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Supplemental Table 1. Tissue Toxicity of Pesticides  
 
 

Pesticide Cardiac Toxicity Kidney Toxicity Liver Toxicity Brain Toxicity Other Organ 

Toxicity  

Glyphosate [1, 2] (Zebrafish 
(Danio rerio), and 
mammals) 

[3-5] (rats and 
common carp 
(Cyprinus carpio L.)) 

[5, 6] (rats and field 
lizard podarcis siculus) 

[7] (mice)  

Atrazine [8, 9] (mice, African 
clawed frog) 

[10-12] 
(Piaractus 
mesopotamicus, quail 
(Coturnix C. coturnix, 
Caspian kutum, 
Rutilus frisii kutum) 

[10]  
(Piaractus 
mesopotamicus) 

[13] (rat) [14] quails (Coturnix Coturnix 
coturnix) 

Metolachlor-S   [15] (rat)   

2,4-
dichlorophenoxya
cetic acid (2,4-D) 

[16, 17] (rats, 
humans) 

[17, 18] (rodents, 
humans) 

[17, 18] (rodents, 
humans) 

[19] 
(rodents, fish) 

 

Metam    [20] (rat)   

Acetochlor [21] (zebrafish 
larvae) 

  [22] (zebrafish 
larvae) 

 

Chloropicrin     [23] (respiratory, humans) 

Chlorothalonil   [24] (zebrafish (Danio 
rerio) 

 [25] (Ovaries, mice) 

Pendimethalin [26] (zebrafish) [27] (rat) [27-30]  
 (rat, rainbow trout 
(Oncorhynchus mykiss), 

 [31] (bone marrow, mouse) 
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Nile tilapia 
(Oreochromis niloticus)  
 

Ethephon  [32, 33] (rats) [34, 35] (rats)   

Mancozeb  [36] (rats) [36-38] (rats) [36, 39] (rats) [40] (striated muscle, rats) [41] 
(reproductive organs/rats) 

Chlorpyrifos [42-44] (rabbits, rats) [45-48] (rats, mice) [46, 47, 49] (rats, mice) [45, 50] (rats)  

Propanil  [51] (mice) [51-54] (rats, mice)  [55] (Thymus/ 
mice) 

Dicamba   [56] (human)   

Trifluralin  [57] (rats)    

Acephate  [58] (in Vitro/renal 
tubular cells) 

  [59] (reproductive organs/ male 
mice) 

Paraquat  [60-63] (mice) [64-67] (rats) [66, 68-71] (rats, mice, 
lizards, zebrafish) 

[72-77] (rat, human, 
mice, monkey, 
freshwater fish 
bryconamericus 
iheringii) 
 

[78] (esophagus, human) 
[79] (stomach, small intestine, 
testes, rat) 

Glufosinate   [80] (fish)  [81, 82] (mice, 
zebrafish larvae) 

 

Phorate   [83] (mice)  [83] (testis, mice) 

Dicrotophos     [84] (blood, rat) 

Dimethoate [85, 86] (rats) [87-89] (rats, mice, 
fish) 

 [88-93] (rats, mice, 
fish) 

[91, 93, 94] (rats)  

Terbufos [95] (rats)     
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Lindane [96-98] (rats) [99-101] (rats, fish) [99, 100, 102] (rats, 
fish) 

[103, 104] (rats, 
mice) 

 

Dichlorodiphenox
y-trichloroethane 
(DDT) 

[105] (mice)  [106] (rats)   

Maneb  [107-109] (rats, mice, 
fish) 

[108, 110] (mice, fish, 
zebrafish embryos) 

[111] (zebrafish 
embryos) 

 

Dieldrin  [112] (rat) [112] (rat) [113] (human)  

Clothianidin  [114] (fish)  [114] (fish)  

Chlordane   [115] (rats)  [116] (Thymic atrophy, rats) 

Pentachloropheno
l (PCP) 

  [117, 118] (rats)  [119] (reproductive organs/fish) 

Endosulfan [120-122] (rats) [123] (mice) [123] (mice) [122, 124, 125] 
(rats, zebrafish) 

 

Zineb   [126] (rats) [126] (rats)  

Rotenone  [127, 128] (rats) [127, 129, 130] (rats, 
fish) 

[127, 131] (rats, 
fish) 

 

Ziram    [132] (zebrafish 
embryos) 

 

Methamidophos [133] (rats) [134] (rats) [134] (rats) [135] (rats)  

Dichlorvos  [136-139] (rats, mice) [136, 140, 141] (rats, 
mice) 

[142, 143] (rats)  

Tebuconazole [144, 145] (rats) [146] (rat) [145] (zebrafish)   

Triflumuron  [147] (mice) [147] (mice)   

Acetamiprid  [148, 149] (rats, mice) [149, 150] (rats) [151, 152] (rats, 
mice) 
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Thifluzamide  [153] (zebrafish) [153, 154] (zebrafish)   

Aldicarb [155] (human) [155] (human) [155] (human)   

Propoxur [44] (rabbits)  [156, 157] (rats) [158] (rats)  

Methidathion [159] (rats)  [160, 161] (rats)   

Diazinon [162, 163] (rats) [164, 165] (rats, fish) [165, 166] (rats, fish) [167, 168] (rats, 
mice) 

 

Monocrotophos [169] (rats) [170] (fish) [170] (fish) [171] (rats)  

Aluminum 
phosphide 

[172] (rats) [172] (rats)    

Penconazole 
(triazole) 

[173] (rats) [174] (rats)    

Imidacloprid 
(IMI) 

  [175] (fish)   

Fluazifop-p-butyl 
(FPB) 

 [176] (rats) [176] (rats)   

Nitenpyram   [177] (zebrafish)   

Thiacloprid   [178] (rats)   
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Supplemental Table 2. Signaling Pathways altered by Pesticides  
 

Pesticide Signaling Pathways Involved  Reference 

Glyphosate Mitochondrial apoptotic signaling pathway  [179], [180] 

Atrazine NF-κB signaling pathway [181] 

 Apoptosis signaling pathway 
Nrf2 signaling pathway 
TNF-α NF-κB signaling pathway 

[182] 

 Nrf2 signaling pathway [183] 

TNF-α NF-κB signaling pathway [184] 

Autophagy and apoptosis pathways [185] 

ER stress-signaling pathway 
Mitochondrial apoptosis pathway 
Autophagy pathway 

[186] 

2,4-
dichlorophenoxyacetic 
acid (2,4-D) 

Apoptosis signaling pathway [187] 

Acetochlor MAPK signaling pathway [188] 

 Apoptosis signaling pathway [189] 

Chloropicrin  Apoptotic signaling pathways 
MAPK signaling pathway 

[190], [191] 

ER stress-signaling pathways [192] 

Pendimethalin 
 

TNF-α signaling pathway 
Apoptosis signaling pathway 

[27] 

Mancozeb 
 

Apoptosis signaling pathway [193], [194] 

iNOS and NOX4 signaling pathways [195] 

Chlorpyrifos Apoptosis signaling pathway  
PKCδ-STAT1 signaling pathway 
NOX-1  signaling pathways 

[196] 

IκB/NF-kB signaling pathway [197] 

 MAPK signaling pathway [198] 

 Apoptosis signaling pathway  
Increased TLR7 signaling 

[199] 
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Flt,  vascular endothelial growth factor receptor 1 precursor; IL-6, interleukin 6; Nrf2, nuclear factor erythroid 2-related factor 2; TLR4, toll Like 
receptor 4; ER, endoplasmic recticulum; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; MAPK, mitogen-activated protein 
kinase; TNF-α, tumor necrosis factor alpha; STAT1, signal transducer and activator of transcription 1; NOX-1, nadph oxidase 1 
 
  

Pesticide Signaling Pathways Involved  Reference 

Paraquat Nrf2 signaling pathway 
NF-κB signaling pathway 

[200] 

 Apoptosis signaling pathway  
NF-κB signaling pathway 

[201] 

ER stress–signaling pathways [202-206] 

PERK signaling pathway [207] 

Nrf2 signaling pathway [208] 

Proteasomal and autophagic Pathways [209] 

Permethrin TLR4-NF-κB signaling pathway [210] 

 Nrf2 signaling pathway 
TLR4-NF-κB signaling pathway 

[211] 
 

Nrf2 signaling pathway 
NF-κB signaling pathway 

[212] 

Deltamethrin 
 

Nrf2 signaling pathway 
NF-κB signaling pathway 
Nrf2 signaling pathway 

[212],  
[213] 

 

Bifenthrin 
 

MAPK signaling pathway [214] 

 TNF-α signaling pathway 
Flt signaling pathway 
IL-6 signaling pathway  

[215] 
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Supplemental Table 3. Effects of commonly used Conventional Pesticide Active Ingredients in the Agricultural Market Sector in 2012 on 
oxidative stress in different tissues. 
 

