fish treated to 4.5 and 6mg/L con-
centrations of BPA (Table 3). Our study results displayed
similar profile of significance regarding oxidative stress
parameters and antioxidant enzymes in the liver, gills, and
kidneys. All these organs showed significantly decreased
values in fish groups treated to 4.5 and 6mg/L concentra-
tions of BPA at day 30 as compared to the fish untreated
group. No significant results were reported regarding

Table 1: Hematobiochemical profile of fish exposed to different concentrations of BPA.

Parameters
Treatment groups

Control A B (3mg/L) C (4.5mg/L) D (6mg/L)

Red blood cells (106/mm3) 4:42 ± 0:10 3:92 ± 0:09 3:22 ± 0:06∗ 2:15 ± 0:09∗

Hemoglobin (g/dL) 9:95 ± 0:78 9:40 ± 0:10 7:95 ± 0:01∗ 6:45 ± 0:09∗

Pack cell volume (%) 40:92 ± 2:16 38:89 ± 1:15 38:10 ± 0:13∗ 29:51 ± 0:55∗

White blood cells (103/mm3) 15:25 ± 0:34 18:68 ± 0:05 19:05 ± 0:18∗ 25:92 ± 0:94∗

Neutrophil (%) 15:35 ± 0:18 18:90 ± 0:71 19:29 ± 0:89∗ 23:92 ± 0:91∗

Lymphocyte (%) 21:23 ± 0:12 19:91 ± 0:09 18:83 ± 0:06∗ 15:50 ± 0:70
Monocyte (%) 3:38 ± 0:09 3:09 ± 0:08 3:05 ± 0:06∗ 2:14 ± 0:01∗

Glucose (mg/dL) 37:87 ± 1:66 38:87 ± 1:66 42:12 ± 1:27∗ 44:98 ± 1:51∗

Cholesterol (mg/dL) 183:53 ± 1:38 187:61 ± 1:33 190:51 ± 1:21∗ 212:75 ± 1:27∗

Triglycerides (mg/dL) 192:01 ± 1:71 193:11 ± 1:81 196:22 ± 1:91∗ 220:08 ± 1:81∗

Albumin (mg/dL) 3:42 ± 0:11 3:40 ± 0:11 3:15 ± 0:08∗ 2:45 ± 0:05∗

Creatinine (mg/dL) 1:82 ± 0:02 1:87 ± 0:01 2:11 ± 0:02∗ 2:38 ± 0:01∗

Urea (mg/dL) 11:31 ± 0:33 12:38 ± 0:34 12:95 ± 0:01∗ 16:99 ± 0:01∗

The data are represented as mean ± SD. Values bearing asterisk in each rows show significant difference as compared to the control group (P < 0:05).
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oxidative stress parameters and antioxidant enzymes to fish
exposed to 3mg/L BPA and control group (Table 3). Comet
assay in current study (Figure 3) showed the DNA damage
at day 30 in brain, liver, gills, and kidneys tissue of treated
fish groups.

4. Discussion

Damaging extent of environmental toxins in aquatic life is of
great importance. Various blood biochemical and histopa-
thological changes may reflect the deleterious effects of pol-
lutants on various exposed fish fauna [56, 57]. BPA, being an
endocrine disruptor, has been applied to elucidate the toxic

effects on different fish tissues like the brain, heart, gills,
liver, and kidneys [12, 17, 58]. BPA continuous use and its
emerging ill effects in the environment have fetch the atten-
tion of scientists to monitor the long-term effects at low dose
exposures in order to minimize the risks to the public health.
The innovative lay of the present study was the sublethality
test of the BPA in C. carpio regarding clinical and histopa-
thological changes in the vital organs. Primarily, some
behavioral responses including movement of operculum,
mucus secretion, irregular swimming pattern, trembling of
fins, air gulping, body imbalance, and dark skin of fish were
observed and compared with the control-A group. Accord-
ing to previous studies, these same observations were found

(a) (b)

(c) (d)

