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Intervertebral disc degeneration (IDD) is a chronic disease affecting millions of patients; however, its specific etiology is unknown.
G protein-coupled receptors (GPRs) are a superfamily of integral membrane receptors in cells, and the receptors respond to a
diverse range of stimuli and participate in multiple cellular activities. Here, using RNA-sequencing (RNA-seq) methods and
immunohistochemistry, we revealed that G protein-coupled receptor 35 (GPR35) may have a relationship with IDD. Then, we
demonstrated that the deletion of GPR35 in nucleus pulposus cells (NPCs) with siRNA or in Gpr35-/- mice significantly
alleviated IDD caused by senescence or mechanical stress, further validating the pathological role of GPR35 in IDD. In
addition, GPR35 induced the influx of Ca2+ and upregulation of reactive oxygen species (ROS) under mechanical stress in
NPCs, which we believe to be the mechanism of GPR35-induced IDD. Finally, GPR35 caused upregulation of ROS in NPCs
under mechanical stress, while excessive ROS stimulated the NPCs to express more GPR35 with a significant dose or time
response. The u-regulated GPR35 could sense mechanical stress to produce more ROS and perpetuate this harmful cycle. In
summary, our study shows that GPR35 plays a critical role in mediating IDD via mediating the influx of calcium ions and
upregulating ROS, which implies a strong potential advantage of GPR35 as a prevention and treatment target in IDD.

1. Introduction

Intervertebral disc degeneration (IDD) is a chronic disease
that affects millions of people and can lead to acute or persis-
tent lower back or leg pain, anxiety, and motor dysfunction
[1, 2]. Epidemiological investigations showed that the inci-
dence rate of IDD in middle-aged and aged men and women
is 62.4% and 54.7%, respectively, and the follow-up rate of
new IDD in healthy volunteers is as high as 31.6% and
44.7% [2, 3]. Therefore, understanding how to effectively
deal with the challenge of IDD is an urgent need.

It has been suggested that many etiologies may contrib-
ute to IDD (e.g., axial or shear mechanical stress, gene diver-
sity, biochemical factors, or low-virulence anaerobic
bacterial infection) [1, 4]. These factors affect IDD alone or
in combination, and the pathological mechanism may be
complicated and diverse. For instance, cellular receptors
respond to many stimuli, such as mechanical stress, reactive
oxygen species (ROS), and lipopolysaccharide, to participate
in IDD processes. Of the receptors, the role of G protein-
coupled receptors (GPRs) in IDD has attracted increasing
attention.
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Figure 1: Continued.
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GPRs are a superfamily of integral membrane receptors
in cells and are characterized by a seven-transmembrane
(TM) α-helical region [5, 6]. GPRs participate in nearly
every cellular signaling event and physiological process,
comprising approximately 800 known subtypes [5, 6]. The
receptors respond to a diverse range of stimuli (e.g., photons,
lipids, carbohydrates, amines, small chemical mediators, and
complex proteins [5, 6]) and even mechanical stress [7].
Given the important role of GPRs in cellular function, nearly
40% of all pharmacopeia target these receptors [5, 6].

However, there are no reports on the function of GPRs
in intervertebral disc (IVD) disease. Through a screen of
GPR genes in IDD using RNA-sequencing (RNA-seq)
methods, we identified G protein-coupled receptor 35
(GPR35) as potentially associated with IDD. We hypothe-
sized that GPR35 participates in the pathological process of
IDD under mechanical stress or autosenescence. In addition,
we hypothesized that excessive ROS expression and Ca2+

influx may contribute to GPR35-related IDD. This research
on GPR35 facilitates the development of targeted drugs for
the management of IDD.

2. Methods

2.1. Patients and Tissue Collection. The study was approved
by the Institutional Review Board of Ruijin Hospital, Shang-
hai Jiaotong University School of Medicine, and each partic-
ipant signed an informed consent form. The patients who
underwent posterior lumbar discectomy at our hospital
because of lumbar intervertebral disc degeneration were
enrolled in this study between February 2021 and September
2021. The nucleus pulposus (NP) was obtained during sur-
gery and stored for subsequent experiments.