Atrazine (ATR)           Male and female     
Balb/c mice 
 

100-400 mg/kg Increased ROS, increased GSSG activity, and decreased 
GSH activity.  

[181] 
 

 Male mice 
(Liver and kidney) 

78.25 mg/kg Decreased CAT activity, GST activity, and SOD activity. 
Decreased intracellular ferric reducing/ antioxidant power. 
Increased lipid peroxidation. 

[220] 
 

 Male Wistar rats 
(Erythrocytes) 

300 mg/kg Decreased GSH activity. Increased SOD activity, CAT activity, 
increased GPx activity, and GST activity. 

[221] 

 Adult male Wistar rats 
(testes and epididymis) 

120, 200 mg/kg Decreased epididymal CAT activity, decreased GST activity, 
decreased SOD activity, and increased lipid peroxidation. 

[222] 

 Male Wistar rats 
 

25 mg/kg Decreased CAT activity, GSH activity, and SOD activity. 
Increased lipid peroxidation. 

[223] 

 Adult male albino rats 300 mg/kg Decreased CAT activity, GPx activity, GSH activity, SOD 
activity, and increased lipid peroxidation. 

[182] 

 Female Wistar rats 
 

5 mg/kg and 
125 mg/kg 

Decreased CAT activity, decreased GPx activity, increased 
lipid peroxidation, increased NO level, increased expression of 
Nrf2 in kidney, decreased expression of HO1 and NQO1. 

[183] 

 Murine microglial cells 
(BV-2) 

12.5, 25, and 
50 μM 

Increased intracellular ROS, increased NO and iNOS level, 
increased TNF-α and IL-1β level. 

[184] 

Pesticide Cell Type/Model 
System                               

Concentration
/dose 

Oxidative stress markers Reference 

Glyphosate Human Skin 
Keratinocytes HaCaT 
cells 

10, 25, 50, 100 
µM 

Increased intracellular ROS levels. Decreased 
SOD1 expression level. 

[179] 

 Human liver carcinoma 
(HepG2) cells 

0.5, 2.91, 3.5 

µg/mL 
Decreased total antioxidant capacity, decreased GPx activity, 
increased DNA damage. 

[216] 

 Rat heart H9c2 cells 
 

 5 μM, 10 μM 
 

Induced apoptotic cell death. Decreased Bcl-1 expression, 
increased Bax expression, increased caspases 3/7/9 activity, 
decreased mitochondrial membrane potential. 

[180] 
 

 Adult albino male rats 
(Liver) 

 134.95 mg/kg Increased lipid peroxidation, increased NO level, decreased 
GSH level, increased TNF-α level. 

[217] 

 Caenorhabditis elegans 2.7%, 5.5%, 
9.8% 

Increased GST expression, decreased ATP levels, decreased 
mitochondrial membrane potential. 

[218] 
 

 Chlorella kessleri 40, 50, 60, 70 
mg/L 

Increased lipid peroxidation, increased GSH content, 
increased SOD and CAT activities. 

[219] 
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 Albino rats 400 mg/kg Significantly decreased serum/cardiac tissue GSH and TSH 
levels; significantly increased cardiac tissue HO-1 activity; 
serum/cardiac tissue GPx and CAT activity, MDA and serum 
8-OHdG level altered; significantly decreased cardiac tissue 
complex I activity. 

[224] 

Metolachlor-S Scenedesmus obliquus             
(green algae) 

0.1, 0.2, and 
0.3 mg/L 

Increased ROS generation level, increased SOD and CAT 
activities. 

[225] 

 Parachlorella 
kessleri (microalga) 
 

2–200 μg/L 
 

Increased intracellular ROS level, increased antioxidant 
enzymes (APX, GR, CAT) activities, increased lipid 
peroxidation. 

[226] 

 Wheat (Triticum 
aestivum L.) 

 

2.5, 5 mg/L Increased superoxide anion (ROS) level, increased lipid 
peroxidation, increased SOD activity, decreased POD activity, 
decreased CAT and DHAR expression. 

[227] 
 

2,4-
dichlorophenoxya
cetic acid (2,4-D) 

Umbelopsis isabelline 
(Fungus) 
 

100 mg/L Increased ROS and RNS level, increased lipid peroxidation, 
decreased CAT activity. 

[228] 
 

 Pea (Pisum sativum L.)  
 

45.2 μM 
22.6 mM 

Increased XOD activity, increased SOD, CAT, GPx, APX, and 
glutathione reductase (GR) activities, increased lipid 
peroxidation. 

[229] 

 Non-green potato tuber 
callus 

1-50 μM Increased CAT, SOD, GR, and GST activities. [230] 

 Male 7-week-old 
Kunming mice 
 

50, 100, 
200 mg/kg 
 

Increased testicular lipid peroxidation, decreased SOD and 
CAT activities, increased testicular cell apoptosis. 

[187] 

 Goldfish 
gills, Carassius auratus 
 

1-100 mg/L Increased lipid peroxidation, increased GSSG content, 
increased SOD, CAT, and GPx activities. 

[231] 

 Cnesterodon 
decemmaculatus 

252 mg/L Increased DNA damage, increased CAT, GST, and GSH 
activities. 

[232] 

 Acanthospermum 
hispidum D.C., 
Asteraceae weed 

300 μM 
 

Increased lipid peroxidation. [233] 

 Rat Cerebellar Granule 
Cells 

1 mM Increased ROS generation level, decreased GSH level, 
decreased CAT activity, increased GPx activity 

[234] 

 Wistar rats 600 ppm Increased hepatic lipid peroxidation, decreased CAT, SOD, 
GPx, and GSH activities. 

[235] 
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 Wistar Albino rats 5 mg/kg Increased hepatic lipid peroxidation, increased protein 
carbonylation, decreased GSH content. Decreased SOD, 
CAT, GST, and GPx activities in liver. 

[236] 

 Male Wistar rats (Liver) 
 

15, 75, 
150 mg/kg 

Increased lipid peroxidation, decreased CAT, GPx, and GR 
activities, increased/decreased SOD activity. 

[237] 
 

 Male Wistar Albino rats 
Plasma, Liver, Kidney, 
Erythrocytes 

15, 75, 
150 mg/kg 

Increased lipid peroxidation, decreased SOD, GPx, and CAT 
activities. 

[238] 
 

 Male Wistar rats (Liver) 
 

15, 75, 
150 mg/kg 

Decreased CAT and GR enzymatic activities. [239] 

Metam  Female B6C3F1 mice  
Peritoneal 
macrophages 

 50 μL 
 

Decreased GSH level, upregulation of genes involved in 
response to oxidant stress. 

