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Abnormal oncogenic signatures provide important clues regarding cancer prognosis and treatment. We analysed the variations in
189 oncogenic signature gene sets between normal and tumourous tissues from The Cancer Genome Atlas (TCGA) and found
that the “CSR_LATE_UP” signature was the most upregulated oncogenic signature gene set in bladder cancer. Next, we
developed a common serum response (CSR) risk score (CRS) model based on fibroblast CSR genes and systematically analysed
the correlations of these genes or the CRSs with survival, previously reported molecular subtypes, clinicopathological features,
cancer signalling pathways, chemotherapeutic responses, and the tumour microenvironment using TCGA and validation
cohorts. The CRS could predict the malignant phenotype, chemotherapeutic efficacy, immune invasion, and disease prognosis.
Inflammatory signalling pathways (e.g., inflammatory response, TNFA signalling via NFƘB, IFNα response, and IL2-STAT5
signalling) were markedly upregulated in patients with high CRS. Notably, the CSR-related gene ANLN was positively
correlated with CD8+ immune cell infiltration, PD-L1 expression, and sensitivity to PD-L1 inhibitors and could thus provide
guidance for clinical immunotherapy. This study highlights the crucial role of the CSR signature in bladder cancer and
provides a CRS model for accurate predictions of the disease prognosis and chemotherapy and immunotherapy responses.

1. Introduction

Bladder cancer (BLCA), which represents the tenth most
common types of cancer worldwide, is the predominant
malignancy of the urinary system. The main type of BLCA
is uroepithelial carcinoma, which is clinically classified into
non-basal-invasive and muscle-invasive subtypes. There are
about 573,000 cases of BLCAworldwide, with 212,000 deaths.
Furthermore, with the aging of the global population, the

morbidity related to this urinary system disease is increasing
annually [1]. Currently, surgical resection remains the first
treatment of choice for patients with BLCA. Although post-
operative platinum-based chemotherapy can improve the
prognosis of afflicted patients, resistance to chemotherapeutic
drugs is still a difficulty faced in BLCA treatment [2].

Researchers continue to identify oncogenic signature gene
sets in different tumour types [3, 4]. Such gene sets indicate the
signature of cellular pathways that are often dysregulated in
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cancer. Classification based on abnormal oncogenic signatures
provides important information on the disease prognosis and
treatment. For instance, Zhang et al. introduced a novel meta-
bolic classification method based on genes related to glycolysis
and the cholesterol synthesis pathways in patients with BLCA,
which might contribute to precision therapeutic strategies tar-
getingmetabolic weaknesses [5]. Thus, the identification of the
important abnormal signalling pathways in BLCA could lead
to similar novel strategies for combating the disease. To syste-
matically investigate the core gene sets involved in BLCA
development and progression, we downloaded all oncogenic
signature gene sets from the Molecular Signatures Database
(MSigDB) and analysed their variations between normal and
tumourous tissues, whereupon “CSR_LATE_UP.V1_UP” (a
common serum response (CSR) signature) was found to be
the most upregulated in the disease samples. Containing 166
upregulated CSR genes, this signature was first discovered in
the late serum response of foreskin fibroblasts, which seems
to represent the pleiotropic roles of fibroblasts in wound heal-
ing. Chang et al. connected this CSR signature to cancer pro-
gression and determined the prognostic performance of the
CSR signature in breast cancer and epithelial tumours [6].
However, there is a dearth of publications on the role of CSR
signatures in BLCA development and progression. Thus, this
study was carried out to identify the CSR genes which have
value in predicting the progression of BLCA and the prognosis
of afflicted patients.

Recent developments in tumour immunotherapy have
brought new hope to patients with BLCA. Although the
use of immune checkpoint blockades (ICBs) has significantly
improved the outcome of cancer patients, only a minority of
patients with BLCA respond effectively to this type of ther-
apy [7]. The immunotherapy response depends on the num-
ber of tumour-infiltrating lymphocytes (TILs) [8].
Moreover, the incidence of adverse reactions to anti-
programmed cell death ligand 1 (PD-L1) therapy is approx-
imately 16% [9]. To reduce both the financial burden of can-
cer patients and the side effects of drugs, individualised
therapy is needed to achieve more effective and economical
treatment. Therefore, the discovery of immune detection
targets provides a basis for the choice of ICB therapy in
patients with BLCA. Although tests of the tumour muta-
tional burden, microsatellite instability, and molecular sub-
types are helpful in predicting the clinical response to
ICBs, they are time-consuming and expensive. Thus, it is
of great importance to find new, economical, simple, and
effective immune molecules that can act as prognostic
indicators.