(e)

Figure 1: Photomicrograph of common carp (a) brain showing congestion (arrows) and necrosis of neurons (arrowhead). (b) Gills showing
aneurysm (arrow), uplifting of lamellae (∗), and disruption of cartilaginous core (∗∗). (c) Heart showing edema (∗) and degeneration of
cardiac muscles (arrowheads). (d) Liver showing atrophied hepatocyte (arrows) and necrotic hepatocyte (arrowhead). (e) Kidneys
showing edema (arrows) and necrosis of tubules (arrowheads) to BPA at day 30 of study.
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comparable in Cirrhinus mrigala [59], Labeo rohita [12],
Ctenopharyngodon [60], zebrafish [61], bighead carp [12],
and Channa punctatus [62]. Moreover, clinical ailments in
vertebrates [26, 63, 64] have also been reported. The findings
of present study were observed which are also similar when
Heteropneustes fossilis and C. carpio were exposed to differ-
ent concentrations of insecticides [42, 65]. These behavioral
changes in treated fish might be due to the learning deficits,
neurotoxic effects, and irritation to the perceptive system of
the animal’s body [66–69].

According to hematological study, the values of hemo-
globin, erythrocytes, lymphocytes, PCV, and monocytes

were found significantly decreased depending on the dose
concentration when compared with the control group, while
gradually increased values of leucocytes and neutrophils
were observed in treated groups when compared to the con-
trol group. Similar results were also reported when com-
pared with the previous findings [57, 70]. They suggested
that it might be due to very low supply of oxygen to RBCs.
Hence, it has already been reported that different stress con-
ditions in animals can increase the reactive oxygen species
(ROS), white blood cells (WBCs), RBCs, Hb, and mean cor-
puscular hemoglobin concentration (MCHC), which is ulti-
mately due to activation of the immune system, swelling

Table 2: Morphological and nuclear changes in erythrocytes of fish exposed to different concentrations of BPA.

Parameters
Treatment groups

Control A B (3mg/L) C (4.5mg/L) D (6mg/L)

Morphological changes in erythrocytes

Pear shaped erythrocyte (%) 0:59 ± 0:03 0:61 ± 0:03 0:63 ± 0:03∗ 0:93 ± 0:02∗

Leptocytes (%) 0:38 ± 0:02 0:39 ± 0:02 0:84 ± 0:2∗ 0:98 ± 0:02∗

Microcytes (%) 0:60 ± 0:01 0:64 ± 0:01 0:88 ± 0:01∗ 0:97 ± 0:01∗

Spherocytes (%) 0:40 ± 0:03 0:42 ± 0:03 1:64 ± 0:03∗ 2:76 ± 0:03∗

Erythrocyte with broken nucleus (%) 0:28 ± 0:01 0:32 ± 0:01 0:96 ± 0:01∗ 1:40 ± 0:01∗

Erythrocyte with lobed nucleus (%) 0:41 ± 0:01 0:45 ± 0:01 1:49 ± 0:01∗ 1:53 ± 0:01∗

Erythrocyte with micronucleus (%) 0:38 ± 0:03 0:39 ± 0:03 2:62 ± 0:03∗ 3:74 ± 0:03∗

Erythrocyte with blabbed nucleus (%) 0:26 ± 0:02 0:28 ± 0:02 0:94 ± 0:02∗ 1:50 ± 0:02∗

Erythrocyte with vacuolated nucleus (%) 0:17 ± 0:01 0:21 ± 0:01 0:22 ± 0:01∗ 1:29 ± 0:01∗

Erythrocyte with nuclear remnants (%) 0:22 ± 0:01 0:24 ± 0:01 0:27 ± 0:01∗ 1:34 ± 0:01∗

The data are represented as mean ± SD. Values bearing asterisk in each rows show significant difference as compared to the control group (P < 0:05).

