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Cigarette smoke (CS) is a risk factor for chronic obstructive pulmonary disease. We attempted to investigate fully the possible
effects of CS on kidney cells. We found that the viability of a human kidney proximal tubular epithelial cell line (HK-2 cells)
was decreased after treatment with CS extract (CSE). In particular, the effects of CSE at low concentrations did not change the
expression of apoptosis and necrosis. Furthermore, CSE increased autophagy- and fibrosis-related proteins in HK-2 cells.
Senescence-related proteins and the senescence-associated secretory phenotype (SASP) increased after HK-2 cells were treated
with CSE. In addition, both RNA sequencing and gene set enrichment analysis data revealed that glucose-6-phosphate
dehydrogenase (G6PD) in the reactive oxygen species (ROS) pathway is responsible for the changes in CSE-treated HK-2 cells.
CSE increased G6PD expression and its activity. Moreover, the inhibition of G6PD activity increased senescence in HK-2 cells.
The inhibition of autophagy reinforced senescence in the CSE-treated cells. In a mouse model of CS exposure, CS caused
kidney damage, including tubular injury and glomerulosclerosis. CS increased fibrosis, autophagy, and G6PD expression in
kidney tissue sections. In conclusion, CS induced G6PD expression, autophagy, fibrosis, and senescence in kidney cells. G6PD
has a protective role in CS-induced nephrotoxicity.
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1. Introduction

One of the main causes of death, chronic obstructive pulmo-
nary disease (COPD), occurs in the United States [1] and
worldwide [2]. Clinically, cigarette smoking (CS) is a risk
factor leading to the progress of COPD [3]. Fibroblasts in
the lung play a vital role in repair, regeneration, and lung
homeostasis [4]. Recent studies have indicated that lung
fibroblasts of patients with COPD display a decreased
growth rate [5]. CS reduces the proliferation of lung fibro-
blasts and upregulates pathways related to cellular senes-
cence [5] and the p53 [6], p16, and p21 retinoblastoma
protein pathways [7]. Moreover, CS also induces
senescence-associated secretory phenotype- (SASP-) related
inflammation in human epidermal keratinocytes and skin
[8]. Apoptosis resulting from smoke extract-induced COPD
has been observed in in vitro and in vivo studies [9]. Further-
more, CS, nicotine, and cotinine affect red blood cell hemo-
lysis [10]. Glucose-6-phosphate dehydrogenase (G6PD)
deficiency causes substantial oxidant damage to the erythro-
cyte membrane [11]. A previous study reported that CS [12]
and nicotine [13] increase oxidant stress to red blood cells in
healthy donor volunteers. In addition, CS also induces oxi-
dative stress as a result of reactive oxygen species (ROS) in
the brain [14]. In other cases, ROS have been shown to acti-
vate transforming growth factor β (TGF-β) in the modula-
tion of profibrotic effects [15]. ROS accumulation or
antioxidant depletion occurs could destroy to cellular ele-
ments, containing DNA, RNA, proteins, lipids, and carbohy-
drates [16]. Early reports have shown that heat shock
protein 27 (Hsp27) is a neuroprotective biomarker in ische-
mic stroke [17]. On the other hand, intraperitoneal injection
of recombinant soluble Klotho protein improves the prema-
ture aging-related phenotype in mice with the homozygous
mutated allele [18]. Klotho reduces kidney senescence and
fibrosis [19] by targeting mitochondrial dysfunction in renal
tubular cells [20]. CS extract (CSE) reduces the expression
and secretion of Klotho in alveolar macrophages and airway
epithelial cells in COPD patients [21].

CSE not only induces oxidative stress but also fibrosis-
related gene expresses in orbital fibroblasts in Graves’
ophthalmopathy patients [22]. Autophagy is an important
and conserved “self-cleansing” pathway [23], and other
studies have shown that fibrosis is often companied by
autophagy [24, 25]. In the kidney, autophagy can protect
the proximal tubule from damage [26] to overcome many
types of kidney injury [27], aging [28], and disease [29].
Autophagy is an essential cellular process that promotes cell
survival by removing protein aggregates during kidney
injury [30]. However, autophagy also promotes cell death
or enhances apoptosis [31]. Therefore, autophagy has two
contrasting outcomes in response to stress [32]. Studies have
shown that CS causes autophagy [33] and accelerates lung
aging via autophagy [34]. CSE-induced autophagy regulates
many cellular processes such as FOXO transcription factors
in human lung adenocarcinoma cells (A549) [35] and
Galectin-3 in endothelial progenitor cells [36]. In addition,
SIRT1 is downregulated by autophagy in senescence and
aging [37]. On the other hand, Hsp27 phosphorylation plays

a crucial role in the activation of G6PD to reduce cerebral
ischemia/reperfusion injury in male Wistar rats [38].
G6PD is a major source of NADPH, which drives many
essential cellular processes including antioxidant pathways
[39] such as the suppression of oxidative stress in cerebral
ischemic male Sprague-Dawley rats [40].