In this study, we analysed the variations in oncogenic
signature gene sets between 19 normal and 405 tumourous
tissues from The Cancer Genome Atlas (TCGA-BLCA)
and found that the CSR signature was the most upregulated
oncogenic signature gene set in BLCA. On the basis of these
CSR genes, we built a CSR risk score (CRS) model to predict
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Figure 1: The overall flowchart of this study. DEGs: differentially expressed genes; SRGs: survival-related genes; CRS: fibroblast common
serum response risk score.
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Figure 2: Identification of most differential oncogenic signature gene sets and related genes. (a) Heat map of 189 oncogenic signature gene
sets between normal and tumourous tissues of bladder cancer. (b) Eight fibroblast common serum response- (CSR-) related genes
differentially expressed in bladder cancer showed prognostic value. (c) Heat map of mRNA levels of the identified eight CSR genes
between normal and tumourous tissues in bladder cancer. (d) Forest map shows the hazard ratio of the identified eight CSR genes in
TCGA-BLCA cohort. (e) Correlation analysis among the identified eight CSR genes. DEGs: differentially expressed genes; SRGs: survival-
related genes.
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: Construction of CRS model using the identified eight CSR genes. (a) Cross-validation for turning parameter selection via
minimum criteria in the LASSO regression model. The penalty value is determined according to the lowest point of the curve (the upper
coordinate corresponding to the lowest point of the curve). (b) Coefficient profiles of eight genes in the TCGA-BLCA cohort. The
variable that intersects the penalty value is the variable eventually included in the model, and the vertical coordinate corresponding to
the variable is the regression coefficient of the variable. (c) Univariate and (d) multivariate Cox analysis of clinical features and the CRS.
(e) Correlation between the CRS stratification of CSR genes and types of bladder cancer and the mRNA levels of CSR genes. Ability to
prognosticate the survival for patients in the (f) TCGA-BLCA and (g) validation cohorts of the CRS model. Predictive accuracy of the
model for survival in the (h) TCGA-BLCA and (i) validation cohorts. CRS: fibroblast common serum response risk score.
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Figure 4: Continued.
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Figure 4: Correlation between the CRS stratification and clinicopathological features. Distribution of the CRS and survival in the (a) TCGA-
BLCA and (b) validation cohorts. (c) Principal component analysis shows stratification of the CRS model in the both cohorts. Box plots
show the difference in the CRS of (d) age, (e) gender, (f) grade, and (g) TNM staging. CRS: fibroblast common serum response risk score.
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Figure 5: Continued.
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the outcome of patients with BLCA. From the results of the
correlation analyses between the CRS classifications and
clinicopathological features or immunity characteristics of
the tumour microenvironment, we propose that the model
can predict tumour progression and thus could be used to
guide the choices of chemotherapy and PD-L1-targeted
immunotherapy treatment for patients with BLCA.

2. Methods

2.1. Data Source. The overall outline of this study is shown
in Figure 1. TCGA-BLCA data were downloaded from
https://portal.gdc.cancer.gov/, which contains 19 normal tis-
sues and 405 BLCA tumourous tissues. The dataset of the
GSE13507 cohort was downloaded from https://www.ncbi
.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507. Gene
expression data and clinical information on the IMvigor210
cohort (a BLCA cohort containing responses to anti-PD-L1
immunotherapy) were obtained from http://research-pub
.Gene.com/imvigor210corebiologies/ [10].

2.2. Identification of the Most Differential Gene Set. A list of
189 oncogenic signature gene sets was acquired fromMSigDB
(http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Gene
set variation analysis (GSVA), which is a method used to
assess variations in pathway activity [11], was used to evaluate
the activities of the 189 oncogenic signature gene sets in the
normal and tumourous BLCA tissues. Then, on the basis of
the 189 gene set scores, variation analysis between the normal
and tumourous tissues was performed using the Limma pack-
age. The “CSR_LATE_UP.V1_UP” gene set, which was also
downloaded from MSigDB, contains 166 CSR genes that are
upregulated in the late serum response of fibroblasts.