(a) (b)

Figure 2: (a, b) Photograph of blood smear of common carp (Cyprinus carpio) fish exposed to BPA at day 30 showing different
morphological and nuclear abnormalities in erythrocytes such as erythrocytes with lobed nucleus (Lb), erythrocytes with broken nucleus
(BR), blabbed nucleus (B), nuclear remnants (N), Erythrocytes with micronucleus (M), and pear-shaped erythrocytes (P). Giemsa stain;
×1000.
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and/or additional release of erythrocytes, decreased pH, and
decreased plasma volume in the blood [71, 72]. The
observed reduction in the hematological parameters may
be due to the internal hemorrhage, destruction, and less pro-
duction of erythrocytes due to toxic accumulation of
BPA [73].

According to biochemical analysis of BPA exposed
groups, the values of glucose, cholesterol, triglycerides, creat-
inine, and urea were observed significantly high as compared

to the control group while albumin protein was observed
gradually decreased in dose-dependent manner as compared
to the control group. Various reports on other fish species
are also available which indicate the same abnormal levels
of urea and creatinine, damage of tissues of visceral organs,
fatty liver, abnormal structure of cells, and malfunctioning
of hepatic enzymes while exposed to BPA [66, 74]. Signifi-
cant increase in creatinine and uric acid may indicate that
BPA affects muscle and purine metabolism. This increase

Table 3: Oxidative stress parameters (ROS, TBARS, GSH) and quantity of antioxidant enzymes (SOD, CAT, POD) in the brain, liver, gills,
and kidneys of fish exposed to different concentrations of BPA.

Parameters
Treatment groups

Control A B (3mg/L) C (4.5mg/L) D (6mg/L)

Brain

Reactive oxygen species (ROS)contents (optical density) 0:23 ± 0:03 0:25 ± 0:05 0:31 ± 0:01∗ 0:35 ± 0:02∗

Thiobarbituric acid reactive substances (TBARS)
content (nmol/TBARS formed/mg protein/min)

0:26 ± 0:03 0:28 ± 0:04 0:36 ± 0:01∗ 0:37 ± 0:03∗

Reduced glutathione GSH (μmol/g tissue) 2:31 ± 0:01 2:25 ± 0:01 1:79 ± 0:11∗ 1:73 ± 0:09∗

Antioxidant enzymes

Superoxide dismutase SOD (units/mg protein) 9:33 ± 0:22 9:31 ± 0:26 7:39 ± 0:25∗ 7:27 ± 0:23∗

Catalase CAT (units/min) 4:32 ± 0:15 4:24 ± 0:18 3:28 ± 0:27∗ 3:16 ± 0:02∗

Peroxidase POD (units/min) 2:76 ± 0:09 2:68 ± 0:06 2:04 ± 0:01∗ 2:01 ± 0:03∗

Liver

Reactive oxygen species (ROS)contents (optical density) 0:17 ± 0:01 0:21 ± 0:02 0:25 ± 0:01∗ 0:29 ± 0:05∗

Thiobarbituric acid reactive substances (TBARS)
content (nmol/TBARS formed/mg protein/min)

25:6 ± 0:19 25:9 ± 0:29 29:2 ± 0:09∗ 32:5 ± 0:17∗

Reduced glutathione GSH (μmol/g tissue) 5:63 ± 0:01 5:57 ± 0:06 5:51 ± 0:01∗ 4:55 ± 0:01∗

Antioxidant enzymes

Superoxide dismutase SOD (units/mg protein) 12:17 ± 0:19 12:07 ± 0:13 10:37 ± 0:19∗ 9:07 ± 0:21∗

Catalase CAT (units/min) 6:49 ± 0:12 6:45 ± 0:07 4:26 ± 0:02∗ 4:16 ± 0:05∗

Peroxidase POD (units/min) 4:73 ± 0:07 4:51 ± 0:09 3:49 ± 0:02∗ 3:37 ± 0:01∗

Gills

Reactive oxygen species (ROS)contents (optical density) 0:19 ± 0:03 0:23 ± 0:02 0:27 ± 0:01∗ 0:31 ± 0:01∗