[240] 

Acetochlor  Soil bacteria 62 mM and 
620 mM 
 

Increased lipid peroxidation, , increased CAT activity at low 
concentration, decreased CAT activity at high concentration, 
decreased GR activity. 

[241] 

 Bufo raddei tadpole 
liver 
 

0.017, 0.034 
and 0.068 mg/L 
 

Increased lipid peroxidation, increased DNA damage, 
decreased total antioxidant capability level. 

[242] 

 Female zebrafish 
 

1-100 μg/L Increased plasma ROS level, increased plasma CAT, SOD, 
and GPx activities. 

[243] 

 Male C57BL/6 
mice (testis) 
 

250, 500, and 
1000 mg/kg 

Increased lipid peroxidation, decreased SOD activity, 
decreased GSH activity. 

[188] 
 

 GC-1 spermatogonia 
cell 

10−4 M, 2 × 
10−4 M, 4 × 
10−4 M, 8 × 
10−4 M, and 
10−3 M 

Increased cell apoptosis, increased lipid peroxidation, 
decreased SOD and GSH activities, increased Bax expression 
and decreased Bcl-2 expression 

[188] 

 Human liver carcinoma 
cells (HepG2) 
 

100-400 μM Increased ROS generation, increased apoptotic cells, 
decreased antioxidant SOD and GPx activities, decreased 
mitochondrial transmembrane potential. 

[244] 
 
 
 

 Zebrafish 
 

50, 100, 
200 μg/L 
 

Increased CAT, GPX, GPX1a, Cu/Zn-SOD and Mn-SOD 
mRNA levels. 

[189] 



Oxidative Medicine and Cellular Longevity 
 

 11

Chloropicrin  
 

Primary human corneal 
epithelial (HCE) cells 
 

 50, 75 μM 
 

Increased apoptotic cell death and DNA damage, increased 
HO-1 expression, increased lipid peroxidation, increased 
protein carbonylation. 

[190] 
 
 

 Human retinal pigment 
epithelial cells (ARPE-
19) 

1–50 μM 
 

Increased ROS production, increased HO-1 level. [192] 

 Human lung epithelial 
cells (A549) 

1–200 μM Increased ROS production, increased protein oxidation [191] 

Chlorothalonil  
 

Gill tissues of Pacific 
oyster (Crassostrea 
gigas), blue mussels 
(Mytilus edulis) 
 

0.1, 1, and 10 
μg/L 
 

Increased lipid peroxidation, increased intracellular GSH level, 
increased CAT, SOD, GPx, and GR activities. 

[245] 

 Polychaete Laeonereis 
acuta 

0.1, 10, and 
100 μg/L 
 

Decreased antioxidant capacity against peroxyl radicals, 
increased lipid peroxidation. 

[246] 

 Fish Danio rerio 0.1 and 10 μg/L Gills: Increased ROS level, increased antioxidant capacity 
against peroxyl radicals (ACAP), increased GST and GCL 
activities,  
Liver: Increased lipid peroxidation, increased SOD activity. 

[247] 
 

 Isolated rat hepatocytes 
 

1–1000 μM  
 

Increased lipid peroxidation, decreased GSH content. [248] 

 Botryllus schlosseri 
hemocytes 
 

 0.1, 1 and 
10 μM 
 

Increased apoptotic cells, decreased cytochrome c oxidase 
activity, decreased GSH activity. 

[249] 

 Male Wistar rats (Liver) 0.1, 0.13, 0.5, 1 
mg/kg 

Increased 8-OH-2-deoxyguanosine (8-OH-2-DG) level. [250] 

Pendimethalin 
 

Fresh water 
fish, Channa punctatus 

0.9, 1.8, and 
2.7 mg/L 
 

Increased lipid peroxidation, decreased GSH level, decreased 
SOD and CAT activities. 

[251] 
 

 Male Wistar rats (Liver 
and Kidney) 

62.5, 125 and 
250 mg/kg  
 

Increased lipid peroxidation, increased protein carbonylation, 
decreased GSH level, decreased SOD, CAT, and GST 
activities, increased oxidative DNA damage. 

[27] 

 Human lymphocytes 

 

50, 100, 
200 μM  

Increased ROS level, 
increased mitochondrial dysfunction, increased apoptosis, 
increased oxidative DNA damage. 

[252] 

 Rat bone-marrow cells 12.5, 25, and 
50 mg/kg 
 

Increased oxidative DNA damage, increased ROS level, 
increased lipid peroxidation, increased mitochondrial 
dysfunction, increased apoptotic cells, decreased CAT activity, 
decreased GSH level. 

[252] 
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 Clarias batrachus (liver) 0.177, 0.236, 
0.355 mg/L 

Increased lipid peroxidation, increased SOD and CAT 
activities. 

[253] 

 Fish Channa punctatus 
(Brain) 

0.5, 0.8 ppb Increased lipid peroxidation, increased protein carbonylation, 
decreased GSH level, decreased CAT, GST, and SOD 
activities. 

[254] 

 Fish Channa punctatus 
(Gills, Liver, Kidney) 

0.5, 0.8 ppb Increased lipid peroxidation, increased protein carbonylation, 
decreased GSH and NP-SH level, decreased CAT, GPx, and 
GST activities. 

[255] 

 Chinese hamster lung 
fibroblast (V79) cells 

1, 2.5, 5, 7.5, 
10, 25, 50, 100, 
250, 500 and 
1000 μM 

Increased ROS level, increased oxidative DNA damage. [256] 

Ethephon  
 

Male mice (Spleen and 
thymus) 

1995 ppm 
(1/10th oral 
LD50) 

Increased lipid peroxidation, decreased GSH level, decreased 
CAT and GPx activities, no change in SOD activity. 

[257] 

 3T3 murine embryonic 
fibroblast (MEF) cells 

10, 40, 160, 
640 μM 

Increased ROS production level, increased lipid peroxidation, 
increased DNA damage. 

[258] 

 Spinach (Spinacia 
oleracea L.) 

10 mM Increased CAT, polyphenol oxidase (PPO), peroxidase (POD) 
activities. 

[259] 

 Ipomoea cairica (Linn.) 
Sweet 

1.4, 7.2 g/L Increased H2O2 levels. [260] 

 Schisandra chinensis 
Turcz. (Baill.) 

1 ppm, 10 ppm Increased POD activity, decreased PPO activity. [261] 

Mancozeb 
 

Carassius auratus 
Goldfish blood and gills 

3, 5 and 
10 mg/L  
 

Increased protein carbonylation, increased lipid peroxidation, 
increased SOD, CAT, GST, and G6PDH activities. 

[262] 

 Carassius auratus 
Goldfish brain, liver, 
and kidney 

3, 5 and 
10 mg/L  
 

Increased protein carbonylation, increased lipid peroxidation, 
increased SOD activity in liver and kidney, increased CAT 
activity in liver, increased GPx activity in liver and kidney. 

[263] 

 Cassia angustifolia 
 

0.1, 0.15, 0.2 
and 0.25 % 
 

Increased lipid peroxidation, increased APX, GR, SOD, CAT 
activities, increased GSH content. 

[264] 

 Caenorhabditis elegans  0.1%, 
1.0%,1.5%  
 

Increased H2O2 levels, increased GST expression, decreased 
mitochondrial membrane potential, decreased ATP levels. 

[265] 

 Caenorhabditis elegans 0.1%, 7.5%, 
15% 

Increased H2O2 levels, increased hydroxyl radicals (·OH) level, 
decreased mitochondrial membrane potential, increased GST 
expression. 

[266] 
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 Drosophila 
melanogaster 

5 and 10 
mg/mL 

Increased lipid peroxidation, increased ROS level, increased 
CAT and GST activities, decreased SOD activity, decreased 
GSH level. 