Many diverse diseases may lead to chronic kidney dis-
ease (CKD) via irreversibly impaired formation or dysfunc-
tions of the kidney, such as fibrosis [41]. Recently, a meta-
analysis suggested that CS is an independent risk factor in
the general adult population with CKD [42]. The database
of the Korean genome and epidemiology study also revealed
that the healthy middle-aged adults who smoke have a high
risk of CKD [43]. COPD patients have shown renal function
worsening [44]. Additionally, tobacco CS promotes kidney
injuries related to biochemical changes in male adult Wistar
rats [45]. In this study, we examined the effect of CS on kid-
ney cells in vitro and in vivo. Furthermore, gene set enrich-
ment analysis (GSEA) was performed after HK-2 cells were
treated with CSE. We also observed autophagy, fibrosis,
senescence, and ROS generation after CS treatment.

2. Material and Methods

2.1. Cell Line. HK-2 cells, the proximal tubular epithelial cell
line from human kidney, were obtained from the American
Type Culture Collection (ATCC, Manassas, VA). The cells
were kept in keratinocyte-serum-free medium (K-SFM) with
bovine pituitary extract (BPE) and human recombinant EGF
(Invitrogen, CA), and the cells were incubated at 37°C and
5% CO2. The culture medium was refreshed two or three
times per week. The ATG5KD HK-2 cells were incubated
and maintained in the K-SFM medium with rEGF and
BPE at 37°C with 5% CO2 and cultured every two or three
days. Lentivirus with control shRNA and ATG5 siRNA were
purchased from the National RNAi Core Facility at Acade-
mia Sinica in Taiwan [46].

2.2. Preparation of Cigarette Smoke Extract. CSE solutions
were prepared using a modification of standardized methods
[47]. Three cigarette types (Longlife, Taipei, Taiwan; 11mg
of tar and 0.9mg of nicotine) were subsequently collected
by a liquid impinger device and then mixed with 15ml of
K-SFM. One of the cigarettes was dissolved in 5ml of K-
SFM, which was designated as 100% CSE solution.

2.3. Cell Viability Assay. Cell proliferation was accessed with
sulforhodamine B (SRB, Sigma-Aldrich, St. Louis, MO). HK-
2 cells (5 × 103/well) were plated in 96-well plates and cul-
tured with or without CSE solutions in a 37°C and 5% CO2
incubator overnight. After 24h of incubation at 37°C and
5% CO2, the plates were moved out, washed with PBS twice,
and then fixed with iced 10% trichloroacetic acid (TCA,
Sigma) at 4°C for 1 h. Each well was washed 2 times with
distillation-distillation H2O, and then, 0.1% SRB/1% acetic
acid was incubated for 1 h. The wells were rinsed 2 times
with 1% acetic acid and dried in an oven at 60°C for
20min. In the end, the dye form SRB-positive cells were
redissolved in 20mM Tris buffer (Sigma) for 30min. The
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absorbance was detected at a wavelength of 562nm in an
ELISA reader.

2.4. Flow Cytometry Analysis of Apoptosis and Necrosis. HK-
2 cells were treated with CSE solutions at different doses for
different times. The cells were washed with PBS and col-
lected with Accutase (Innovative Cell Technologies, San
Diego, CA). Apoptosis and necrosis were measured with a
FITC Annexin V/PI apoptosis detection kit according to
the manufacturer’s protocol (BioLegend, San Diego, CA).
The signal was detected with a flow cytometer (BD,
Biosciences).

2.5. Lactate Dehydrogenase Assay. HK-2 cells were collected
and washed in an assay medium. Cells were plated in a 96-
well plate and incubated for 24 h after CSE treatment. The
plate was centrifuged at 250 g for 10min and transferred
100μl/well supernatant into corresponding wells. Cells were
added to a 100μl reaction mixture and incubated for up to
30min at room temperature. The plate was detected the
absorbance at 495nm in an ELISA reader.