Thiobarbituric acid reactive substances (TBARS)
content (nmol/TBARS formed/mg protein/min)

34:62 ± 0:21 35:30 ± 0:21 39:98 ± 0:11∗ 40:66 ± 0:23∗

Reduced glutathione GSH (μmol/g tissue) 1:33 ± 0:02 1:27 ± 0:03 1:07 ± 0:03∗ 1:02 ± 0:03∗

Antioxidant enzymes

Superoxide dismutase SOD (units/mg protein) 8:87 ± 0:05 8:65 ± 0:07 7:03 ± 0:02∗ 7:01 ± 0:03∗

Catalase CAT (units/min) 2:90 ± 0:01 2:78 ± 0:02 2:06 ± 0:05∗ 2:01 ± 0:03∗

Peroxidase POD (units/min) 0:32 ± 0:03 0:28 ± 0:01 0:230 ± 0:05∗ 0:19 ± 0:04∗

Kidneys

Reactive oxygen species (ROS)contents (optical density) 0:32 ± 0:06 0:36 ± 0:01 0:40 ± 0:03∗ 0:44 ± 0:07∗

Thiobarbituric acid reactive substances (TBARS)
content (nmol/TBARS formed/mg protein/min)

34:15 ± 0:23 36:87 ± 0:23 39:59 ± 0:21∗ 40:31 ± 0:23∗

Reduced glutathione GSH (μmol/g tissue) 4:42 ± 0:01 4:22 ± 0:04 3:35 ± 0:11∗ 3:25 ± 0:09∗

Antioxidant enzymes

Superoxide dismutase SOD (units/mg protein) 12:50 ± 0:11 11:91 ± 0:13 9:22 ± 0:18∗ 9:507 ± 0:13∗

Catalase CAT (units/min) 4:23 ± 0:07 4:17 ± 0:05 3:31 ± 0:11∗ 3:15 ± 0:03∗

Peroxidase POD (units/min) 3:96 ± 0:02 3:84 ± 0:02 3:12 ± 0:09∗ 3:02 ± 0:07∗

The data are represented as mean ± SD. Values bearing asterisk in each rows show significant difference as compared to control group (P < 0:05).
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may also be due to the damage of renal tubules. The histopa-
thological changes including degeneration and necrosis of
glomerulus and decrease in hematopoietic tissue in the same
fish species after BPA exposure were reported [17]. This

decrease in hematopoietic tissue may be a cause of increase
in serum uric acid. The lower values of these blood parame-
ters could also be due to the hemolysis, rapid oxidation of
hemoglobin, and destruction of erythrocyte [75, 76].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Photograph of comet assay/single cell electrophoresis showing (a) normal brain tissue cells with intact nuclear material, (b) brain
tissue cells with damage nuclear material, (c) normal liver tissue cells with intact nuclear material, (d) liver tissue cells with damage nuclear
material, (e) normal gills cells, (f) gill tissue cells with damage nuclear material, (g) normal kidney tissue cells, and (h) kidney tissue cells with
damage nuclear material at day 30 displaying significant genotoxicity (DNA/nuclear damage) evident by fluorescing of nuclear material.
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In the present study, the histopathological changes in
gills like uplifting of primary and secondary lamellae, dis-
ruption of primary and secondary lamellae, fusion of sec-
ondary lamellae, congestion, and ruptured cartilaginous
cord were observed in response of high dose of BPA. In
the light of other studies, such major changes are responsible
to increase the distance through which irritant can be
reached to the blood stream; so, they could serve the defense
mechanism against toxicant and may also support to
enhance the ventilation capacity to compensate the impaired
uptake of oxygen in fish [77]. Literature based on previous
reports provide the same information on gills changes like
sloughing of epithelium of primary and secondary lamella,
lamellar stunting, curled lamellae arrangements, aneurysm,
and edema in fish exposed to different toxic chemicals [42,
78, 79]. Different microscopic lesions in gills of zebrafish
due to disruption of ionic regulation associated with BPA
toxicity have also been reported [80].