[267] 

 Rat-1 fibroblasts, 
Peripheral blood 
mononucleated cells 
(PBMC) 

125, 250, 500 
ng/mL 

Increased 8-hydroxy-2′-deoxyguanosine (8-OHdG) level, 
increased ROS level, increased apoptotic cells. 

[193] 

 Male NMRI mice  50 and 500 
mg/kg 
 

Increased lipid peroxidation, increased protein carbonylation, 
decreased SOD and CAT activities, decreased GSH content, 
decreased total antioxidant capacity, decreased GPx 
expression, increased iNOS and NOX4 expression. 

[195] 

 Rat thymocytes 0.5, 2 and 5 
μg/ml 

Increased ROS production, increased apoptotic cells, 
decreased mitochondrial membrane potential, decreased ATP 
levels. 

[268] 

 Human Gastric 
Adenocarcinoma  
(AGS) cells 

5, 10 μM Increased ROS level, increased apoptotic cells, decreased 
mitochondrial transmembrane potential, upregulation of Bax 
and downregulation of Bcl-2 and Bcl-xL. 

[194] 

Chlorpyrifos Immortalized murine 
mesencephalic 
dopaminergic (N27) 
cells 

300 nM-300 
μM 
 

Increased intracellular ROS generation, increased 
mitochondrial ROS, decreased mitochondrial membrane 
potential, decreased GSH level, increased DNA 
fragmentation, increased caspase-3 activation and proteolytic 
cleavage of PARP, increased Bax level and decreased Bcl-2 
level, increased proteolytic cleavage of PKCδ, increased 
STAT1 phosphorylation. 

[196] 

 Lund human 
mesencephalic 
(LUHMES) cells 

10 nM-100 μΜ Increased DNA fragmentation, increased intracellular ROS, 
decreased mitochondrial membrane potential, and increased 
caspase-3 activity. 

[196] 

 Human neuroblastoma  
SH-SY5Y cells 
 

50 μM to 
200 μM 

Increased intracellular ROS, increased apoptosis, 
increased TNF-α levels, dysfunction in HO-1 and MnSOD 
levels. 

[197] 

 Rat adrenal 
pheochromocytoma 
(PC12) cells 

25, 50, 100, 
and 200 μM 
 

Increased apoptotic cells,  increased activity of caspase-9 and 
caspase-3 and cleaved of PARP-1, increased ROS level, 
increased lipid peroxidation, decreased mitochondrial complex 
I activity, increased HO-1 level, decreased CuZnSOD and 
MnSOD levels. 

[198] 

 Rat erythrocytes 
 

6.75 mg/kg 
 

Decreased SOD activity, GST activity, and CAT activity. 
Increased lipid peroxidation. 

[269] 

 Male Wistar rats 4.75 mg/kg 
 

Decreased CAT activity, decreased SOD activity, increased 
GPx activity, and increased lipid peroxidation. 

[270] 
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 Male Wistar rats 
(aorta, liver, plasma, 
and kidney) 

2.5, 5, 25 
mg/kg 

Increased lipid peroxidation, increased nitration (NO), 
increased SOD activity.  

[271] 

 Male Swiss albino adult 
rats 

5, 10, 20, 30 
mg/kg 

Increased lipid peroxidation, decreased testicular CAT, SOD, 
and GPx activities, decreased GSH content. 

[272] 

 Adult male Wistar rats 
 

8 mg/kg 
 

Increased amygdala ROS levels. Increased amygdala and 
hippocampal NO level. 

[273] 

 Male Wistar rats 
 

5.4 mg/kg Increased levels of MDA, SOD and CAT; decreased GPx and 
GST activities in heart. 

[274] 

 Male Kunming mice 10-5 M Increased lipid peroxidation, increased •OH level, decreased 
SOD, GPx, and CAT activities, decreased GSH content, 
increased levels of Bax, Bcl-2, and p53 in splenic B cells. 

[199] 

Metolachlor  
 

Male Wistar rats (Liver) 400–1000 
nmol/mg 

Decreased mitochondrial membrane potential. [15] 

 Soil bacteria 34 mM and 
340 mM 
 

Increased lipid peroxidation, increased CAT activity at low 
concentration, decreased CAT activity at high concentration, 
decreased GR activity. 

[241] 

 Lettuce, bean and pea 
seeds and leaves 

0.2 – 200 μM Decreased CAT, SOD, and GPx antioxidant enzymatic 
activities. 

[275] 

Propanil  8 weeks old male 
rats 
 

200 mg/kg Increased lipid peroxidation, decreased SOD, GPx, and GST 
activities, decreased GSH level. 

[276] 

 Wistar rats Liver 100 mg/kg Increased lipid peroxidation, decreased CAT, SOD, GST, and 
GSH activities. 

[277] 

 Albino rats Liver 20 mg/kg Increased lipid peroxidation, decreased GSH level, decreased 
CAT activity. 

[52] 

 Common carp 
(Cyprinus carpio) Brain 

2 and 4 mg/L Increased lipid peroxidation, increased protein carbonylation, 
decreased GSH level, decreased SOD, CAT activities  

[278] 

Dicamba 
 

Isolated mitochondria 
from Potato tubers 
(Solanum tuberosum) 
 

5-30 μmol/mg Decreased mitochondrial transmembrane potential, inhibited 
complex II, III, and IV activity. 

[279] 

 Non-green potato tuber 
callus 

1-50 μM Increased CAT, SOD, GR, and GST activities. [230] 

 Cnesterodon 
decemmaculatus 

410 mg/L Increased DNA damage, increased CAT, GST, and GSH 
activities. 

[232] 
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 Isolated mitochondria 
Arabidopsis 

1 mM Increased mitochondrial H2O2 levels. [280] 

Trifluralin Chinese hamster lung 
fibroblast (V79) cells 

1, 2.5, 5, 7.5, 
10, 25, 50, 100, 
250, 500 and 
1000 μM 

Increased ROS level, increased oxidative DNA damage. [256] 

 Male Wistar albino rats 
Kidney, ureter, urinary 
bladder 

0.8, 2 g/kg Increased lipid peroxidation, decreased SOD and GPx 
activities, increased apoptotic DNA fragmentation. 

[57] 

Acephate  Chlamydomonas 
mexicana 

15 mg/L Increased SOD and CAT activities. [281] 

 Drosophila 
melanogaster 

1-6 μg/mL Increased lipid peroxidation, increased protein carbonylation, 
increased CYP450, SOD, CAT, and GST activities, increased 
Hsp70 expression, increased DNA damage. 

[282] 

 Male albino rats 
(Plasma and Liver) 

30 mg/kg Increased lipid peroxidation, decreased CAT, SOD, and GSH 
activities, increased GPx activity. 

[283] 

 Male rats (Erythrocytes) 360 mg/kg Increased lipid peroxidation, decreased GSH content, 
increased GST and GR activities. 

[284] 

 Albino rats 50 mg/kg Increased lipid peroxidation, decreased testicular activities of 
CAT, SOD, and levels of GSH. 

[285] 

 Human Sperm 50, 100, and 
200 μg/mL 

Increased DNA damage. [286] 

 Chinese hamster ovary 
(CHO-K1) cells 

237.12 µM 
 

Increased GST and GPx activities, increased GSH content. [287] 

 Porcine kidney proximal 
tubule cell line (LLC-
PK) 

2500 ppm Increased lipid peroxidation, increased H2O2  accumulation,  [58] 

Paraquat (PQ) Human dopaminergic 
neuroblastoma cells 
(SK-N-SH) 
 

0.2, 0.5, 1 mM 
 

Increased cytosolic ROS, increased mitochondrial ROS,  
increased apoptosis, increased oxidative stress in the 
mitochondrial matrix, decreased mitochondrial membrane 
potential, increased free radical formation, increased lipid 
peroxidation. 