2.2. Human Nucleus Pulposus Cell (NPCs) Extraction and
Treatment. After being harvested from surgery, samples
were digested and cultured as previously reported [8]. Before
compression, NPCs at the 2nd passage were harvested and
mixed with Corning matrix gel (Cat No. 356234, Corning,
USA) for three days. For compression treatment, we set
compression of 20 kPa for a duration of 0, 2, 4, and 6 hours
with a Flexcell FX-5000 Tension System. To induce age-
degenerated NPCs, the cells in the next passage were
cultured for an additional two days after transfection. For

transfection, we mixed Lipo fectamine3000 (Cat No.
L3000001, Thermo Fisher, USA) with specific siRNA: 5′-
AGGAGCACCCGGCACAAUUUCTT-3′; 3′-GAAAUU
GUGCCGGGUGCUCCUTT-5′ (Sangon Bioengineering
(Shanghai) Co., Ltd., Shanghai, China).

2.3. Compression of Caudal Intervertebral Disc (IVD) in
Mice. All animal experiments in this study were approved
by the Animal Care and Use Committee of Shanghai Jiao-
tong University School of Medicine, and we followed the
protocols of the National Institutes of Health Guide for the
Care and Use of Laboratory Animals (NIH Publications
No. 8023, revised 1978). To induce IDD, an Ilizarov-type
compression apparatus (Shanghai Yeyu Biotech Inc., Shang-
hai, China) was placed to induce axial compression at the
caudal 7-8 of mice. In brief, two cross 0.4mm diameter wires
were inserted percutaneously into each of the 7th and 8th
caudal vertebrae. The two wires were perpendicular to each
other and parallel to the endplates of vertebrae. Then, the
two wires were attached to two specifically manufactured
resin rings that were connected longitudinally with four
threaded rods. Finally, axial loads were applied using cali-
brated springs installed over each rod, which were tightened
from the distal side. A thin-film pressure sensor was placed
between the springs and rings to detect the pressure pro-
duced by springs, and the force between each spring and
the ring was measured by sensors and fixed at the same level.
The pressure was measured daily and guaranteed at the ini-
tial strength via fixing of the springs. Axial compression
pressure was fixed at 0.8MPa with a duration of 0, 6, 12,
and 24 hours. The GPR35-/- mice were provided by Profes-
sor Wang Chuandong (Xinhua Hospital, Shanghai Jiaotong
University School of Medicine).

2.4. Western Blot Analysis. Protein extraction was conducted
with RIPA according to the manufacturer’s instructions (Cat
No. P0013B, Beyotime, Shanghai, China). After extraction,
total proteins were separated by SDS-PAGE, transferred to
PVDF membranes (0.45μm, Millipore, Bedford, MA, USA),
and incubated with primary antibodies against human aggre-
can (cat No. A11691, ABclonal, China), collagen II (Cat No.
1560, ABclonal, China), and GPR35 (Cat No. PA5-23237,
Thermo Fisher, USA). After transferring protein to the mem-
branes, the membranes were incubated with a horseradish

Normal Mild Severe

IHC staining of GPR35

100 𝜇m 100 𝜇m 100 𝜇m

(c)

Figure 1: Expression of GPR35 is correlated with IDD. (a) RT-PCR analysis suggests that NPCs have downregulation of Collagen II and
upregulation of MMP-3 when compressed with 20 kPa for 4 h. (b) RNA-seq heat map suggests an upregulation of the GPR35 gene when
NPCs are compressed at the above degenerative condition. (c) IHC staining suggests a gradual increase of GPR35 expression in human
NPs along with higher degeneration levels. (The data are shown as the mean ± SD. ∗∗P < 0:01 for comparisons between two groups.
One-way ANOVA and Tukey’s multiple comparison test were used for statistical analysis).
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Figure 2: Continued.
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peroxidase-conjugated secondary antibody, goat anti-rabbit
IgG (Cat. No. 7074, Cell Signaling Technology, MA, USA),
at room temperature for 2h, and the bands were visualized
using chemiluminescence (Millipore, Bedford, MA, USA). B-
actin (Cat. No. BF0198, Affinity Biosciences Ltd., USA) served
as the internal control. The images were analyzed using a
Fusion FX7 (Vilber Lourmat, Marne-la-Vallée, France) and
analyzed with ImageJ software.