In the present study, no histopathological changes were
observed in fish liver of control groups. However, dose
dependent severities including ruptured hepatocytes, rup-
tured central vein, necrosis, congestion, and degeneration
in hepatocytes were observed in liver tissues of fish. Similar
changes were observed when different levels of BPA were
exposed to different fish species at different times [81, 82].
According to their findings, the fish exposed to various con-
centrations of BPA showed sinusoidal dilation, lipid accu-
mulation, central vein congestion, necrosis, and hepatocyte
vacuolization. Hence, same results have been reported with
the exposure of another xenobiotic chemical nonylphenol
to Clarias gariepinus [83]. In the light of previous studies,
it is being suggested here that the observed changes in liver
structure might be due to degeneration of structural proteins
and accumulation of lipids in membranes. The vacuolization
in hepatocytes is also due to the improper synthesis of sub-
stances in parenchymal cells and its release into blood circu-
lation [84].

No histological changes were observed in the kidney sec-
tion in the control group; hence, dose-dependent effects like
necrosis and inflammation in tubular cells, degeneration in
renal cells, congestion, and increased bowman space were
observed. More or less, these findings can be compared in
C. catla [17] and Heteropneustes fossilis [33] when exposed
to BPA. They reported hypertrophy of glomerulus, degener-
ation, and dissociation of renal tubules and bowman capsule,
proliferation in the renal tubule and haemopoietic tissue,
shrinkage of glomerulus, pyknosis, dilated blood vessel, rup-
ture of bowman capsule, and obliterated bowman space on
sublethal exposure BPA. Same results were also observed
with the exposure of other chemicals [85].

In this present study, the histopathological observation
of different sections of the brain of treated fish showed few
prominent microscopic changes including necrosis and
degeneration of neurons, congestion, and microgliosis in
brain tissues of various treated fish. Basically, these micro-
scopic changes were due to gradual increase in lipid peroxi-
dation and increased stress biomarkers (ROSs). However, it
is well documented in previous reports that exposure of ani-
mals to different toxicants causes detoxification in their bod-

ies by increasing the level of ROS which ultimately results in
less production of antioxidant enzymes [12, 26, 86]. Previ-
ously toxic effects of BPA on brain of fish have also been
reported [87]. According to previous studies, BPA may cause
neuroendocrine disruption by altering the mechanism of
kisspeptin signaling pathways [88] and by also down regu-
lating the genes involved in dopaminergic processes [24].

In this study, the histopathological sections of fish heart
indicated the disorganization of cardiac muscles, edema, and
necrosis of cardiac cells in the BPA exposed fish. Literature
on potential toxic effects of BPA on fish heart is limited;
however, a few studies were showing likewise results as hem-
orrhages, edema, neutrophilic myocarditis, and accumula-
tion of fibrin in bighead carp [12]. According to another
report on zebrafish, a high level exposure of BPA caused
abnormalities in structure and function of heart like abnor-
mal curvature caused low ventricular beat rate and blood
flow and also caused calcific aortic valve disease with extra
cellular matric in the heart [89]. It has also been reported
that cardiovascular tissues have estrogen receptors which
make heart more susceptible to endocrine disrupter BPA
which may bring severe pathological changes in different tis-
sues by altering the estrogenic pathways in the body [90].