[200] 

Human IMR-32 
neuroblastoma cells 

0.05, 0.1, 0.2 
mM 

Transcriptional activity driven by ARE and NF-κB activated. [200] 

Rat lung slices  100 μM–10 mM Complex I-dependent increased ROS production.  [288] 

Rat organotypic 
midbrain slice cultures 

10–50 μM Excitotoxic mechanism of ROS production. [289] 

Rat primary 
mesencephalic cultures 

0.5–1 μM NADPH oxidase-dependent microglial ROS production. [290] 
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Rat primary 
mesencephalic cultures 
 

250 μM 
 

Robust and immediate production of ROS, involvement of 
mitochondrial complex III and mitochondrial membrane 
potential in ROS generation. 

[291] 

Human neural 
progenitor cells 
(hNPCs) 

1, 10, 100 μM 
 

Decreased SOD and CAT, increased lipid peroxidation, 
increased Nrf2, HO-1, and NQO1expression, upregulated Cyt 
C and caspase-9. 

[208] 

Human neural 
progenitor cells 
(hNPCs) 

0.1, 1, 10, 100 
μM 
 

Increased apoptotic cells, increased intracellular ROS, 
increased caspase-3 activity, increased NF-κB activity, p53 
and p21 mRNA expression. 

[201] 

Human plasma unknown Increased lipid peroxidation,  
decreased plasma antioxidant capacity and plasma SH 
groups. 

[292] 

Rat brain mitochondria 
 
 
 

250 μM 
 

Robust and immediate production of ROS, mitochondrial 
uptake of PQ, involvement of mitochondrial complex III and 
mitochondrial membrane potential  
in ROS generation. 

[293] 

 Non-green potato tuber 
callus 

1-50 μM Increased CAT, SOD, and GR activities. [230] 

Glufosinate Amaranthus palmeri 560 g/ha Increased O2
- and H2O2 (ROS) level, increased SOD, CAT, 

APX, and GR activities. 
[294] 

 Horseweed, palmer 
amaranth, kochia 

560 g/ha Increased lipid peroxidation, increased O2
- and H2O2 (ROS) 

level, increased SOD, CAT, APX, and GR activities. 
[295] 

 Chlorella vulgaris 10, 20 μg/mL Increased lipid peroxidation, increased SOD, CAT, and POD 
activities. 

[296] 
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Supplemental Table 4. Effects of most commonly used Organophosphate Insecticide Active Ingredients in the Home and in 2012 on 
oxidative stress in different tissues. 
 

Pesticide Cell Type/Model System                               Concentration/dose Oxidative stress markers Reference 

Phorate Male Wistar rats  
(Liver/bone marrow cells) 

0.046, 0.092, 0.184 
mg/kg 

Increased lipid peroxidation, decreased CAT 
activity and GSH level, increased intracellular 
ROS in bone marrow cells, reduced 
mitochondrial membrane potential in bone 
marrow, significant cellular DNA damage and 
apoptosis. 

[297] 

 Human amnion epithelial 
(WISH) cells 

50-1000 µM Increased extracellular superoxide anion (O2
-) 

production, increased intracellular ROS 
generation, mitochondrial damage. 

[298] 

 Human lymphocytes 
 

50-500 µM Increased intracellular ROS generation, 
decreased mitochondrial membrane potential. 

[299] 

 Calf thymus DNA (ct-DNA) 
 

1000 µM 
 

Increased 8-Hydroxy-2′-deoxyguanosine (8-
oxodG) DNA adduct formation. 

[299] 

Dicrotophos Renal tubular epithelial cell 
(LLC-PK1) 
 

1250 ppm Increased ROS production, increased lipid 
peroxidation. 

[300] 

 Human liver carcinoma 
(HepG2) cells 

25 - 400 μM Increased DNA damage level. [301] 

 Human liver carcinoma 
(HepG2) cells 

50 μM–200 μM  
 

Increased intracellular ROS production, 
decreased mitochondrial membrane potential, 
increased apoptosis. 

[302] 

Dimethoate Bok choy  600 g   a.i. /ha 
(applied dose of active 
ingredient per hectare) 

Increased ROS level. [303] 

 Rat liver and kidney 10-30 mg/kg Decreased SOD level, increased lipid 
peroxidation. 

[304] 

 Rat peripheral blood cells 10-60 mg/kg Increased DNA damage and fragmentation, 
increased apoptosis,  decreased mitochondrial 
membrane potential. 

[305] 

 Human peripheral blood 
lymphocytes 

40-100 mM Increased lipid peroxidation, increased protein 
oxidation, increased SOD and CAT activities. 

[306] 

 Gammarus pulex 10-40 µg/L 
 

Increased lipid peroxidation, decreased GSH 
level, decreased SOD, CAT, and GST activities. 

[307] 
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 Male Wistar rat liver and brain 0.6, 6, 30 mg/kg Increased lipid peroxidation, increased SOD, 
CAT, GPx, and GR activities, decreased GSH at 
30 mg/kg. 

[91] 

 Adult female rats 0.2 g/L Increased lipid peroxidation, decreased  GPx, 
SOD, CAT activities activity, decreased GSH 
level. 

[308] 

 Female Wistar rats 
(Erythrocytes) 
 

0.2 g/L Increased lipid peroxidation, increased protein 
carbonylation, increased advanced oxidation 
protein products (AOPP), increased CAT, SOD, 
and GPx activities decreased GSH level. 

[309] 

 Rat erythrocytes 0.03 mg/kg 
 

Increased lipid peroxidation, increased SOD and 
CAT activities, increased total-SH content. 

[310] 

 Freshwater fish Channa 
punctatus (Bloch) 

4.8, 9.6, 14.3  µg/L Increased lipid peroxidation, decreased SOD 
activity, increased GSH level, increased DNA 
damage.  

[311] 

 Oncorhynchus mykiss 0.0735, 0.3675, 
0.7350 mg/L 

Increased lipid peroxidation, increased SOD and 
GPx activities. 

[312] 

 Cyprinus carpio 16 and 32 µg/L Increased lipid peroxidation, increased CAT 
activity, decreased total antioxidant levels. 

[313] 

Terbufos Mouse immortalized 
spermatogonia (GC‐1) cells 

50, 100, 200 μM Increased intracellular ROS production,  
decreased mitochondrial membrane potential, 
increased apoptosis, increased DNA damage. 

[314] 
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Supplemental Table 5. Table showing additional pesticides that have been documented to cause oxidative stress in different tissues. 

Pesticide Cell Type/Model System Concentration/dose Oxidative stress markers Reference 

Lindane Thymic cells from 
C57BL/6 mice 

37.5, 50, 75, 150, 
200 µM 

PER and lindane mixtures increased SOD 
activity, had no effect on CAT levels and 
inhibited GPx and GSH-R specific activities. 

[315] 

 Rats 100 mg/kg Increased lipid peroxidation, decreased GSH, 
SOD, CAT, GPx, and GST activities. 

[96] 
 

Dichlorodiphenoxy-
trichloroethane 
(DDT) 

Human normal liver (HL-
7702) cells 

p,p′-DDT (10, 20, 30 
µM) 

Increased intracellular ROS. Activated 
caspase-9, increased Bax and p53 levels, anti-
apoptotic gene Bcl-2 downregulated, and 
increased NF-κB p65 levels. 

[316] 

Maneb Rat adrenal 
pheochromocytoma 
(PC12) cells 

50–1000 ng/ml 
 

Increased GSH and GSSG, altered HO-1 
levels. 