2.5. Real-Time Quantitative PCR. RNA extraction and syn-
thesis of cDNA were conducted using a specific kit of Takara
Premix Taq (Cat no. R004A, Takara Bio Inc., Shiga, Japan)
according to the manufacturer’s instructions. An ABI 7500
Sequencing Detection System (Applied Biosystems, CA,
USA) was employed for qRT-PCR detection and analysis
using the SYBR Premix Ex Tag Kit (Cat no. RR420A,
TakaRa, Shiga, Japan). The cycling conditions were set as
follows: 40 cycles of denaturation at 95°C for 5 s and ampli-
fication at 60°C for 24 s. GAPDH served as a housekeeping
gene, and all reactions were run in triplicate. The primer
sequences (Sangon Biotech, Shanghai, China) used in this
study were as follows:

human GAPDH forward 5′-CTTAGCACCCCTGGCC
AAG-3′; reverse 5′-TGGTCATGAGTCCTTCCACG-3′;
human GPR35: forward 5′-AGGGACAAGGGCAAGA
GGACTG-′ reverse 5′-GCGGCAGGTGTCATCAAGGC-
3′; human COLLAGEN II: forward 5′-GATAACAGTCT

TGCCCCACTTA-3′; reverse 5′CAAGAACAGCATTGCC
TATCTG-3′; human AGGRECAN: forward 5′-GATCCT
TACCGTAAAGCCCATC-3′; reverse 5′CTCCAGTCTCA
TTCTCAACCTC-3′; human MMP-3: forward 5′-GGCA
AGACAGCAAGGCATAGAGAC-3′; reverse 5′ACGCAC
AGCAACAGTAGGATTGG-3′.

Target gene expression was normalized to the expression
of GAPDH using the 2-△△Ct method. All data were then nor-
malized to the average of the control group.

2.6. Histology and Immunohistochemistry (IHC). For IHC
analysis, nucleus pulposus (NP) tissue from humans was
fixed with 4% paraformaldehyde for 24 h and then processed
via routine paraffin embedding, sectioning, and deparaffini-
zation. For the caudal IVDs of mice, the tissue was harvested
and fixed with 4% paraformaldehyde for 24 h, then decalci-
fied using 10% ethylenediaminetetraacetic acid (EDTA) for
1 month before routine paraffin embedding, sectioning,
and deparaffinization. The sections were stained by a routine
H-E and Safranin O-Fast Green Staining method. Subse-
quently, the sections were incubated with a rabbit polyclonal
antibody GPCR 35 (Cat No. PA5-23237, Thermo Fisher,
USA), collagen II (Cat No. GB11021, Servicebio, China), or
aggrecan (cat No. GB11373, Servicebio, China) at 4°C over-
night. A specific IHC kit (cat. No. K5007, Agilent DAKO
Inc., CA, USA) was used for the process according to the
manufacturer’s protocol. Nuclei were counterstained with
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Figure 2: Deficiency of GPR35 alleviates IDD in aged human NPCs and mice. (a). Deletion of GPR35 gene expression with siRNA in aged
NPCs rescued the decreased expression of collagen II and aggrecan and inhibited increased expression of MMP-3. (b). Expression of
collagen II and aggrecan proteins was rescued when GPR35 was inhibited. (c, d) In mice aged 14-months old, knockdown of GPR35
alleviated the severity of IDD, showing less loss of notochordal cells and fewer fissures in annulus fibrosus. According to modified
Thompson grade for histological grading of intervertebral disc in H-E straining, it was grade 2 and grad 3 for GPR35-/- mice and wild-
type mice, respectively. (e, f) The NPs in GPR35-/- mice reserved more collagen and proteoglycan than those in wild-type mice. (Data are
shown as the mean ± SD. ∗P < 0:05, ∗∗P < 0:01, and ∗∗P < 0:001 for comparisons between two groups. One-way ANOVA and Tukey’s
multiple comparison test were used for statistical analysis).
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Figure 3: Continued.
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Figure 3: Continued.
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hemalum (cat. G1004, Servicebio Inc., Wuhan, China). The
stained samples were observed and photographed under a
microscope (Axio, Carl Zeiss, Oberkochen, Germany).

2.7. Flow Cytometric (FCM) Analysis. To measure ROS and
influx of Ca2+ in NP cells, after digestion with cell recovery
solution (Cat No.354253, Corning Inc, NY, USA), the NPCs
were resuspended in a work solution of the ROS detection
kit and Fluo-3AM detection kit (cat. no. S0033S and
S1056, Beyotime Biotechnology Inc., Shanghai, China). The
incubation was performed for an additional 30min at 37°C
in the dark. After incubation, the NPCs were washed three
times with PBS. Fluorescence was analyzed using MoFlo
Astrios (Beckman Inc, CA, USA). We measured the mean
fluorescence intensity (MFI) of FITC-A as a measure of rel-
ative ROS expression and Ca2+ influx.