2.3. Construction of the CRS Model. Before developing the
CRS model, we conducted variation analysis of the CSR
genes between the normal and tumourous tissues and Cox
regression analysis of the differentially expressed genes in
relation to BLCA prognosis. Then, the CSR genes that were
differentially expressed and had prognostic value were con-
sidered as candidates for use in the model construction. By
imposing a regression penalty on all variables, the CRS
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Figure 5: Analyses of CRS-related signalling pathways. Correlation between expressions of seven CSR genes involved in the CRS and
important cancer signalling pathways in the (a) TCGA-BLCA and (b) validation cohorts. A cross in the pie chart shows P value > 0.05.
(c) Wire map outlines the correlation between CSR genes and important cancer signalling pathways with statistical significance in the
both cohorts. Solid lines represent activation of signalling pathways and dotted lines show inhibition. (d) Density map shows the
difference of characteristic pathway scores between the high- and low-CRS subgroups in BLCA. GSVA enrichment analyses of high- and
low-CRS-associated biological processes in the (e) TCGA-BLCA and (f) validation cohorts. The red font indicates common enriched
processes in the cohorts. CRS: fibroblast common serum response risk score.
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(f)

Figure 6: Continued.
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(g)

Figure 6: The CRS stratification and immune-related genes or cells. (a) Heat map shows difference of chemokines, interleukins, interferons,
other cytokines, and their receptors. Violin plots of the (b) abundance of immune cells and (c) functions of chemokines, interleukins,
interferons, other cytokines, and their receptors. (d) mRNA levels of 13 immune checkpoint genes. ns: not significant. (e) Abundance of
the risk score in different immune subtypes. Correlation analyses between the CRS and (f) immune score or (g) stromal score. CRS:
fibroblast common serum response risk score.
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Figure 7: The CRS stratification and drug prediction. (a) Bubble diagram shows the correlation between IC50 of compounds (GDSC) and
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model was constructed to yield a coefficient of zero for the
relatively unimportant variables (which were excluded from
the model), using the least absolute shrinkage and selector
operation (LASSO) algorithm:

CRS =〠βi∗χi, ð1Þ

where βi is the coefficient of the log2-transformed gene
expression level for gene i. Thereafter, the patients in TCGA
and validation cohorts were classified into high-CRS
(CRS ≥median value) and low-CRS (CRS <median value)
groups according to the CRS.

2.4. Enrichment Analysis of Related Signalling Pathways. The
following are the signalling pathways included in this analy-
sis: cell cycle, negative apoptosis, positive apoptosis, fibro-
blast growth factor receptor (FGFR) activated, Hippo
activated, Notch activated, phosphoinositide 3-kinase
(PI3K) activated, transforming growth factor-beta (TGF-β)
activated, Wnt activated, RAS activated, Hippo repressed,
Notch repressed, PI3K repressed, Wnt repressed, RAS
repressed, basal differentiation, epithelial-mesenchymal
transition (EMT) differentiation, immune differentiation,
interferon response, keratinisation, luminal differentiation,
myofibroblasts, neuroendocrine differentiation, and Ta
pathway. These are all important cancer signalling pathways
or characteristic pathways of BLCA [12]. The variation in
pathway activity was calculated using the GSVA method.
Additionally, the biological processes associated with high
and low CRSs in the training and validation cohorts were
analysed using gene set enrichment analysis (GSEA). The
hallmark gene set of “h.all.v7.5.1. entrez.gmt” was acquired
from MSigDB.

2.5. Evaluation of Immune Cell Infiltration and Function.
We also used the GSVA method to evaluate the abun-
dance of immune cell infiltration and immune function.
We identified immune subtypes on the basis of the
immune landscape of cancer previously reported by
Thorsson et al. [13]. The immune and stromal scores were
evaluated by the ESTIMATE algorithm, which allows one
to infer the proportion of stromal and immune cells in
the tumour samples [14].

2.6. Prediction of Drug Responses. We downloaded drug
response and cell line expression data from the Genomics
of Drug Sensitivity in Cancer (GDSC, https://www
.cancerrxgene.org/downloads/) [15]. Analyses of the correla-
tion between cell-line-specific gene expression and chemo-
therapy sensitivity were conducted. Drugs with a P value of
less than 0.05 are shown in the bubble diagram. pRRophetic
is an R package that aids in the prediction of clinical drug
responses from tumour gene expression levels [16]. The dif-
ference in drug sensitivity between the high- and low-CRS
groups was predicted using the pRRophetic package.