2.6. Western Blot Analysis. All collected proteins were added
to sodium dodecyl sulfate (SDS) sample buffer (62.5mM
Tris (pH6.7), 1.25% SDS, 12.5% glycerol, and 2.5% β-
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Figure 1: Cell viability, cell death, and apoptosis-related protein expression after treatment with CSE in HK-2 cells. (a) Cell proliferation was
measured after cells were treated with CSE at concentrations of 0.1, 0.2, 0.4, 0.6, 0.8, and 1% for 24 h. ∗p < 0:05 compared to the control
group. (b) The apoptosis assay of HK-2 cells was performed by flow cytometry after treatment with CSE at concentrations of 0.1, 0.2,
0.4, and 0.6% for 24 h. (c) The apoptosis and necrosis indices of HK-2 cells were measured and diagramed after treatment with CSE at
concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. (d) The LDH assay was performed after treatment with CSE at concentrations of 0.1,
0.2, 0.4, 0.6, 0.8, and 1% for 24 h in HK-2 cells. (e) The expression levels of the apoptosis-related proteins Bax and caspase 3 after
treatment with CSE at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h in HK-2 cells. (f) Bax and cleaved caspase 3 were measured and
diagramed for CSE-treated cells at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h.
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Figure 2: Continued.
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mercaptoethanol). Proteins and the prestained protein
marker (10–315 kDa) (TD-PM10315, BIOTOOLS Co., Ltd.,
Taipei, Taiwan) were loaded into an SDS-PAGE gel. A
PVDF membrane containing transferred proteins was incu-
bated with 5% nonfat milk with primary antibodies anti-
microtubule-associated protein 1A/1B-light chain 3 (LC3)
(Cell Signaling, Beverly, MA), collagen 1 (Proteintech, Rose-
mont IL), autophagy-related 5 (ATG5) (Proteintech), CTGF
(Proteintech), PAI-1 (Cell Signaling), SIRT1 (ABclonal Inc.,
Woburn, MA), caspase-3 (ABclonal Inc.), Hsp27 (ABclonal
Inc.), BAX (ABclonal Inc.), Klotho (Proteintech), p53 (Pro-
teintech), p21(Proteintech), p16 (Proteintech), G6PD (Pro-
teintech), and GAPDH (Proteintech). After the
hybridization process with the abovementioned antibodies
on the PVDF membrane, the membrane was rinsed with
TBS-T for 15min three times. Subsequently, the PVDF
membrane was further treated with anti-mouse (Jackson)
or anti-rabbit (Jackson) secondary antibody for 2 h and
rinsed with TBS-T for 15min over three times. The protein
bands of the PVDF membrane were visible by performing
an enhanced chemiluminescence system (Amersham, Little
Chalfont, United Kingdom).

2.7. RNA Sequencing and Analysis. RNA sequencing used to
characterize and analyze the transcriptome (RNA sequenc-

ing, Tools, Taiwan). Briefly, the purity and quantification
of RNA were detected with SimpliNano™–Biochrom Spec-
trophotometers (Biochrom, MA, USA). The levels of RNA
degradation and integrity were detected by a BiOptic
Qsep100 DNA/RNA Analyzer (BiOptic Inc., Taiwan). The
sequencing library was established with the KAPA mRNA
HyperPrep Kit (KAPA Biosystems, Roche, Basel, Switzer-
land). mRNA was extracted from total RNA with magnetic
oligo-dT beads and incubated at a high temperature in
KAPA buffer that contained magnesium. cDNA was gener-
ated with random hexamer priming. cDNA fragments with
a length of 300~400 bp were selected, and library fragments
were extracted with the KAPA Pure Beads system (KAPA
Biosystems, Roche, Basel, Switzerland). The library was
increased with KAPA HiFi HotStart ReadyMix (KAPA Bio-
systems, Roche, Basel, Switzerland). Finally, the library was
extracted with the KAPA Pure Beads system and qualified
with the Qsep100 DNA/RNA Analyzer (BiOptic Inc). The
library data were detected with high-throughput sequencing
(Illumina NovaSeq 6000 platform), which was transformed
into raw sequenced reads with CASAVA base calling and
then stored in FASTQ format. The FASTQ files were used
with FastQC and MultiQC [48]. The raw paired-end reads
were filtered with Trimmomatic (v0.38) [49]. The obtained
high-quality data were aligned to the reference genome
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Figure 2: Autophagosome-related protein, SIRT1, and fibrosis-related protein expression after HK-2 cells were treated with CSE. (a) The
expression levels of LC3 (green color) were measured in HK-2 cells after treatment with CSE at concentrations of 0.1, 0.2, 0.4, and 0.6%
for 24 h. 4′,6-Diamidino-2-phenylindole (DAPI) (blue color) was used to stain nuclei. Scale bar: 50 μm. (b) Images of LC3-punctuated
cells treated with CSE were graphed and statistically analyzed at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. ∗p < 0:05 compared to
the control group. (c) Western blot showing the expression of SIRT1 and the autophagy-related proteins p62, ATG5, and LC3 after CSE
treatment at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. (d) Protein expression of LC3-II, p62, ATG5, and SIRT1 was measured
and diagramed for CSE-treated cells at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. ∗p < 0:05 compared to the control group. (e)
The expression levels of the fibrosis-related proteins collagen type 1, PAI-1, and CTGF after treatment with CSE at concentrations of 0.1,
0.2, 0.4, and 0.6% for 24 h. (f) Collagen type 1, PAI-1, and CTGF were measured and diagramed in HK-2 cells after treatment with CSE
at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. ∗p < 0:05 compared to the control group.
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Figure 3: Senescence, senescence-related proteins, and senescence-associated secretory phenotype-related inflammation in HK-2 cells after
treatment with CSE. (a) The expression of SAβgal (turquoise color) was detected after treatment with CSE at concentrations of 0.1, 0.2, 0.4,
and 0.6% for 24 h. (b) The results of SAβgal-positive cells were graphed and statistically analyzed after treatment with CSE at concentrations
of 0.1, 0.2, 0.4, and 0.6% for 24 h. ∗p < 0:05 compared to the control group. (c) The expression of senescence-related proteins Klotho, p53,
p21, and p16 in CSE-treated cells at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. (d) Klotho, p53, p21, and p16 were graphed and
analyzed after cells were treated with CSE at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. ∗p < 0:05 compared to the control group.
(e) The results of BrdU-positive cells were graphed and statistically analyzed after treatment with CSE at concentrations of 0.1, 0.2, 0.4,
and 0.6% for 24 h. ∗p < 0:05 compared to the control group. H2O2 served as a positive control. (f) SASP was graphed and statistically
analyzed from RNA sequencing data of CSE-treated HK-2 cells following 24 h. ∗p < 0:05 compared to the control group.
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(e.g., H. sapiens, GRCh38) with HISAT2 software (v2.1.0)
[50, 51]. featureCounts (v1.6.0) was used to count the read
numbers mapped to individual genes [52]. The RNA series
dataset was uploaded to the Gene Expression Omnibus
(Accession: GSE182541). GSEA was analyzed with 1000 per-
mutations to identify enriched biological functions and acti-
vated pathways from the molecular signature database [53]
(MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb).

