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tRNA-derived fragments (tRFs) have been reported to have critical regulatory roles in osteoarthritis (OA). Recent studies have
suggested that autophagy promotes the homeostasis of the extracellular matrix of chondrocytes in OA. However, the role of
tRFs in posttranscriptional gene regulation during autophagy in OA is unknown. Therefore, we explored the role of tRF-5009A
in the posttranscriptional gene regulation of autophagy and cartilage degeneration in OA. Using RNA sequencing, we
identified tRF-5009A, the tRNAValCAC-derived fragment, in OA tissues and explored its expression by quantitative reverse
transcription PCR and fluorescence in situ hybridization. We further investigated the relationship between the expression of
tRF-5009A and clinical factors in OA. Chondrocytes were transfected with a tRF-5009A inhibitor or mimic to determine their
functions, including in relation to autophagy and the cartilage phenotype. A rescue experiment and dual-luciferase reporter
assay were conducted to determine whether the 3′-untranslated region (UTR) of mTOR contains a tRF-5009A-binding site.
tRF-5009A was downregulated in the cartilage of OA knees, especially in damaged areas. mTOR was highly expressed in
damaged cartilage and negatively correlated with the expression of tRF-5009A; transfection with a tRF-5009A inhibitor
promoted the expression of mTOR and suppressed autophagy, whereas transfection with a tRF-5009A mimic had the opposite
effect. A dual-luciferase reporter assay showed that tRF-5009A silenced the expression of mTOR by binding to its 3′-UTR.
Thus, tRF-5009A regulates autophagy and cartilage degeneration in OA by targeting mTOR. In summary, these findings
provide an additional tool for the clinical diagnosis and novel targeted therapy of OA.

1. Introduction

Osteoarthritis (OA) is a degenerative disease characterized
by subchondral bone remodeling, joint inflammation, osteo-
phyte formation, and cartilage degeneration [1, 2]. OA is a
major cause of disability, and its incidence, which is related
to sex, age, obesity, joint trauma, and other factors, is on
the rise, bringing huge economic burden to patients and

society [3, 4]. OA is primarily characterized by cartilage
destruction and also involves pathological changes in other
structures of the joint, including the meniscus, synovium,
ligaments, fat pads, and surrounding tissues [1]. The patho-
genesis of OA involves an imbalance in the redox state
leading to oxidative stress in chondrocytes, aging, and
apoptosis, as well as decreased anabolism and increased
catabolism of the extracellular matrix [5, 6]. However, there
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are currently no effective therapeutic treatments for OA.
Therefore, it is important to elucidate the pathogenesis and
identify effective targets for the development of effective
treatment strategies.

In recent years, noncoding RNAs have become impor-
tant regulatory factors in OA research. Transfer RNAs
(tRNAs) are noncoding RNAs with distinct characteristics
that function as key cellular translation factors, regulating a
series of nontranslational processes [7]. tRNAs have strong
secondary and tertiary structures and can be further
processed into tRNA-derived fragments (tRFs) under stress
conditions, including hypoxia, infection, and starvation.

The origin, structure, and classification of tRNAs and tRFs
are shown in Figure 1. In most organisms, tRFs with a
length of approximately 14-30 nt are produced by the
precise splicing of pre-tRNAs or mature tRNAs [8]. tRFs
are divided into 5 subtypes: tRF-1, tRF-2, tRF-3, tRF-5,
and i-tRF. tRF-1 results from the processing of pre-
tRNAs by RNase Z. tRF-2, tRF-3, tRF-5, and i-tRF are
produced from the processing of mature tRNAs by Dicer,
angiogenin (ANG), or other RNases at various sites. tRFs
might contain seed sequences that match the crosslinking
central region of target mRNAs, resulting in mRNA
silencing and posttranscriptional gene regulation [9, 10].
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Figure 1: The structure of transfer RNAs (tRNAs) and principal categorization of tRNA-derived fragments (tRFs). tRFs are produced via
tRNA anticodon loop cleavage under stress conditions. tRFs are divided into 5 subtypes, tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. tRF-1 results
from pre-tRNAs processed by RNase Z, whereas tRF-2, tRF-3, tRF-5, and i-tRF are produced from mature tRNAs processed by Dicer,
angiogenin (ANG), or other RNases at various sites.
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Currently, only a single study has been reported on the
role of tRFs in OA, in which tRF-3003a was upregulated
in IL-1β-stimulated chondrocytes, resulting in the down-
regulation of the expression of JAK3 [11].