2.7. Immunohistochemical Analysis. In total, 21 BLCA tissue
samples were acquired from patients who had undergone
curative surgery at the Second Affiliated Hospital of Wen-
zhou Medical University. Ethical approval was obtained
from the Second Affiliated Hospital of Wenzhou Medical
University Research Ethics Committee. Antibodies against
anillin (ANLN) (DF13590, 1 : 200; Affinity Biosciences),
CD8 (PB9249, 1 : 200; BOSTER), and PD-L1 (66248-1-lg,
1 : 5000; Proteintech) were used for the immunohistochemi-
cal (IHC) staining of these proteins in the tissue samples,
which was performed according to previously published
methods [17]. For the IHC analysis, the H-score was applied
to assess the expression levels of PD-L1 and ANLN [18]. The

(m)

Figure 8: ANLN to immunity in bladder cancer. (a) Boxplot of the abundance of PD-L1 expression in the CRS groups in the TCGA-BLCA
cohort. (b) Correlation analysis between PD-L1 expression and the CRS in TCGA cohort. mRNA levels of (c) ANLN or (d) EML1 in anti-
PD-L1 responsiveness in the IMvigor210 cohort. (e, f) Correlation analyses of expression of ANLN and CD8 and PD-L1 in TCGA cohort.
(g) Survival probability of patients with differential expression of ANLN of TCGA and GSE13507 cohorts. Levels of ANLN were identified
according to the median of ANLN. (h) Correlation analyses of ANLN expression and the CRS. (i) Correlation analyses of expression of
ANLN and TNM staging. (j) Correlation analyses of expression of ANLN and grade. Correlation analyses between (k) number of CD8+
T cells or (l) PD-L1 expression and ANLN expression of patients with BLCA in our hospital cohort. (m) Representative IHC or HE
images of ANLN, CD8, PD-L1, and Ki67. CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease; CRS:
fibroblast common serum response risk score.

23Oxidative Medicine and Cellular Longevity

https://www.cancerrxgene.org/downloads/
https://www.cancerrxgene.org/downloads/


number of CD8+ cells was counted using the ImageJ
software.

2.8. Cancer Dependency Map. The gene effects of 29 BLCA
cell lines were obtained from the Cancer Dependency Map
(DepMap) database (https://depmap.org/portal/download/
custom/). The gene effect score reflects the dependency of
a cell on a gene, where a lower score indicates that a cell is
more likely to rely on the gene. A gene effect score of 0 indi-
cates a nonessential gene, whereas a score of –1 is the
median of all common essential genes.

2.9. Statistical Analyses. Pearson’s correlation coefficient was
used to measure the association between variables. The sig-
nificance of the difference between two groups of variables
was estimated using Student’s t-test. The χ2 was used to ana-
lyse the correlation between the risk stratification of CSR
genes and types of BLCA. The Kaplan–Meier method and
log-rank test were applied to assess the statistical significance
of the prognostic classification variables of survival curves.
The “timeROC” R package was used to plot receiver operat-
ing characteristic curves. All statistical analyses were per-
formed using R version 4.0.2. A P value of less than 0.05
was considered statistically significant.

3. Results

3.1. Identification of the Most Differential Oncogenic
Signature Gene Sets and Related Genes in Bladder Cancer.
To investigate the crucial oncogenic signature gene sets in
BLCA, we performed variation analysis between the normal
and tumourous tissues. The results showed that “CSR_
LATE_UP.V1_UP” was the most upregulated oncogenic sig-
nature gene set in BLCA (Figure 2(a) and Supplementary
Table 1). Next, we analysed the variations in CSR genes
between normal and tumourous tissues and conducted a
Cox regression analysis of the differentially expressed genes
in relation to BLCA prognosis (Supplementary Tables 2
and 3). Only eight genes were differentially expressed in
BLCA and associated with prognosis, namely, the genes
encoding C-X-C motif chemokine ligand 12 (CXCL12),
Serpin family B member 17 (SERPINB7), cysteine-rich
secretory protein LCCL domain-containing 2 (CRISPLD2),
EMAP-like 1 (EML1), transient receptor potential cation
channel subfamily C member 4 (TRPC4), solute carrier
family 16 member 3 (SLC16A3), ANLN, and katanin
catalytic subunit A1-like 1 (KATNAL1) (Figure 2(b)).
Among these genes, KATNAL1, CXCL12, CRISPLD2,
EML1, and TRPC4 were downregulated in BLCA, whereas
SLC16A3, SERPINB7, and ANLN were upregulated
(Figure 2(c)). Cox regression analysis revealed that all eight
CSR genes were risk factors for poor prognosis in BLCA
(Figure 2(d)). Generally, positive correlations were
observed between the expression of the eight genes
(Figure 2(e)).