2.8. Quantitative Polymerase Chain Reaction (Q-PCR). Total
RNA of the kidney will be extracted using the TRIzol reagent
(Invitrogen). Purity and quantification of RNA will be
detected. Complementary DNA (cDNA) will be synthesized
using the Easy Fast RT Kit (TOOLS, Taiwan). Q-PCR will be
detected using SYBR Green (TOOLS, Taiwan). Glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) will be used as
an internal control. The 2−ΔΔCt method will be used to calcu-
late the expression changes. All primers are listed as follows:
G6PD, Hsp27, and GAPDH.

2.9. Senescence β-Galactosidase Staining. The cells were
treated with CSE for 24 h, washed, fixed, and cultured in a
37°C/5% CO2 incubator with X-gal chromogenic substrate
at pH5.5 overnight by following the protocol for SA-β-gal

staining (BioVision, Milpitas, CA). The images for β-galac-
tosidase were collected using a digital microscope. The pos-
itive cell intensity was counted in 3 fields of view (>50 cells/
field). Polydatin (MCE, Monmouth Junction, NJ) is an
inhibitor of G6PD activity [54].

2.10. Enzyme-Linked Immunosorbent Assay. The amount of
the NADPH-producing enzyme G6PD was measured using
ELISA kits specific for human G6PD according to the man-
ufacturer’s protocol (Cayman Chemical, Ann Arbor, MI).
The fluorescent product was measured under an excitation
wavelength of 530/540 and an emission wavelength of 585-
595 nm.

2.11. BrdU Cell Proliferation Assay.HK-2 cells were plated in
a 96-well plate and incubated. BrdU was measured using
BrdU Cell Proliferation Assay Kit (BioVision). Briefly, cells
were added 1x 5-bromo-2-deoxyuridine (BrdU) solution
and incubated plate at 37°C. Cells were fixed and denatured.
Cells were hybrid with BrdU detection antibody solution.
Finally, cells were added 3,3′,5,5′-tetramethylbenzidine
(TMB) substrate and measured the absorbance at 650 nm.
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Figure 4: RNA sequencing and gene set enrichment analysis of CSE-treated HK-2 cells. (a) RNA was extracted from HK-2 cells and
sequenced after treatment with or without CSE at a concentration of 0.6%. Upregulation and downregulation of mRNA are presented as
the fold change −0:58 < FC > 0:58. (b) GSEA was used to analyze the pathways of HK-2 cells after treatment with CSE and showed a
normalized enrichment score. (c) The Hallmark reactive oxygen species gene set database of the enrichment plot was used as the gene
set collection for analysis.
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2.12. Cigarette Smoke Exposure of Mouse Model. Eight-week-
old male C57BL/6JNarl mice were purchased from the
National Laboratory Animal Center (Taipei, Taiwan). The
animal protocol was approved by the Animal and Ethics
Review Committee of the Laboratory Animal Center at Tai-
pei Medical University, Taiwan (IACUC: LAC-2017-0231).
Mice were maintained under a light/dark cycle of 12 h/
12 h, and the room temperature was kept at 22 ± 2°C with
relative humidity of 55 ± 10%. The mouse model (n = 5 per
group) was established by exposure to CS for 4 months.
Details of the CS exposure system were reported in a previ-
ous study [55]. Briefly, the system consisted of a CS genera-
tor in a whole-body exposure chamber (TECNIPLAST, VA,
Italy) with a particulate matter monitor. A side stream was
placed into the whole-body exposure chamber at a flow rate
of 15 l/min. Sixteen commercial cigarettes (Longlife) were
combusted for 8 h/day and 5 days/week for 4 months. The
mass concentration of particulate matter of <2.5μm in aero-
dynamic diameter was monitored using a DustTrak monitor
(TSI, Shoreview, MN). The mice were sacrificed by CO2, and
the kidneys were excised and fixed with 10% neutral
formalin.