2.8. Statistical Analysis. The data are expressed as the mean
± SD. We performed a two-sided Student’s t-test for two-
group analysis. Among three or more groups, one-way
ANOVA with post hoc Tukey’s HSD test was used. Two-
way ANOVA with post hoc Tukey’s HSD test was
performed for repeated measurements. GraphPad Prism
(version 8) was utilized for statistical analysis, and P < 0:05
was considered significantly different.

3. Results

3.1. Expression of GPR35 Is Correlated with IDD in Human.
To reveal the role of GPR35 in IDD, we conducted RNA-seq
in degenerated NPCs. To mimic the degeneration of NPCs,
the cells were compressed with 20 kPa for 4 h and RT-PCR
analysis revealed that the NPCs had remarkable degenera-
tion under this condition (Figures 1(a) and 1(b)). As seen
in the RNA-seq heat map of Figure 1(b), GPR35 was signif-
icantly upregulated, suggesting it may have a correlation
with IDD. To further validate the pathological role of
GPR35 in IDD, we examined the expression of GPR35 in
degenerated NP tissues from patients using IHC staining.
As shown in Figure 1(c), there was a gradual increase of
the GPR35 expression in NPs with higher degeneration
levels, with a statistical significance. Collectively, these
results indicate that the expression of GPR35 has a correla-
tion with IDD.

3.2. Deficiency of GPR35 Alleviates IDD in Aged Human
NPCs and Mice. When NPCs are cultured for several pas-
sages, the cells undergo autosenescence. We thus knocked
down the function of GPR35 with siRNA in aged NPCs,
and the results showed that the decreased gene expressions
of main ECM, collagen II, and aggrecan were significantly
rescued, while the increased gene expression of the catabolic
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Figure 3: Inhibition of GPR35 attenuates mechanical stress-induced IDD in vivo and in vitro. (a, b) Overexpression of the GPR35 gene in a
time-dependent manner when NPCs are compressed in vitro. (c) Increased GPCR 35 protein expression was found in caudal compressed
IVD of mice. (d, e) Knocking down GPR35 with siRNA in NPCs rescued the mechanical stress-induced downregulation of main ECM
proteins and upregulation of the catabolic factor. (f, g) Caudal IVDs in mice were compressed with the Ilizarov setting, and IVDs in
GPR35-/- mice showed less degeneration and more reserved ECM. According to modified Thompson grade for histological grading of
intervertebral disc in H-E straining, it was grade 3 and grad 4 for GPR35-/- mice and wild-type mice, respectively. (The data are shown
as the mean ± SD. ∗∗P < 0:001 and ∗∗∗P < 0:0001 for comparisons between two groups. One-way ANOVA and Tukey’s multiple
comparison test were used for statistical analysis).
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Figure 4: Continued.
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factor of MMP-3 was significantly inhibited, as depicted in
Figure 2. A similar result was seen in protein analysis, shown
in Figure 2(b).

In addition to the in vitro study, we also examined the
severity of IDD in aged Gpr35-/- and wild-type mice at 14
months old. As shown in Figures 2(c) and 2(d), deficiency
of Gpr35 alleviated the severity of IDD as evidenced by a
reduction of notochordal cell loss and fewer fissures in the
annulus fibrosus, when compared with wild-type mice.
IHC staining showed that the NPs of Gpr35-/- mice reserved
more collagen and proteoglycan than those of wild-type
mice (Figures 2(e) and 2(f)). Taken together, these results
indicate that GPR35 plays a critical role in medicating IDD
in vivo and in vitro.

3.3. Inhibition of GPR35 Attenuates Mechanical Stress-
Induced IDD In Vivo and In Vitro. After perceiving that defi-
ciency of GPR35 alleviated aged IDD, we next intended to
investigate whether GPR35 was also the key factor in
mechanical stress-induced IDD. As depicted in
Figures 3(a) and 3(b), the expression of GPR35 was
increased in a time-dependent manner when NPCs were
compressed in vitro. Next, we established an IDD model in
mice by loading the Ilizarov setting on the caudal IVD. A
similar trend of upregulated GPR 35 was found in vivo as
depicted in Figure 3(c).

NPCs had decreased expression of main ECM proteins
and increased expression of the catabolic factor when they
experienced mechanical stress. However, this effect was
abruptly knocked down in GPR35 with siRNA, as depicted
in Figure 3(d). Histological results of H-E and IHC staining

showed that loss of GPR35 attenuated IDD as evidenced by
Gpr35-/- mice showing less deformation of NP, fewer twists
of AF, and more reserved ECM (Figures 3(e) and 3(f)).
Taken together, the results above reveal that GPR35 plays
a critical role in mediating mechanical stress-inducing IDD
in vivo and in vitro.