3.2. Construction and Validation of the CRS Model. As
described in Section 3.1, eight CSR genes were identified as
candidates for building a CRS model using the LASSO algo-
rithm. Finally, a seven-CSR gene-based risk score was devel-

oped: CRS = 0:069∗CXCL12 + 0:086∗SERPINB7 + 0:017∗
CRISPLD2 + 0:107∗EML1 + 0:214∗TRPC4 + 0:066∗SLC16A
3 + 0:145∗ANLN (Figures 3(a) and 3(b)). The univariate and
multivariate Cox proportional hazard models indicated that
the CRS was an independent risk factor for BLCA (univari-
ate Cox: hazard ratio (HR), 3.293; 95% confidence interval
(CI), 2.022–5.362; P < 0:001; multivariate Cox: HR, 2.644;
95% CI, 1.611–4.338; P < 0:001; Figures 3(c) and 3(d)). Next,
the patients in TCGA and validation cohorts were classified
into high-CRS (CRS ≥median value) and low-CRS
(CRS <median value) groups (Supplementary Tables 4 and
5). Then, we compared the risk stratifications of several
previously reported molecular subtypes of BLCA.
Compared with TCGA subtype, the basal squamous
subtype was the primary type in the high-CRS group,
whereas the luminal papillary subtype was the primary
type in the low-CRS group. Compared with the MDA
subtype, the basal subtype was predominant in the high-
CRS group, and the luminal subtype was predominant in
the low-CRS group. Compared with the Lund subtype, the
Ba/Sq and Ba/Sq-Inf subtypes were dominant in the high-
CRS group, and the UroA-prog subtype was dominant in
the low-CRS subgroup. Compared with the CIT subtype,
the MC4 and MC7 subtypes were predominant in the
high-CRS subgroup, whereas the MC1 subtype was the
major type in the low-CRS subgroup. Compared with the
Baylor subtype, the basal subtype was of the major type in
the high-CRS subgroup, and the differentiated subtype was
the main type in the low-CRS subgroup (Figure 3(e)). As
shown in Figures 3(f) and 3(g), patients with BLCA in the
high-CRS group had an unfavourable outcome compared
with those in the low-CRS group in the training
(P = 0:0004) and validation (P = 0:0055) cohorts. The areas
under the receiver operating characteristic curves (AUCs)
of CRSs were 0.655, 0.622, and 0.634 in 1, 2, and 3 years,
respectively, for the training cohort (Figure 3(h)). Similarly,
the AUCs of CRSs were 0.676, 0.658, and 0.657 in 1, 2, and 3
years, respectively, for the validation cohort (Figure 3(i)).

3.3. Correlation between CRS Stratification and
Clinicopathological Features. The distribution of CRSs and
survival periods in TCGA (Figure 4(a)) and validation
cohorts (Figure 4(b)) indicated that the patients in the
high-CRS subgroup had a shorter survival time. Principal
component analysis indicated that the CRS distinguished
the two subgroups well in both cohorts (Figure 4(c)). Next,
we performed a correlation analysis between CRS stratifica-
tion and clinicopathological features. Patients aged ≥55
years, female patients, and patients with high-grade tumours
had higher CRSs (Figures 4(d)–4(f)). Moreover, patients
with a high TNM stage had a higher CRS than those with
a low TNM stage in both cohorts (Figure 4(g)).

3.4. Correlation between CRS Stratification and Enrichment
of Related Signalling Pathways. We performed correlation
analyses between the CSR genes and important cancer signal-
ling pathways in TCGA (Figure 5(a)) and validation
(Figure 5(b)) cohorts (Supplementary Table 6). According
to the results, CXCL12 expression was negatively associated
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with the cell cycle and PI3K signalling pathways and may
activate the FGFR, Wnt, and Ras signalling pathways
(Figure 5(c)). Generally, the FGFR, Wnt, Ras, and Hippo
signalling pathways were positively related to the CSR
genes, whereas apoptosis was inhibited by the upregulation
of EML1 and TRPC4 expression (Figure 5(c)). When the
differences in BLCA characteristic pathway scores between
the high- and low-CRS subgroups were investigated, we
observed that the basal differentiation, EMT differentiation,
immune differentiation, interferon response, keratinisation,
myofibroblast, and neuroendocrine differentiation pathways
were highly enriched in the high-CRS subgroup, whereas
the luminal differentiation and Ta pathways were high in
the low-CRS group in the two cohorts (Figure 5(d) and
Supplementary Table 7). GSEA software analysis of the
biological processes associated with high and low CRSs in
TCGA (Figure 5(e)) and validation (Figure 5(f)) cohorts
revealed 21 common signalling pathways were upregulated
in the high-CRS subgroup in both cohorts. Among them,
inflammatory signalling pathways (e.g., the inflammatory
response, IFNγ response, tumour necrosis factor-alpha
signalling via nuclear factor kappa-B, interleukin (IL) 6–
Janus kinase (JAK)–signal transducer and activator of
transcription (STAT) 3 signalling, IFNα response, and IL2–
STAT5 signalling) were significantly upregulated in the
high-CRS subgroup (Figures 5(e) and 5(f)).