2.13. Histological Analysis. The kidney tissues were embed-
ded, dehydrated, sectioned into 2μm thick slices slicing a
microtome, and then stained with hematoxylin and eosin
(H&E) (Sigma) for histological analysis. The glomerulo-
sclerosis and tubular injury scores were measured. Details
of the glomerulosclerosis and tubular injury scores are pro-
vided in a previously reported study [56].

2.14. Immunohistochemical (IHC) Staining Analysis. Kidney
sections were maintained in an oven at 60°C. The kidney
sections were sequentially washed with xylene (Sigma),
100% ethanol (Sigma), 95% ethanol, and 75% ethanol.
Finally, the kidney sections soaked in MQ water and boiled
with sodium citrate buffer (0.01M, pH6.0, 1% Tween 20).
The sections then washed with PBS, soaked in 3% H2O2/
methanol, and finally with PBS. UltraVision protein block
buffer was applied to analyze the kidney after treatment with
G6PD (Proteintech), LC3 (MBL) or β-gal (Invitrogen) anti-
body in 3% BSA overnight at 4°C. The sections were washed
with PBS, treated with Trekkie Universal Link for 20min,
and then mixed with poly-HRP reagent for 20min. The
DAB coloring agent was used to stain the sections, followed
by placement in MQ water to terminate the reaction. For the
next step, hematoxylin was also used as a contrast dye for the
second staining assay. In the end, the mounting buffer was
added to the kidney sections, which were covered with a
cover slip. Masson’s trichrome staining was used according
to the protocol (TRM-2-IFU, ScyTek). After the sections
solidified with mounting buffer, the slices were recorded
with Motic Digital Slide Assistant (Motic VM3.0, New York,
NY).

2.15. Statistical Analysis. The results were analyzed by SPSS
(SPSS Software, CA, San Diego) and plotted as the mean ±
standard deviation. The statistical significance between
groups was determined by Student’s t-test. Comparisons of

three or more groups were calculated by ANOVA. Signifi-
cance was confirmed at p < 0:05.

3. Results

3.1. Cell Viability, Cell Death, and Apoptosis-Related Protein
Expression in CSE-Treated HK-2 Cells. The viability of CSE-
treated HK-2 cells was significantly decreased in a
concentration-dependent manner, as shown in Figure 1(a).
After HK-2 cells were treated with CSE at low concentra-
tions of 0.1%, 0.2%, 0.4%, and 0.6%, the cell viability
decreased to 94.6%, 92.8%, 81.3%, and 67.9%, respectively.
Flow cytometry analysis revealed that the CSE-treated cells
at low concentrations of 0.1%, 0.2%, 0.4%, and 0.6% had
no significant differences in either index of apoptosis or
necrosis (Figures 1(b) and 1(c)). In addition, LDH assay
revealed that the necrosis index did not have any significant
differences (Figure 1(d)). Moreover, western blotting analy-
sis showed that low concentrations of CSE did not increase
Bax and cleaved caspase 3 protein expression (Figures 1(e)
and 1(f)).

3.2. Expression of Autophagosome-Related and Fibrosis-
Related Proteins in HK-2 Cells after Treatment with CSE.
The expression levels of LC3 determined by immunofluores-
cence were concentration-dependent (Figure 2(a)). Statisti-
cal analysis also showed that LC3 levels were CSE
concentration-dependent in HK-2 cells (Figure 2(b)).
Approximately 35 ± 2:5% of HK-2 cells expressed LC3

Table 1: The top 20 genes of Hallmark reactive oxygen species
gene set.

Gene FC p value

G6PD 0.979605 6:56E − 76
GCLM 0.960879 3:98E − 50
SOD1 0.952822 2:29E − 67
TXN 0.843715 4:23E − 36
HHEX 0.820415 3:26E − 08
GSR 0.743549 9:59E − 52
PRNP 0.613288 3:58E − 33
PRDX1 0.609423 1:24E − 39
HMOX2 0.551601 1:50E − 15
GCLC 0.545956 8:41E − 12
PRDX6 0.418619 3:87E − 18
SCAF4 0.396722 6:68E − 10
GLRX 0.39422 2:50E − 05
ATOX1 0.370471 0.001248