[317] 
 

Rat primary 
mesencephalic cultures 
 

30 μM 
 

ROS generation, mitochondrial uncoupling. [318] 
 

10–120 μM 
 

Decreased ATP levels, mitochondrial 
dysfunction. 

[318] 
 

Dieldrin 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rat adrenal 
pheochromocytoma 
(PC12) cells 

30–500 μM 
 

Increased ROS, decreased mitochondrial 
membrane potential and activity, decreased 
lipid peroxidation, increased DNA 
fragmentation. 

[319] 

Rat adrenal 
pheochromocytoma 
(PC12) cells 

100μM Increased 8-oxodGuo levels (created by ROS). [320] 

Rat adrenal 
pheochromocytoma 
(PC12) cells 

100-300μM Increased caspase-3 activity and DNA 
fragmentation. 

[321] 

Immortalized mouse 
nigral clonal (SN4741) 
cells 

40 μM Increased ROS, apoptotic cell death [322] 

PC12 cells  
 

30-100 μM 
 

Increased ROS, apoptotic cell death. [323] 
 

Immortalized rat 
mesencephalic clonal 
(N27) cells 

0-70μM α-synuclein aggregation, increased DNA 
fragmentation. 

[324] 

Primary mouse microglial 
cultures 

0.1 nM–1 μM Microglial NADPH-oxidase dependent ROS 
production. 

[325] 
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Human THP-1 monocytes 10 μM, 20 μM  
 
 

Elevated ROS level, dose-dependent increase 
in p47phox phosphorylation (necessary to 
activate NOX2). 

[326] 

Mice 3–48 mg/kg Increased lipid peroxidation. 
 

[327] 

 Mice 0.3–3 mg/kg 
 

Decreased GSH, decreased DAT expression, 
increased α-synuclein, increased cysteinyl-
catechol adducts. 

[328] 

Clothianidin 
 

Male Wister rats  2, 8, and 24 mg/kg Increased TBARS significantly in testicular 
tissue, GSH level did not change significantly 
in all treated groups. 

[329] 

Male Wister rats  2, 8, and 32 mg/kg Significant decrease in the GSH level in the 
testicular tissue. 

[330] 

Chlordane 
 
 
 
 

Human THP-1 monocytes 1 μM , 5 μM, and 
10 μM trans-
nonachlor 

Elevated ROS level, enhanced superoxide 
production, dose-dependent increase in 
p47phox phosphorylation (necessary to activate 
NOX2). 

[326] 

Murine macrophage cell 
J774a.1 

10 μM  
trans-nonachlor 

Increased intracellular superoxide level [326] 

Human HL-60 cell 1 μM and 10 μM  
trans-nonachlor 

Increased intracellular superoxide level [326] 

Pentachlorophenol 
(PCP) 
 
 
 
 
 
 
 
 
 
 
 
 

Primary murine 
splenocytes 

25–100 µM PCP 
 

Increased ROS production, increased 
apoptosis, decreased mitochondrial membrane 
potential. 

[331] 

Primary murine 
splenocytes  
 
 
 
 
 

PCP metabolite 
(12.5–50 µM TCHQ) 
 

Significantly increased ROS production, 
increased apoptosis, increase in annexin V and 
PI positive (necrotic cells), decreased 
mitochondrial membrane potential, ERK 
activation, increased expression of cleaved 
caspase-3 and degradation of PARP. 

[331] 

Murine hepatocytes 
  

0.03, 0.06, and 
0.12% 

Increased 8-OHdG levels [332] 

Sprague–Dawley rats 40 mg/kg PCP  Increased lipid peroxidation [118] 

Endosulfan 
 

Human peripheral blood 
lymphocytes 

0.1, 17 μM Increased apoptosis [333] 
 

 Human neuroblastoma  
SH-SY5Y cells 
 

50, 100, 200 μM  
 

Increased intracellular ROS, increased 
intracellular superoxide anion, decreased 
specific activities of SOD, CAT, and GPX, 

[334] 
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increased lipid peroxidation, increased 
expression of NFκB p50. 

 Male Wistar rats 2 mg/kg Increased SOD, GPx, CAT activities and 
increased (MDA level) lipid peroxidation.  

[122] 

 

Zineb 
 
 
 
 

Human neuroblastoma  
SH-SY5Y cells 

50, 100, 200 μM  Increased intracellular ROS, increased 
intracellular superoxide anion, decreased 
specific activities of SOD, CAT, and GPX, 
increased lipid peroxidation, increased 
expression of NFκB p50. 

[334] 

1-methyl-4-
phenylpyridinium 
(MPP+) 
 
 
 
 

Human dopaminergic 
neuroblastoma cells (SK-
N-SH) 
 

0.01–2.5 mM MPP+ 
 

Increased mitochondrial ROS,  
increased apoptosis, increased oxidative stress 
in the mitochondrial matrix, decreased 
mitochondrial membrane potential, increased 
lipid peroxidation. 

[200] 

Rat dopaminergic N27 
cells 

100–1000 μM Increased intracellular ROS, increased Nox2 
protein expression. 

[335] 

Rotenone Rat primary 
mesencephalic cultures 

0.5–30 nM NADPH oxidase dependent microglial ROS 
production. 

[336] 

Human dopaminergic 
neuroblastoma cells (SK-
N-SH) 
 

0.65–4 µM 
 

Increase mitochondrial ROS, increased 
apoptosis, decreased mitochondrial membrane 
potential, increased lipid peroxidation. 

[200] 

Ziram 
 
 
 

Human Natural 
Killer Cells (NK-92MI) 

0.125 – 4 μM Increased apoptosis, increased intracellular 
levels of active caspases3, 3/7, 8, 9, increased 
cytochrome-c release and decreased 
mitochondrial membrane potential. 

[337] 

 Progenitor Leydig cells 
(PLCs) 
 

1 – 5 μM Increased intracellular ROS, increased 
apoptosis, decreased mitochondrial membrane 
potential. 

[338] 

Methamidophos Human Peripheral Blood 
Mononuclear Cells 
(PBMCs) 

3 – 20 mg/L  Increased intracellular ROS production, 
increased lipid peroxidation, decreased GSH  
level. 

[339] 

Dichlorvos 
 

Adult male Wistar rats 
 

8.8 mg/kg 
 

Increased amygdala and hippocampal ROS 
levels. Increased NO level both in amygdala 
and hippocampus.  

[340] 

 Human erythrocytes 
 

1 – 100 μM Decreased SOD, CAT, and GPx activities. 
Increased lipid peroxidation. 

[341] 
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 Human colon carcinoma 
(HCT116) cell 

150 – 450 μM Increased ROS, increased lipid peroxidation, 
increased DNA damage, decreased 
mitochondrial membrane potential, increased 
caspase-3, CAT, and SOD activities. 

[342], [343] 

 Male Wistar rats  
(Erythrocytes) 

70 mg/kg Increased lipid peroxidation, increased SOD 
activity. 

[344] 

 Male albino rats (Brain) 6 mg/kg Increased lipid peroxidation, increased protein 
carbonylation, increased mitochondrial DNA 
oxidation, increased level of mitochondrial 
ROS production, decreased mitochondrial 
glutathione levels and MnSOD activity. 

[345] 
 

Tebuconazole 
 

H9c2 cardiac cells 
 

10 – 100 μM Increased mitochondrial ROS, increased lipid 
peroxidation, increased apoptosis, decreased 
mitochondrial membrane potential,  
increased in Bax/Bcl-2 level, activated 
caspase-9 and caspase-3. 

[346] 

 Male Wistar rat 0.9, 9 and 27 mg/kg  
 

Increased lipid peroxidation, protein carbonyl, 
advanced oxidation protein product (AOPP) 
levels and DNA damage. Increased renal SOD, 
CAT, and GPx activities, decreased GSH 
activity. 