3.5. Correlation between the CRS Stratification and Immune-
Related Genes or Cells. We investigated the connection
between the CRS classification and immune cell activity in
the tumour microenvironment. According to the heat map
generated, several chemokines and receptors were elevated
in the high-CRS subgroup (e.g., chemokine (C–C motif)
ligand (CCL) 5, C-X-C chemokine receptor type (CXCR)
4, CXCL9, CXCL14, CCL18, CCL21, CXCL11, and
CXCL12), which may promote the infiltration of immune
cells, such as CD8+T cells and dendritic cells (DCs)
(Figure 6(a)). Moreover, the expression levels of interleu-
kins, interferons, and other cytokines which may modify
immune function were increased in the high-CRS subgroup
(Figure 6(a)). Thus, we compared the immune cells, immune
function, and immune checkpoint genes between the high-
and low-CRS subgroups. Several immune cells (aDCs, B
cells, CD8+ T cells, DCs, and T helper cells) were observably
enriched in the high-CRS subgroup (Figure 6(b)). Through
the analysis of immune functions, we found that antigen-
presenting cell (APC) costimulation, immune checkpoints,
and MHC class I were also significantly elevated in the
high-CRS subgroup (Figure 6(c)). Thus, for the two CRS
subgroups, we further investigated their variations in 13
potentially targetable immune checkpoint genes whose drug
inhibitors are being used in clinical trials or have been
approved for use in some cancer types. Except for that of
IL1A, the expression levels of the other 12 genes were obvi-
ously upregulated and were observably elevated in the high-
CRS subgroup (Figure 6(d)).

Next, we analysed the relationship between the CRSs and
immune subtypes (C1–C4) in BLCA. The results showed
that C1 (wound healing) and C2 (IFN-γ dominant) exhib-

ited higher CRSs than C3 (inflammatory) and C4 (lympho-
cyte depleted) (Figure 6(e)). The CRS was positively
correlated with the immune and stromal scores. Thus,
patients in the high-CRS subgroup exhibited higher immune
and stromal cell scores (Figures 6(f) and 6(g)).

3.6. Correlation between CRS Stratification and Drug
Prediction. To investigate whether the CSR genes have the
value in guiding clinical therapy in BLCA, we analysed the
correlations between the CSR gene expression and the half-
maximal inhibitory concentration (IC50) of drugs listed on
the GDSC database. Surprisingly, we found that the respec-
tive responses of AZD6482 and TGX221 (both inhibitors of
PI3Kβ) were positively associated with the high-level expres-
sion of most of the CSR genes. The ANLN and SERPINB7
expression levels were revealed to have significant synergistic
effects with docetaxel, a chemotherapeutic drug commonly
used in clinical practice. The SLC16A3 expression level had
a strong synergistic effect with dasatinib (an inhibitor of
Abl, Src, and c-Kit), tanespimycin (17-AAG, an inhibitor that
targets heat shock protein 90), refametinib (a highly selective
mitogen-activated protein kinase kinase (MEK) 1 and MEK2
inhibitor), and trametinib (a potent MEK1 and MEK2 inhib-
itor) (Figure 7(a)).

Subsequently, we performed variation analyses of the
expression of targets of common drugs and compounds that
were screened from the GDSC database in the high- and
low-CRS subgroups. The targets of the chemotherapy drugs,
namely, AZD6482, TGX221, GSK269962A, temsirolimus,
midostaurin, WH-4-023, dasatinib, cisplatin, vinblastine,
methotrexate, doxorubicin, docetaxel, sunitinib, and pazopa-
nib, were observably upregulated in the high-CRS subgroup
(Figure 7(b)). Moreover, the targets of cetuximab (viz., epi-
dermal growth factor receptor, complement C1q A chain
(C1QA), C1QB, C1QC, Fc gamma receptor (FCGR) 1A,
FCGR2A, FCGR3A, and FCGR2B) and atezolizumab (viz.,
CD274) were also highly expressed in the high-CRS sub-
group, suggesting that patients in this subgroup were more
responsive to these chemotherapeutic and targeted drugs
(Figure 7(b)). Through analysis of drug sensitivity by pRRo-
phetic, we also inferred that patients with BLCA in the high-
CRS subgroup would be more responsive to AZD6482,
GSK269962A, docetaxel, pazopanib, bleomycin, cisplatin,
dasatinib, midostaurin, and doxorubicin, than those patients
in the low-CRS subgroup (Figure 7(c)).