GLRX2 0.343887 8:97E − 06
GPX3 0.324067 4:18E − 07
SBNO2 0.095644 0.149361

ERCC2 0.071641 0.329135

TXNRD2 0.053783 0.564995

NDUFA6 0.045766 0.533123
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signals after treatment with 0.6% CSE. Furthermore, CSE-
treated HK-2 cells revealed higher expression of the
autophagy-related proteins LC3, p62, ATG5, and SIRT1, as
determined by western blotting (Figure 2(c)). The expres-
sion levels of LC3, p62, ATG5, and SIRT1 were also
concentration-dependent in HK-2 cells after CSE treatment
(Figure 2(d)). On the other hand, HK-2 cells exposed to
CSE exhibited higher expression of the fibrosis-related pro-
teins collagen type 1, PAI-1, and CTGF, as determined by
western blotting (Figure 2(e)). Statistical analysis also
revealed that the levels of collagen type 1, PAI-1, and CTGF

after treatment with CSE in HK-2 cells were also
concentration-dependent (Figure 2(f)).

3.3. Senescence, Senescence-Related Proteins, and Senescence-
Associated Secretory Phenotype-Related Inflammation in
HK-2 Cells after CSE Treatment. Senescence-positive cells
were observed in concentration-dependent manner as deter-
mined by the SAβgal assay as shown in Figure 3(a). Analysis
of SAβgal-positive CSE-treated HK-2 cells also demon-
strated concentration dependence (Figure 3(b)). CSE-
treated HK-2 cells displayed higher expression of the
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Figure 5: The expression profile of heat shock protein 27 and glucose-6-phosphate dehydrogenase, activity of glucose-6-phosphate
dehydrogenase, and senescence-associated β-galactosidase assay with polydatin or ATG shRNA in HK-2 cells after treatment with CSE.
(a) Relative expression in Hsp27 and G6PD mRNA was measured in CSE-treated cells at concentrations of 0.1, 0.2, 0.4, and 0.6% for
24 h. ∗p < 0:05 compared to the control group. (b) The expression of Hsp27 and G6PD in HK-2 cells after treatment with CSE at
concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. ∗p < 0:05 compared to the control group. (c) Hsp27 and G6PD expressions were
graphed and analyzed for CSE-treated cells at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. ∗p < 0:05 compared to the control group.
(d) The activation of G6PD was detected after CSE treatment at concentrations of 0.1, 0.2, 0.4, and 0.6% for 24 h. ∗p < 0:05 compared to
the control group. (e) The expression of G6PD activation was detected after polydatin treatment at concentrations of 10, 20, 50, and
100μM for 24 h. ∗p < 0:05 compared to the control group. (f) SAβgal expression was detected in cells after treatment with CSE at
concentrations of 0.6% and polydatin at concentrations of 10, 20, 50, and 100μM for 24 h. ∗p<0.05, CSE compared to CSE+polydatin.
(g) The expression of SAβgal was measured after treatment with CSE, control shRNA, and ATG5 shRNA at concentrations of 100μM
for 24 h. ∗p < 0:05 compared to the control group. #p < 0:05, CSE+control shRNA compared to CSE+ATG5 shRNA.
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senescence-related proteins p53, p21, and p16 as determined
by western blotting (Figure 3(c)). A previous study showed
that Klotho reduced kidney senescence and fibrosis [19].
Klotho exhibited lower expression after treatment with
CSE (Figure 3(c)). p53, p21, p16, and Klotho levels in HK-
2 cells treated with CSE were also concentration-dependent
(Figure 3(d)). Senescent cells have inhibited cellular prolifer-
ation [57], which can be detected by BrdU. BrdU-positive
HK-2 cells treated with CSE were also observed to be
concentration-dependent (Figure 3(e)). Furthermore,
SLC3A2, SERPINE2, PRNP, NT5E, MMP10, FLNC, and
SERPINE1 showed higher expression after treatment with
CSE in HK-2 cells, as determined by RNA sequencing
(Figure 3(f)).

3.4. RNA Sequencing, Gene Set Enrichment Analysis, and
Interpretative Phenomenological Analysis in CSE-Treated
HK-2 Cells. The RNA sequencing data after treatment of
HK-2 cells with CSE are shown in Figure 4(a). The most
upregulated gene was MMP3 in CSE-treated cells, while
the most downregulated gene was SEMA5B. In addition,
the data were further analyzed by GSEA (Figure 4(b)). The

results showed higher expression of the ROS pathway in
HK-2 cells after treatment with CSE (Figure 4(b)). The
enrichment plot showed higher enrichment of the ROS
pathway after cells were exposed to CSE (Figure 4(c)). More-
over, ROS-related gene expression is shown in Table 1. The
most upregulated gene was G6PD in HK-2 cells after CSE
treatment as shown in Table 1.