Our study results showed significant altered nuclear mor-
phology in erythrocytes of C. carpio including different abnor-
malities like fragmented, lobed, blabbed, vacuolated, and
micronucleus. Morphological abnormalities of erythrocytes
like pear shaped, leptocytes, microcytes, and spherocytes were
also reported in current study exposed to BPA toxicity. Similar
results were also documented earlier in bighead carp due to
BPA toxicity [12]. These morphological abnormalities in
erythrocytes and nuclear changes can be best ascribed to oxi-
dative stresses in erythrocytes of fish [12, 26]. Morphological
and nuclear alterations in erythrocytes of fish can be attributed
to BPA interaction with receptors, lipid peroxidation, and
debilitated function of mitochondria [91]. Current study illus-
trated significantly heightened oxidative stress parameters and
lower antioxidant enzymes in the brain, liver, gills, and kid-
neys of BPA treated fish. Similar results were reported previ-
ously in bighead carp fish [12]. Different organism exposed
to environmental toxins show increased generation of ROS
occurs due to detoxifying mechanisms. Production of ROS
generally based upon BPA concentration and its duration lead
to lipid peroxidation process which ultimately results in cell
membrane irregularities and increased production of TBARS
[82, 92]. Higher values of oxidative stress contents in present
study might be due to exhaustion and imbalance of antioxi-
dants enzymes that are best supported by documented reports
[12, 93]. Oxidative stress induced by BPA in target organisms
lead to reduced generation of antioxidants enzymes and
enhanced lipid peroxidation [14, 94].

Our results disclosed reduced antioxidant contents
(SOD, CAT, POD) in the brain, liver, gills, and kidneys of
treated fish. Our results are in accordance to reported studies
[12, 95]. Decrease in antioxidants contents in the treated fish
group can be described due to malfunctional tissues and
enhanced consumption of energy to cope the oxidative
stresses. Not too much information is available regarding
the antioxidants parameters in common carp exposed to
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BPA. The decreased concentration of antioxidants enzymes
in different tissues in current study can be best ascribed
due to heightened oxidative stresses and reduction of antiox-
idants in these tissues which are supported by reported stud-
ies [82, 86, 96]. The decreased concentration of antioxidants
in the brain, liver, gills and kidneys in the current study
could be due to increased generation of free radicals in these
tissues due to BPA that leads to atypical functions and dis-
turbance of antioxidants processes [53, 82].

In the current study, comet assay results displayed signif-
icant genotoxicity (nuclear damage) in isolated liver, brains,
gills, and kidney tissues. It is well known that comet assay is
the approach that is widely accepted and used to evaluate
the nuclear damages in different tissues of aquatic organisms
[97–99]. In literature, no significant reports are available
regarding the nuclear damage in common carp so far but
few reports have been documented about nuclear damage to
BPA in zebrafish [100] and bighead carp [12]. Genotoxicity
(nuclear damage) in common carp in our studymay be attrib-
uted to elevated generation of free radicals and oxidative
stresses. However, the detailed underlying mechanism at cell
and molecular level is still not clear. However, genotoxicity
induced in response to BPA exposure can be described as oxi-
dative stresses through ROS and lipid peroxidation [101]
which can lead to nuclear anomalies [88]. However, current
study speculations related to nuclear damage in different tis-
sues of common carp may be attributed to genetic alterations
in exposure to BPA triggering to abnormal functioning of
proteins accountable for mitochondria malfunctioning and
nuclear proteins fragmentation. Various previous studies
have indicated that BPA causes genotoxic effects due to
induction of oxidative stress through rapid generation of free
radicals and lipid peroxidation [12, 102, 103].

5. Conclusion

Conclusively, the main mechanism involved in hematobio-
chemical and histopathological modifications in fish was
due to the gradual increase of oxidative stress caused by
BPA. The findings obtained from this research are primarily
valuable to monitor the sublethal effects of the chemical on a
prolific breeder C. carpio. Our study depicted that BPA
causes adverse effects on erythrocytes and different tissues
of common carp. This study also clearly displayed genotox-
icity (nuclear damage) in all isolated tissues of common carp
subjected to BPA exposure. Furthermore, induced BPA tox-
icity causes heightened oxidative stresses and reduced anti-
oxidants enzymes activities in the brain, liver, gills, and
kidneys of common carp leading to dysfunction and altered
tissue histology. Current study will highlight a key concern
about the human health directly or indirectly due to bisphe-
nol toxicity exposure of aquatic animals especially common
carp, which are of great economic value and of dietary
importance.
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