3.7. Relationship of ANLN to Immunity in Bladder Cancer.
We further analysed the relationship between PD-L1 expres-
sion and the CRS and found that these two variables were
positively correlated in TCGA cohort (Figures 8(a) and
8(b)). We also analysed the relationship between the CRS
or CSR gene expression and the response to PD-L1-
targeted treatment in the IMvigor210 cohort, whereupon
patients showing a high level of ANLN or EML1 expression
were found to be more likely to benefit from anti-PD-L1
immune checkpoint treatment (Figures 8(c) and 8(d), Sup-
plementary Figure 1A). Furthermore, ANLN expression
was positively associated with CD8 and PD-L1 expression
(Figures 8(e) and 8(f)), whereas EML1 expression was not
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(Supplementary Figure 1B). In the prognostic analysis,
patients with a high ANLN expression level were found to
have a worse prognosis in both TCGA (P = 0:0340) and
GSE13507 (P = 0:0058) cohorts (Figure 8(g)). Moreover,
ANLN expression was strongly positively correlated with
the CRS in both TCGA (R = 0:69, P < 0:0001) and
GSE13507 (R = 0:69, P < 0:0001) cohorts (Figure 8(h)).
Among the seven CSR genes involved in the model, ANLN
demonstrated good value in predicting the risk score
(AUC = 0:9636, P < 0:0001; Supplementary Figure 2A).
According to the DepMap database of 29 BLCA cell lines,
ANLN had the lowest gene effect value of the seven CSR
genes, suggesting that BLCA cells were highly dependent
on this gene (Supplementary Figure 2B). Furthermore,
patients with a high TNM stage (TNM III–IV) or a high
tumour grade showed high levels of ANLN expression
(Figures 8(i) and 8(j)), indicating that this gene can be
used as an indicator of the malignant phenotype. For the
tissue samples from our hospital cohort, IHC analysis was
conducted to evaluate the relationship between ANLN
protein levels and CD8+ cell infiltration or PD-L1
expression. The results indicated that patients expressing a
high level of ANLN protein may have greater CD8+ cell
infiltration and a high PD-L1 expression level
(Figures 8(k)–8(m)). These findings suggest that ANLN
can be an indicator of the malignant phenotype, disease
prognosis, immune infiltration, and PD-L1 expression,
which provides a rationale for its use in predicting the
responses of patients with BLCA to anti-PD-L1 drugs.

4. Discussion

With the advances made in next-generation sequencing,
more molecular mechanisms in cancer have been dis-
covered [19]. In this study, we analysed the variations
in oncogenic signature gene sets between the normal
and BLCA tissues listed on TCGA. We found that
the role of CSR-related signatures ranked first in
BLCA. Through further analysis, we screened out the
important genes affecting the prognosis of BLCA and
use them to build the risk score stratification model.
Using the LASSO algorithm, we obtained the CRSs,
which can predict the prognosis of BLCA and the risk
stratification for afflicted patients. The correlation anal-
yses indicated that the CRS stratification could predict
the responses to chemotherapy and immunotherapy.
Furthermore, we found that ANLN was associated with
the immune cell activity in the BLCA tumour micro-
environment. Moreover, ANLN was related to the infil-
tration of CD8+ cell and PD-L1 expression in BLCA
and could thus act as an indicator to predict the reac-
tivity of the cancer to PD-L1 inhibitors.

The CRS model was based on seven genes: namely,
CLCX12, SERPINB7, CRISPLD2, EML1, TRPC4, SLC16A3,
and ANLN. To the best of our knowledge, few studies have
evaluated the role of SERPINB7, CRISPLD2, EML1, and
TRPC4 in BLCA. As one of the most widely studied chemo-
kines, CXCL12 has been reported in both haematological
and solid tumours, including acute myeloid leukaemia

[20], lymphoma [21], cervical cancer [22], lung cancer
[23], colorectal cancer [24], and breast cancer [25]. It is
mainly involved in the formation of tumour blood vessels,
tumour growth, and metastasis. Moreover, CXCL12 also
affects the tumour microenvironment, and its combination
with IL-6 can mediate the homing and proliferation of
tumour cells [26]. Du et al. found that CXCL12 and inflam-
matory fibroblasts act to regulate the tumour microenviron-
ment in BLCA and can thus affect the outcome and efficacy
of immunotherapy, further supporting the important role of
CXCL12 in this disease [27].