The levels of inflammatory cytokines, oxidative stress,
and endoplasmic reticulum stress are increased in OA, and
several recent studies have strongly suggested that autoph-
agy promotes the maintenance of the chondrocyte environ-
ment and extracellular matrix homeostasis [12–14]. The
mammalian target of rapamycin (mTOR) is a key molecule
in the mTOR signaling pathway and has been associated
with many diseases, such as metabolic disorders and degen-
erative diseases [15]. The mTOR pathway acts on 2 different
multiprotein complexes, mTOR complex 1 (mTORC1),
which is associated with autophagy, cell growth, and prolif-
eration, and mTOR complex 2 (mTORC2) [16]. The two
mTOR complexes play very different roles in the regulation
of metabolism and cellular proliferation [17]. mTORC1,
composed of mTOR, Raptor, GβL, and DEPTOR, is inhib-
ited by rapamycin. It is a major growth regulatory molecule
that senses and binds to different nutritional and environ-
mental factors, including growth factors, energy levels,
cellular stress, and amino acids [18]. It binds these signals
to promote cell growth by phosphorylating substrates to
enhance anabolism (such as mRNA translation and lipid
synthesis) or to limit catabolism (such as autophagy). Amino
acid signaling directs the signal to mTORC1 in a manner
independent of the PI3K/Akt axis and promotes the trans-
port of mTORC1 to the lysosomal surface, where it interacts
with Rheb and is activated [19]. The second complex,
mTORC2, consists of mTOR, Rictor, GβL, Sin1, PRR5/Pro-
TOR-1, and DEPTOR. mTORC2 promotes cell survival by
activating Akt, regulates cytoskeletal dynamics by activating
PKCα, and controls ion transport and growth by phosphor-
ylation of SGK1 [20]. Several signaling pathways involving
autophagy-activated mTOR have been reported in OA
[21, 22]. In recent years, the mTOR autophagy pathway
has been widely studied in OA. For example, a previous study
revealed that moderate-intensity exercise promoted chon-
drocyte autophagy through the P2X7/AMPK/mTOR signal
axis to alleviate pyroptosis, which provided novel insights
into the positive and preventative effects of exercise on OA
[21]. Besides, some researchers found that four-octyl
itaconate improves osteoarthritis by enhancing autophagy
in chondrocytes via PI3K/AKT/mTOR signaling pathway
inhibition [23]. However, the underlying mechanisms of
the function of tRF-5009A and mTOR in OA chondrocytes
have not yet been elucidated. In this study, we aimed to deter-
mine whether tRFs regulate autophagy in OA chondrocytes.

2. Materials and Methods

2.1. Patient Recruitment, Sample Collection, and Cell
Culture. This study was approved by the Clinical Research
Ethics Committee of the First Affiliated Hospital of Sun
Yat-sen University ([2021]334). Informed consent was
obtained from all participants. Osteoarthritis articular tis-
sues were acquired from patients (n = 6; mean age: 67 years;
range: 60–72 years; male: 2, female: 4) with knee OA who

underwent total knee arthroplasty, whereas normal articular
tissues were obtained from patients (n = 6; mean age: 32
years; range: 21–45 years; male: 3, female: 3) who underwent
lower limb amputation due to trauma without OA or rheu-
matoid arthritis. Collected articular tissues included the
cartilage, meniscus, anterior cruciate ligament, synovial
membrane, and infrapatellar fat pad. In addition, 30 carti-
lage specimens and clinical data of patients with knee OA
who underwent total knee arthroplasty were collected and
divided into the undamaged (ICRS = 0) and damaged
(ICRS = 1–4) groups according to the International Cartilage
Repair Society (ICRS) grading system [24]. Chondrocytes,
infrapatellar fat pad cells [25], meniscus cells [26], anterior
cruciate ligament cells [27], and synovial membrane cells
[28] were isolated and cultured as previously described.

2.2. RNA Extraction and qRT-PCR. Total RNA was extracted
using an RNeasy mini kit (Qiagen, Germany) according to
the manufacturer’s instructions. Extracted RNA was quanti-
tatively evaluated using a NanoDrop spectrophotometer
(NanoDrop Technologies, USA). The rtStar tRF and tiRNA
pretreatment kit (Cat. #AS-FS-005; Arraystar) was used to
preprocess the miRNA samples. cDNA was synthesized
using the rtStar first-strand cDNA synthesis kit with 3′ and
5′ adaptors (Cat. #AS-FS-003; Arraystar). qRT-PCR was
performed using an ABI ViiA™ 7 real-time PCR system
(ViiA 7Dx; Applied Biosystems, USA). Primer sequences
are listed in Supplementary Table S1. GAPDH was used as
the reference gene for the evaluation of mRNA expression,
while the U6 small nuclear RNA was used as the reference
gene for the evaluation of expression of tRFs. The 2−ΔΔCq

method was used to calculate the levels of gene expression
[29], and each experiment was repeated 6 times.