3.4. GPR35 Induces the Influx of Ca2+ and Upregulation of
ROS under Mechanical Stress. Inhibition of GPR35-
attenuated mechanical stress-induced IDD in vivo and
in vitro; however, the mechanism remained unclear. Previous
studies suggested that mechanical stress can induce upregula-
tion of ROS in cells; therefore, we investigated whether GPR35
participated in mechanical stress-induced ROS. As depicted in
Figure 4(a), along with an increase in compression, the level of
ROS significantly increased in NPCs in a time-dependent
manner. However, inhibition of GPR35 significantly reduced
the expression of ROS induced by mechanical stress
(Figure 4(b)), suggesting that GPR35 responds to mechanical
stress through the production of ROS.

As depicted in Figures 4(b) and 4(c), FCM results
showed that the influx of Ca2+ significantly increased in a
time-dependent manner, while the effect was inhibited when
GPR35 was knocked down using siRNA under mechanical
compression. Consistently, activation of GPR35 induced by
zaprinst significantly induced the influx of Ca2+ in NPC.
Collectively, we believe that GPR35 induced the influx of
Ca2+ and upregulated ROS under mechanical stress.

3.5. ROS Causes a Positive Feedback Loop of GPR35
Upregulation. It has been shown that a relationship exists
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between ROS and G-coupled receptor protein, and we have
demonstrated that GPR35 causes upregulation of ROS in
NPCs under mechanical stress. Interestingly, there have
been previous studies on ROS-stimulated GPR overexpres-
sion. Therefore, we hypothesized that excessive ROS causes
the upregulation of GPR35 and induces a positive feedback
loop to deteriorate IDD. As depicted in Figures 5(a)–5(c),
with an increase in H2O2 concentration or time exposure,
GPR35 significantly increased in human NPCs, as demon-
strated by gene or protein analysis, respectively. By contrast,
when ROS that was caused by mechanical stress was neutral-
ized by NAC, upregulated GPR35 was significantly
decreased, as depicted in Figures 5(d) and 5(e). FCM showed
that inhibition of GPR35 significantly reduced the influx of
Ca2+ caused by H2O2 exposure in NPCs. Thus, we con-
cluded that GPR35 caused upregulation of ROS in NPCs
under mechanical stress, while excessive ROS caused posi-
tive feedback of GPR35 upregulation that led to IDD
deterioration.

4. Discussion

In this study, we found that GPR35 plays a critical role in
the process of IDD. Among the two most common patho-
genic factors of mechanical stress and auto-senescence,
inhibition of GPR35 function significantly alleviated IDD
in vivo and in vitro. In addition, activation of the GPR35
with mechanical stress or agonist-induced Ca2+ influx and
subsequent upregulation of ROS, which we considered as
the pathological mechanism for IDD. Finally, we showed
that mechanical stress can induce NPCs to produce exces-
sive ROS via activating GPR35. The accumulated ROS sub-
sequently induced upregulation of GRCP35 to sense more

mechanical stress, which caused a harmful positive feed-
back loop to deteriorate IDD.

Of the GRCPs, GPR35 has gained significant attention
because of its role in a broad range of diseases. For example,
Zhang et al. suggested that the expression of GPR35 in bone
marrow mesenchymal stem cells is suppressed in osteoporo-
sis patients and osteoporotic mice, and that activation of
GPR35 with agonist can rescue bone loss and promotes bone
generation [9]. For cardiovascular disease, deletion of
GPR35 induced augmentation of EC functions in vitro,
enhanced endothelium-mediated vasodilation in isolated
vessels, and prevented BP elevation in vivo [10]. Activation
of GPR35 can also protect against cerebral ischemia by
recruiting monocyte-derived macrophages [11]. Therefore,
regulation of GPR35 function with novel drugs has remark-
able therapeutic potential to prevent and treat various
diseases.

We first report here the pathological and pathophysiolo-
gical role of GPR35 in IVD and IDD. In the aging model,
deletion of GPR35 in mice significantly postponed the senes-
cence of IVD, as depicted in Figure 2. Santos et al. deter-
mined that GPRs are potential platforms to control cellular
senescence and consequently, age-related disorders [5]. The
senescence of NPCs or IVD is complicated and the role
GPR35 plays is also complex. During the aging process, the
extracellular or intracellular repair system is impaired, and
harmful stimuli, such as ROS, accumulate [12]. These stim-
uli may directly or indirectly activate GPR35 to induce
degeneration of cells via different signaling pathways. In
contrast, the senescence of NPCs is regulated by the aging
paradigm, such as cell cycle arrest or dysfunction of cellular
physiology [13], and GPR35 may affect the aging paradigm
via cellular signaling networks [5]. Taken together, we
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believe that the deletion or deactivation of GPR35 with a
drug or chemical compound is beneficial for IVD.