3.5. Expression Profile of Heat Shock Protein 27, Glucose-6-
phosphate Dehydrogenase, and Senescence-Associated β-
Galactosidase Assay Regulation with Autophagy in CSE-
Treated HK-2 Cells. Hsp27 and G6PD were observed to be
concentration-dependently increased, as determined by
real-time polymerase chain reaction (Q-PCR) assay
(Figure 5(a)) and western blotting (Figure 5(b)). The expres-
sion of Hsp27 and G6PD in HK-2 cells after treatment with
CSE was also concentration-dependent (Figure 5(c)). The
G6PD activity after HK-2 cell treatment with CSE was also
concentration-dependent (Figure 5(d)). G6PD activity was
higher in HK-2 cells after CSE treatment at concentrations
of 0.6% and decreased after polydatin treatment at concen-
trations of 10, 20, 50, and 100μM (Figure 5(e)).
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Figure 6: Hematoxylin and eosin staining in kidney samples. Tubular injury, glomerulosclerosis score, and Masson staining after treatment
of mice with CS. (a) C57BL/6 mice were treated with CSE and harvested for 4 months. H&E staining was examined in kidney samples. The
cell nuclei were stained blue by hematoxylin. Both the extracellular matrix and cytoplasm were stained by eosin (pink). Scale bar: 50μm. (b)
Tubular injury and glomerulosclerosis were analyzed in kidneys (N = 5). The data are presented as themeans ± SD. Twenty fields of view per
kidney. ∗p < 0:05 and ∗∗∗p < 0:001 compared to the normal group samples. (c) Kidneys were stained with Masson’s trichrome. Scale bar = 50
μm. Immunohistochemistry for senescence-associated β-galactosidase, autophagy-related proteins, glucose-6-phosphate dehydrogenase,
and kidney samples of after treatment of mice with CSE. (d) C57BL/6 mice were treated with CSE and then harvested after 4 months.
IHC staining of SAβgal was examined in kidney samples. (e) IHC staining of LC3 was examined in kidney samples. (f) IHC staining of
G6PD was examined in kidney samples. Scale bar: 50μm.
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Furthermore, the statistical expression of SAβgal-positive
cells was increased in CSE-treated HK-2 cells, and the
expression increased at concentrations of 20, 50, and
100μM after treatment with polydatin (Figure 5(f)). In addi-
tion, the number of SAβgal-positive cells treated with both
ATG5 shRNA and control shRNA was increased after CSE
exposure compared with that in the control groups
(Figure 5(g)). Moreover, ATG5 shRNA enhanced the num-
ber of CSE-induced SAβgal-positive cells.

3.6. Tubular Injury and Glomerulosclerosis Score Analysis of
Senescence, Senescence-Associated β-Galactosidase,
Autophagy Protein LC3, and Glucose-6-phosphate
Dehydrogenase after treatment of Mice with CS. A mouse
model was established by exposure of mice to CS for 4months.
H&E staining displayed varying degrees of tubular injury and
glomerulosclerosis when comparing the CS-treated group to
the normal group (Figure 6(a)). The tubular injury and glo-
merulosclerosis scores were significantly increased after treat-
ment of mice with CS (Figure 6(b)). The kidney sample also
revealed varying degrees of fibrosis staining with Masson’s tri-
chrome (purple) (Figure 6(c)). IHC staining showed higher
expression of SAβgal, LC3 and G6PD than that of the normal
group at 4 months (Figures 6(d)–6(f)).

4. Discussion

A previous study showed that CS altered cell viability in gingi-
val mesenchymal cells at a concentration of 250μg/ml [58].
The cell viability of mouse embryonic fibroblasts and NIH3T3

cells decreased below 50% after exposure to 400μl of 4% CSE
solution [59]. In addition, the cell viability of human lung
bronchial epithelial cells (BEAS-2B) decreased to 50% after
treatment with 10-20% CSE [60]. Our results showed that cell
viability decreased by over 50% in HK-2 kidney cells after
treatment with CSE (0.8% and 1%) (Figure 1(a)). Early reports
indicated that apoptosis was significantly induced in BEAS-2B
cells by CSE [61]. However, our results showed that low con-
centrations CSE (0.1%-0.6%) did not induce apoptosis in
HK-2 cells (Figures 1(b)–1(e)). A previous study showed that
the CSE-induced autophagy in A549 cells is associated with
many cellular processes [35]. Our results indicated that CSE-
treated HK-2 cells not only induced autophagy but also
induced SIRT1 after CSE (0-0.6%) exposure (Figures 2(a)–
2(d)). Hence, our results indicated that autophagy was regu-
lated by SIRT1, which has been reported in other studies
[62–64].