[346] 

Triflumuron 
 

Balb/c mice bone marrow 
cell 
 

250 – 500 mg/kg Increased DNA damage. [347] 

 Human colon carcinoma 
(HCT116) cell 

100, 200, 400 and 
600 µM 
 

Increased intracellular ROS, increased lipid 
peroxidation, increased DNA damage, 
increased SOD, CAT, and GST activities. 
Decreased mitochondrial membrane potential 

[347], [348] 

 Human renal embryonic 
cells (HEK 293) and 
Human liver carcinoma 
cells (HepG2) 

50 – 300 µM 
 

Increased intracellular ROS, increased lipid 
peroxidation, increased Hsp70 levels, 
increased CAT and SOD activities, decreased 
mitochondrial membrane potential, increased 
expression levels of Bax and decreased 
expression of Bcl‐2. 

[349] 

 Male Balb/C mice 
 

250, 350, and 500 
mg/kg 
 

Increased protein carbonyl, increased lipid 
peroxidation, increased CAT, SOD, GPx, and 
GST activities. 

[147] 

 Acetamiprid  
 

Rat adrenal 
pheochromocytoma 
(PC12) cells 

110, 220, and 330 µM 
 

Increased intracellular ROS, increased lipid 
peroxidation, increased DNA damage, 
decreased mitochondrial membrane potential. 

[350] 
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 Pancreatic Cell Line 
AR42J 
 

1 - 6 mM 
 

Increased DNA damage, decreased GSH level. [351] 

 Male and female Wistar 
rats (Kidney & Liver) 

5.5, 11, and 22 mg/kg Increased lipid peroxidation, decreased GSH, 
SOD, CAT, and GPx activities. 

[352] 
 

 Kumming male mice 30 mg/kg Increased MDA and NO concentrations in the 
testes; reduced the activity of CAT, GPx, SOD; 
and activated p38. 

[353] 

Thifluzamide Zebrafish embryos 
 

0.19, 1.9, 2.85 mg/L Increased lipid peroxidation, decreased SOD. [354] 

Aldicarb Chinese Hamster Ovary 
(CHO-K1) cells 

Aldicarb 10 µg/mL Increased lipid peroxidation, decreased GSH 
activity, increased GR, GPx and GST activities. 

[355] 

 Chinese Hamster Ovary 
(CHO-K1) cells 

Aldicarb sulfone 
10 µg/mL 

Increased lipid peroxidation, decreased GSH 
activity, increased GR, GPx and GST activities. 

[355] 

 Chinese Hamster Ovary 
(CHO-K1) cells 

Aldicarb sulfoxide 
10 µg/mL 

Increased lipid peroxidation, decreased GSH 
activity, increased GR, GPx and GST activities.  

[355] 

Propoxur Chinese Hamster Ovary 
(CHO-K1) cells 

10 µg/mL Increased lipid peroxidation, decreased GSH 
activity, increased GR, GPx and GST activities. 

[355] 

Methidathion Male Wistar rats 5 mg/kg 
 

Increased lipid peroxidation. [356] 
 

Diazinon Female Sprague-Dawley 
rats 
 

8, 10, 12 and 
20 mg/kg 

Increased lipid peroxidation, decreased SOD, 
GPx activities. 

[357] 
 
 

 Male Wistar albino rats 20 mg/kg A significant increase in cardiac MDA and NO 
content was observed compared with the 
control group, but cardiac antioxidants were 
significantly (p ≤ .05) decreased. 

[358] 

 Male MFI mice 16.25 and 32.5 mg/kg 
 

Increased lipid peroxidation, increased protein 
carbonylation, decreased GSH level, 
decreased CAT, SOD, GPx, and GR activities. 

[359] 

 
 

Rats 15 mg/kg Increased MDA level, lower level of reduced 
GSH, induction of apoptosis 

[163] 

 Male Wistar rats  
 

20 mg/kg Increased level of TNF-α and 8-iso-
prostaglandin F2α 

[360] 
 

 Wistar albino rats 
 

335 mg/kg 
 

Increased lipid peroxidation [361] 
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Monocrotophos 
 

Wistar rats 
 

0.36 mg/kg Cardiac oxidative stress was conferred by 
accumulation of protein carbonyls, lipid 
peroxidation and glutathione production. 

[169] 

 Male albino Wistar rats 
(Liver, Kidney, Spleen, 
Brain) 

4.5 and 9.0 mg/kg Increased lipid peroxidation, increased DNA 
damage. 

[362] 
 

 Chinese hamster ovary 
(CHO-K1) cells 

233.58 µM 
 

Increased GPx activity, increased GSH 
content. 

[287] 

Aluminum 
phosphide 
 

Male Wistar rats 12 mg/kg 
 

Elevated ROS and plasma iron levels. 
Increased Caspase 3 and 9 levels, increased 
CAT activity. 

[363] 

 Male Wistar rats 
 

6 and 12 mg/kg Increased hydroxyl radicals, increased lipid 
peroxidation, decreased mitochondrial 
complexes (II, IV and V), decreased 
mitochondrial membrane potential, increased 
apoptosis. 

[364] 

Penconazole 
(triazole) 
 

Male Wistar rats 
 

67 mg/kg 
 

Increased lipid peroxidation, protein carbonyls 
and DNA fragmentation in the heart, increased 
CAT, SOD, and GPx activities, decreased GSH 
level. 

[173] 

Imidacloprid (IMI) Chinese hamster ovary 
(CHO-K1) cells 

0.97– 500 μM Significant inhibition of the activity of GST, 
GPx, and GR. 

[365] 

 Male Wistar rats 40 mg/kg Significant increase in MDA level, the activities 
of CAT, and SOD and decreased the activities 
of GST and total SH. 

[366] 

 Male Wistar rats 45 and 90 mg/kg Significantly increased MDA levels and 
decreased GSH levels and the activities of 
CAT, SOD, GPx, and GST. 

[367] 
 

 Male Wistar rats 45 and 90 mg/kg Increased MDA content and decreased the 
activities of SOD, GSH, GPx, and CAT. 

[368] 

 Male Wistar rats 0.5, 2, and 8 mg/kg Increased lipid peroxidation and increased 
apoptosis. 

[369] 

 Wistar rats 1 mg/kg Significant increase in NO production in brain. 
IMI induced the mRNA transcription of iNOS, 
eNOS, and nNOS in brain and iNOS and 
eNOS in the liver. 
IMI significantly increased CAT activity in brain 
and increased MDA levels in plasma, brain, 
and liver. XO activity was elevated in liver and 

[370] 
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brain; MPO activity was increased only in the 
liver. GSH levels were significantly depleted in 
brain. 

 Female Wistar rats 5, 10, and 20 mg/kg Significantly increased MDA content and 
significantly decreased SOD, CAT and GPx 
activities, and GSH content in ovary. 

[371] 

 Female Wistar rats 10 μM equivalent to 
2.6 mg/100 g 

Increased the production of NO levels in liver. 
MDA increased significantly in liver and 
plasma. CAT, SOD, and GPx activities 
responded differently to IMI administration. 
GSH level was significantly decreased in the 
liver and brain. 

[372] 

 
 
 
 

Female Wistar rats 5, 10, and 20 mg/kg Significantly decreased GSH level in liver and 
the activities of GPx, CAT, and SOD in liver 
and brain and significantly increased MDA 
content in brain and kidney. 

[373] 

 Male Swiss albino mice 14.976 mg/kg Significantly increased MDA levels, increased 
CAT, SOD, GPx and GST activities, and 
decreased GSH level. 

[374] 

 Earthworm Eisenia fetida 
 
 
 

0.2, 0.66, 2, and 4 
mg/kg 

IMI significantly increased ROS level, MDA 
content, and CAT and peroxidase (POD) 
activities. 