Cancer cells continually reprogram metabolism in
response to disease progression [28]. The Warburg effect
shows that tumour cells are generally more dependent on
glycolysis than on the increased use of oxidative phosphory-
lation [29]. The lactic acid molecules produced through gly-
colysis are transported via membrane monocarboxylic acid
transporters to the tumour microenvironment where they
regulate infiltrating immune cells, attenuating their antitu-
mour immune response [30]. SLC16A3, which encodes
MCT4 (an important member of the solute transport family
16), is widely expressed in tumour cells, immune cells, and
astrocytes and depends on glycolysis for energy metabolism
[31]. MCT4 mediates the efflux of lactic acid from tumour
cells, which is essential for maintaining the cytoplasmic pH
[32]. The protein is widely expressed in various urinary
system tumours and is closely related to their prognoses.
MCT4 expression is elevated in kidney and prostate cancers,
and its high level indicates a poor prognosis and insensitivity
to chemotherapy [33, 34]. Previous studies have indicated
that MCT4 expression is upregulated in patients with BLCA
and that individuals with high MCT4 expression levels have
poor outcomes, which is in line with our findings [35]. Fur-
thermore, the inhibition of MCT4 expression was found to
lower the viability of BLCA cells [36]. These results suggest
that MCT4 not only serves as an important molecular
marker for diagnosis but is also a potential therapeutic target
in BLCA.

ANLN encodes an anillin protein, a highly conserved
actin-binding protein. It was found that this protein is
closely associated with the tumourigenesis and tumour
development, and its expression level affects the disease
prognosis [37]. Research has shown that the ANLN pro-
tein level is increased in BLCA and is associated with
the tumour stage, grade, and prognosis [38]. However,
the exact role of ANLN in BLCA development and pro-
gression and the underlying mechanisms involved remain
unclear. Chen et al. found that ANLN may affect the pro-
liferation of BLCA cells by inhibiting the c-Jun N-terminal
kinase signalling pathway [39]. However, the role of
ANLN as an immunomodulatory gene in tumours has
rarely been studied. Luo et al. found that ANLN could
serve as an immune prediction biomarker in lung adeno-
carcinoma, and there were significant differences in PD-
L1 expression levels between the high- and low-CRS sub-
groups [40]. We observed that ANLN expression was pos-
itively associated with CD8+ cell infiltration and PD-L1
expression. Moreover, patients with a high ANLN expres-
sion level were more responsive to PD-L1 inhibitors.
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These results suggest that ANLN expression may indicate
immune invasion by BLCA cells and thus could provide
guidance for the use of PD-L1 inhibitors.

In the drug prediction study, we found that the respective
responses of AZD6482 and TGX221 (both inhibitors of
PI3Kβ) were positively associated with the high-level expres-
sion of most of the CSR genes. Moreover, patients in the
high-CRS subgroup may be significantly responsive to
AZD6482 and TGX221. However, we have not found any lit-
erature on the use of PI3Kβ inhibitors in BLCA. Gene differ-
ential expression analysis also suggested a high level of
PIK3CB expression in the high-CRS group, which provides a
rationale or its application as a biomarker for the use of PI3Kβ
inhibitors for some patients with BLCA. Moreover, we also
created some possible chemotherapy regimens for patients in
the high-CRS subgroup. Although there are reports about
the use of mammalian target of rapamycin (mTOR) inhibitors
in BLCA, they have had limited success in clinical practice
because of the simultaneous activation of compensatory path-
ways [41]. Our study provides an accurate guide for the use of
mTOR inhibitors in patients with BLCA tumours. However,
further research is needed to confirm our drug sensitivity
findings.

5. Conclusions

Our study revealed the crucial role of the CSR signature in
BLCA. Both CSR-related genes and CRS stratification hold
the value in predicting the malignant phenotype, therapeutic
efficacy of chemotherapeutic agents, immune invasion, and
prognosis of BLCA. Of note, ANLN gene expression could
not only act as a marker to predict the outcome of patients
with BLCA but also improve their responses to
immunotherapy.
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