CSE is a risk factor for the development of lung fibrosis
[65]. Renal fibrosis is involved in various kidney diseases
[66]. Previous studies have demonstrated that through the
autocrine and paracrine stimulation of cells by TGF-β1,
CTGF is released and synthesized, which plays a role in
fibrogenesis [67]. Furthermore, PAI-1 is the major physio-
logic inhibitor of the plasmin-based pericellular cascade
and a causative factor in the fibroproliferative disorders
[68]. The upregulation of CTGF and PAI-1 caused extracel-
lular matrix (ECM) accumulation [69, 70]. In the current
study, CSE exhibited higher expression of the fibrosis-
related proteins including collagen type 1, PAI-1, and CTGF
in HK-2 cells (Figures 2(e) and 2(f)). In in vivo study, the
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Figure 7: Schematic of the putative mechanism illustrating the CSE-induced G6PD, autophagy-related, fibrosis-related, and senescence-
related protein expressions in kidney cells. Kidney cells were induced by CSE via several related pathways that increase the expression of
the fibrosis-related proteins, autophagy-related proteins, and senescence-related proteins in kidney cells. CSE regulates senescence and
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significant accumulation of collagen fibers in the kidney tis-
sues of the CS group (Figure 6(c)). These results indicated
that CS may cause kidney fibrosis. Previous research has
shown that CS induces SASP-related inflammation in
human epidermal keratinocytes and skin [8]. The expression
of fibrosis-related genes is induced in orbital fibroblasts from
patients with Graves’ ophthalmopathy [22]. In addition, pre-
vious study revealed that CS reduced the proliferation of
lung fibroblasts by upregulating signaling pathways such as
cell senescence, p53, and p16-retinoblastoma [5]. The p53
[6], p16, and p21 pathways [7] were related to cellular senes-
cence, including fibrosis accompanied by senescence,
senescence-related proteins, and SASP-related inflammation
(Figures 3(a)–3(f) and Figure 6(d)). Early reports showed
that CSE reduces the expression and secretion of Klotho in
alveolar macrophages and airway epithelial cells in COPD
patients [21]. The present study demonstrated that Klotho
significantly decreased in human kidney cells after the CSE
(0%-0.6%) treatment (Figure 3(c)).

Recently, a meta-analysis suggested that CS is an indepen-
dent risk factor for the general adult population with CKD
[42] and healthy middle-aged adults [43]. In addition, GSEA
revealed that three pathways were involved in CS-treated
BEAS-2B cells, namely, cell matrix adhesion and the TGF-β
receptor signaling pathway, RNA catabolic processes, and
the regulation of cell cycle phase transition, as well as
calcium-mediated signaling and regulation of cell-cell adhe-
sion [71]. Deficiency of G6PD in the erythrocyte membrane
causes substantial oxidant damage [11]. G6PD is a major
source of NADPH that is involved in antioxidant pathways
[39]. Furthermore, GSEA showed that the ROS pathway is
the primary regulator in HK-2 cells after treatment with
CSE. In particular, the expression of G6PD increased in the
ROS-related gene expression pathway after treatment with
CSE (Figures 4(a)–4(c) and Table 1). G6PD and Hsp27 were
highly expressed in CSE-treated HK-2 cells (Figures 5(a)–
5(c)). On the other hand, Hsp27 phosphorylation plays an
important role in the activation of G6PD [38], and the phos-
phorylation of G6PD results in a reduction of NADPH, subse-
quently causing oxidative stress which may lead to metabolic
syndromes [72, 73]. Polydatin is a new inhibitor of G6PD that
can block the pentose phosphate pathway [54]. Our results
showed that polydatin decreased the activity of G6PD in a
dose-dependent manner (Figure 5(e) and Table 1). The
expression of senescence-related factors was increased after
treatment with polydatin in HK-2 cells (Figure 5(f)). These
data showed that G6PD plays an important role in the protec-
tion of kidney cells. A previous study indicated that CS accel-
erated lung aging [34] and kidney injury [74] via autophagy.
Our results showed that CSE induced autophagy
(Figures 2(a)–2(d)). Here, we used ATG5 shRNA to increase
senescence expression in HK-2 cells (Figure 5(g)) and found
that CSE-induced autophagy may inhibit senescence and has
a protective role in kidney cells.

5. Conclusions

We found that CSE induced autophagy, fibrosis, senescence,
and SASP in kidney cells (Figure 7). In contrast, Klotho

expression was decreased in kidney cells after CSE treat-
ment. Furthermore, RNA sequencing and GSEA revealed
that G6PD played an important role in ROS pathway regu-
lation in kidney cells after CSE exposure. G6PD expression
and G6PD activity increased in CSE-treated kidney cells.
In addition, G6PD inhibited senescence in kidney cells. In
an animal model after CS exposure for 4 months, CS caused
tubular injury and glomerulosclerosis and induced fibrosis,
autophagy, and G6PD. In conclusion, CS induced G6PD,
autophagy, fibrosis, and senescence and decreased Klotho
in kidney cells. These findings offer more precise molecular
mechanism of CS and the chance to find potential preven-
tive or therapeutic strategies for CS-related renal injury. In
the current study, we focus on in vitro study and an animal
model. In the future, we hope to utilize clinical data and
samples for validation of the research that we currently per-
form on in vitro and animal models.
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