[375] 

 Honeybees (Apis 
mellifera L.) thorax 

0.7, 2.0 ng/mL Increased lipid peroxidation, increased GPx, 
CAT activities  

[376] 
 

Fluazifop-p-butyl 
(FPB) 

Male Wistar rats 
 

18.75, 37.50, and 
75.00 mg/kg 
 

Increased lipid peroxidation, decreased 
testicular antioxidant status, decreased 
testicular activities of SOD, CAT, GST and 
GSH. 

[176] 

Acanthospermum 
hispidum 

10 μM Increased lipid peroxidation, increased ROS 
level,  

[377] 

Acanthospermum 
hispidum 

5 μM, 10 μM Increased ROS level, increased SOD, CAT, 
APx, and GR activities. 

[378] 

Acanthospermum 
hispidum 

5 μM, 10 μM Increased lipid peroxidation.  [379] 

Nitenpyram Male and female 
zebrafish (Danio rerio) 

0.6, 1.2, 2.5, and 5.0 
mg/L 

Resulted to DNA damage in the exposed 
zebrafish livers. SOD and CAT activities were 
inhibited; ROS production, GST activity, DNA 
damage, and MDA content increased. 

[177] 
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Thiacloprid 
 
 
 
 
 

Male Wistar rats 22.5, 112.5 mg/kg Significantly decreased CAT, GPx, and GSH, 
increased lipid peroxidation levels in lymphoid 
organs and significantly increased total NOx 
(NO2 and NO3) in polymorphonuclear 
leukocytes and TBARS levels in all lymphoid 
organs and the plasma. 

[380] 

 Earthworm Eisenia fetida 1 and 3 mg/kg Increased DNA damage, inhibited the activities 
of GST, CAT, SOD, and POD. 

[381] 
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Supplemental Table 6. Table showing pesticide tolerable and nontoxic concentrations. 

Pesticide Nontoxic concentrations Reference 

Glyphosate 10-100 µM induced proliferation and cell growth in Human Skin 

Keratinocytes HaCaT cells. 

[179] 

 0.5-2.91 µg/mL induced a slight increase of cell proliferation after 

treatment in Human liver carcinoma (HepG2) cells. 

[216] 

 2.7% No significant superoxide and hydroxyl radicals production in 

Caenorhabditis elegans. 

[218] 
 

 0.5 - 15 mM had no effects on transmembrane potential (Δψm), no effect 

on enzymatic activities of mitochondrial respiratory complexes II, III, and 

IV, and no effect on ATP and ATPsynthase activities in isolated rat liver 

mitochondria. 

[382] 

Atrazine (ATR) 5 and 25 mg/kg had no significant increase on blood urea nitrogen (BUN) 

and creatinine (CREA) levels in female Wistar rats. 

[183] 

Metolachlor-S 2 μg/L had no effect on cell growth and cell numbers at 48h treatment, it 

decreased ROS content at 72 h treatment, and decreased lipid 

peroxidation at 4 h treatment in Parachlorella kessleri (microalga). 

[226] 

2,4-

dichlorophenoxyacetic 

acid (2,4-D 

0.01-0.5μM had no effect on cell growth in non-green potato tuber callus. [230] 

 1-100 mg/L had no effect on protein carbonyl levels in Goldfish 

gills, Carassius auratus. 

[231] 

 15 mg/kg had no clinical signs of 2,4-D poisoning in Male Wistar rats 

(Liver) 

[237] 
 

 15 mg/kg had no clinical signs of 2,4-D poisoning in Male Wistar rats 

(Liver) 

[239] 

Acetochlor 0.017mg/L had no significant increase in lipid peroxidation (MDA 

content) in tadpole liver. 

[242] 

 250mg had no effect in the organ/body ratio in lung, spleen, testis in 

C57BL/6 male mice. 

[188] 
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 50 μM did not induce any significant cytotoxic effect for 12 h and 24 h in 

HepG2 cells. 100 μM had no effect on the mitochondrial membrane 

potential after 24 hr treatment. 

[244] 

Chloropicrin 10-20 μM had no significant decrease in cell viability of human retinal 

pigment epithelial (ARPE-19) cells. 

[192] 

 10 μM had no significant decrease in cell viability of lung epithelial cell 

line (A549). 

[191] 

Chlorothalonil 1-5 μM did not induce cytotoxicity (<15% LDH leakage) and lipid 

peroxidation in isolated rat hepatocytes. 

[248] 

Pendimethalin 50 μM no effect on mitochondrial membrane potential (Δψm) in human 

lymphocytes. 

[252] 

 12.5 mg/kg did not show significant ROS level and had no significant 

effect on the mitochondrial membrane potential in rat bone-marrow 

cells. 

[252] 

 1-25 μM had no effect on cell viability in Chinese hamster lung 

fibroblast V79 cells.  

[256] 

Ethephon 10-160 μg/ml significantly increased cell proliferation in 3T3 embryonic 

fibroblast cells. 10-40 μg/ml had no significant changes in ROS content 

and lipid peroxidation.  

[258] 

 3-10 mg/L had no effect on significant effect on the protein 

carbonylation. 3-5 mg/L had no effect on lipid peroxidation in Carassius 

auratus. 

[262] 

Mancozeb 5mg/ml had no significant effect on cell viability after 15 days of 

treatment in Drosophila melanogaster. 

[267] 

 50mg/kg had no effect on lipid peroxidation in male NMRI mice testes. [195] 

Chlorpyrifos 25 μM had no significant effect on cell viability in SH-SY5Y cells. [197] 

 25 μM had no significant effect on cell viability in PC12 cells and had no 

effect on cell morphology. 

[198] 

 2.5 mg/kg had lower MDA level compared to 5 and 10mg/kg exposure 

in aorta, liver, plasma, and kidney of male Wistar rats. 

[271] 

 0.1 and 1 μM did not affect cell viability in splenocytes. [199] 
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Metolachlor 100 μM did not affect cell density in B. stearothermophilus. [15] 

Paraquat 0.1-10 μM did not affect cell viability in human neural progenitor cells. [201] 

Bifenthrin 5 μM did not affect cell viability in human colorectal HCT-116 cells. [214] 

 5mg/kg had no effect on the body weight of male mice and no obvious 

signs of poisoning was found. 

[383] 

 1-5 μM did not affect cell viability in human umbilical vein endothelial 

(HUVEC) cells. 

[215] 

Malathion 6 mM had no effect on cell viability and had a mitogenic effect on the 

growth of human liver carcinoma (HepG2) cells. 

[384] 

Phorate 0.046mg/kg did not induce lipid peroxidation in rats liver tissue after 14 

days exposure. 

[297] 

Dimethoate 0.6mg/kg did not induce lipid peroxidation in rats liver and brain tissue. [91] 

Endosulfan 50 μM had no significant difference in LDH release (cell viability) in SH-

SY5Y cells 

[334] 

Zineb 50 μM had no significant difference in LDH release (cell viability) in SH-

SY5Y cells. 

[334] 

Methamidophos 3 mg/L did not affect the cell viability in human peripheral blood 

mononuclear cells. 

[339] 

Dichlorvos 1 μM did not induce MDA level/lipid peroxidation in erythrocytes. [341] 

Acetamiprid 27.5-55 mg/kg had no clinical signs of toxicity in Wistar rats. No 

significant decreases in body weight during 13 weeks of treatment. 

[352] 

Imidacloprid 5-10 mg/kg did not produce any signs of toxicity and mortality during 90 

day exposure. 

[371] 

 0.2 mg/kg had no significant change in ROS level and MDA content 

during exposure period of 14 days in Eisenia fetida. 

[375] 
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