Aside from in vivo and in vitro aging models, we also
tested the role of GPR35 in IVD under mechanical stress.
Axial or shear mechanical stress is a well-known cause of
IVD [14, 15]. Our data also suggested an increase of gradient
pressure leads to the gradual degeneration of NPCs, as
depicted in Figure 1(a). Previous studies reported that
GPR, like G-protein-coupled receptor 68 [16], can sense
mechanical stimuli. How GPR35 sense and transduce
mechanical stimulation is unclear. Change of protein con-
formation under mechanical stimulation may result in sub-
sequent cellular activity, or the G-protein-coupled receptor
is regulated by other mechanical stimulation-related factors.
Nevertheless, our data suggest that GPR35 plays a critical
role in IDD caused by excessive mechanical stress, which is
evidenced by data in vivo and in vitro.

The most plausible mechanism by which GPR35 induces
IDD is causing the upregulation of ROS. The role of ROS in
IDD has been verified in many studies [17, 18]. GPRs have
always had a close relationship with ROS. It may induce
the production of ROS via NF-kappaB activation [19] or
directly regulate NAPDH oxidase [20]. Here, we also sug-
gested that activation of GPR35 resulted in the influx of cal-
cium in NPCs. The subunit of GPRs, activated Gα, is able to
interact and regulate many effector molecules such as potas-
sium channels, adenylyl cyclase, phospholipase C (PLC),
PLD, and protein kinases [6]. The subunit of Gβγ also regu-
lates adenylyl cyclase, phospholipase C-β (PLC-β), phos-
pholipase A2 (PLA2), phosphoinositide 3-kinase (PI3-
kinase), and β-adrenergic receptor kinase, some of which
induce calcium regulation [6, 21, 22]. Increased levels of cal-
cium always trigger the production of ROS [23], and exces-
sive ROS subsequently resulted in damage of NPCs or
IVDs [17], which was thought to be one of the mechanisms
of GPR35-induced IDD.

We also observed an interesting phenomenon in which
GPR35 conducted a harmful positive feedback loop between
mechanical stress and ROS. Increased ROS stimulated the
NPCs to express GPR35 with a significant dose or time
response, and the upregulated GPR35 could then sense
mechanical stress to produce more ROS to perpetuate this
harmful cycle. Thus, NAC, the scavenger of ROS, success-
fully abrogated the harmful positive feedback in the system,
as depicted in Figure 5. Previous reports also elicited that
ROS had effects on GPRs [24] and expression of GPRs is
regulated by multiple factors [5]. Although the mechanism
is unclear, ROS is involved in various cellular activities; so,
there may be complex network regulation that causes
excessive ROS levels to upregulate GPR35. It was suggested
that several potential promoters and enhancers participated
in expression of GPR35, such as GH02J240620,
GH02J240603, GH02J240583, GH02J240596, and
GH02J240023, and ROS may have relationship with those
promoters and enhancers. And more studies were needed
to investigate the potential relationship. Nevertheless, we
made a rational conclusion that elimination of excessive
ROS may provide a novel way to inhibit the GPR35-
related IDD.

Nonetheless, we should note the shortcomings of this
study. First, the results of ROS and calcium detection were
mainly acquired via FCS, which requires further exploration.
Moreover, whether a deficiency of GPR35 can inhibit
inflammatory- or infection-induced IDD needs to be further
explored. In addition, various channels, such as Piezo chan-
nels or transient receptor potential (TRPs) channels, also
played critical roles in mechanical stress-induced cellular
activities. In this study, we proved that GPRs also sense
mechanical stress. Is there any relationship between GPRs
and Piezo or TRPs under mechanical stress? Which chan-
nels or receptors played predominant roles under mechani-
cal stress? More studies were needed in the further to
investigate the problem. Finally, the types of cellular signal-
ing pathways that ROS regulates for the increased expression
of GPR35 are also worthy of further investigation.

5. Conclusion

In summary, our study revealed that GPR35 plays a critical
role in mediating IDD via the influx of calcium ions and
upregulation of ROS, which implies a strong potential
advantage of GPR35 as a prevention and treatment target
in IDD.
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