2.3. Target Gene Prediction and Bioinformatic Analysis. tRF
sequencing data from a previous study are available on
this website (https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE200433) [27]. miRanda and TargetScan were
used to explore potential target genes of tRF-5009A using
online analysis tools. Gene Ontology function analysis
(http://www.geneontology.org/) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses were
used to predict the pathways for tRF-5009A.

2.4. Transfection Using the tRF-5009A Inhibitor and Mimic
and mTOR Knockdown (KD) shRNAs. Cells were seeded in
6-well plates and cultured to approximately 80% confluence
and then transfected with either a Homo sapiens tRF-5009A
inhibitor or mimic (RiboBio, Shanghai, China) or mTOR
KD shRNAs (Tsingke Biotechnology Co., Beijing, China)
using Lipofectamine 3000 (Invitrogen, USA) according to
the manufacturer’s instructions. Cells were collected for
qRT-PCR after 24h and for western blotting after 48 h. Non-
specific tRF (RiboBio) and KD NC shRNA (Tsingke Bio-
technology Co.) were used as negative controls (NCs).

2.5. Histology, RNA Fluorescence In Situ Hybridization, and
Immunofluorescence. After fixing in 4% paraformaldehyde
(Sigma-Aldrich, St. Louis, MO, USA) and embedding in
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paraffin, 5μm sagittal sections of cartilage specimens were
cut and stained with hematoxylin and eosin (H&E), safranin
O solution, and toluidine blue (Sigma-Aldrich) for histolog-
ical examination. After washing with PBS (Servicebio,
Wuhan, China), chondrocytes grown on slides were fixed with
4% paraformaldehyde for 30min. Cells were then cocultured
with a fluorescence in situ hybridization probe targeting tRF-
5009A. After washing with PBS, cells were stained with DAPI.
Images were captured using a confocal microscope (LSM780;
Carl Zeiss, Germany). Immunofluorescence was performed
48h after transfection, as previously reported [30]. The pri-
mary antibody used was against mTOR (1 : 100; Cell Signaling
Technology, Danvers, MA, United States), while the conju-
gated secondary antibody (Cell Signaling Technology, Dan-
vers, MA, United States) was a goat anti-rabbit IgG. Images
were obtained using a confocal laser microscope (LSM 780,
Zeiss) at different magnifications.

2.6. Transmission Electron Microscopy. Transmission elec-
tronmicroscopy (TEM) was performed 48h after transfection.
Cartilage cells were fixed with 2.5% glutaraldehyde (pH7.4;
Sigma-Aldrich) for 2h at 25°C. After centrifugation at low
speed (1200 rpm, 3min), a mung-bean-sized cell mass was
observed at the bottom of the tube. Cells were treated and
fixed overnight in 2.5% glutaraldehyde and after 2h harvested
in 1% osmium tetroxide (Structure Probe, Inc, USA) at 4°C.
Following dehydration, infiltration, embedding, and section-
ing, images were captured using a Tecnai G2 Spirit Twin
transmission electron microscope (FEI Company, USA).

2.7. GFP-mRFP-LC3 Adenovirus Infection. Chondrocytes
were inoculated on cell-climbing slides and transfected
with GFP-mRFP-LC3 adenovirus (multiplicity of infection
ðMOIÞ = 50; Hanbio, Shanghai, China) before cell transfec-
tion. Cells were fixed in 4% paraformaldehyde for 30min
at 25°C, and LC3-puncta were detected using a NIKON
Eclipse Ti confocal microscope (Tokyo, Japan).

2.8. Western Blotting. Western blotting was performed as pre-
viously described [31]. Primary antibodies against mTOR
(1 : 1000; Cell Signaling Technology), ULK1 (1 : 500; Protein-
tech, Wuhan, China), p-ULK1 (1 : 2000; Proteintech), ATG13
(1 : 500; Servicebio, Wuhan, China), Beclin1 (1 : 1000; Protein-
tech), p62 (1 : 500; Servicebio), LC3 (1 : 1000; Servicebio),
MMP13 (1 : 500; Servicebio), COL2A1 (1 : 1000; Abcam, Cam-
bridge, UK), and GAPDH (1 : 3,000; Cell Signaling Technology)
were used. Protein bands were detected using a chemilumines-
cence system (Bio-Rad Laboratories, Hercules, CA, United
States) with an enhanced chemiluminescence (ECL) kit (Milli-
pore, Darmstadt, Germany). Signal intensity was compared
using the ImageJ software (NIH, Bethesda, MD, USA).

2.9. Flow Cytometry. Cell apoptosis was detected using the
FITC annexin V apoptosis detection kit I (BD Biosciences,
USA) according to the manufacturer’s instructions and
examined using flow cytometry (Beckman Coulter, USA).
Results were analyzed using the FlowJo software.

2.10. Quantification of Reactive Oxygen Species. ROS detec-
tion kits (Beyotime) were used to determine and evaluate

the production of ROS according to the manufacturer’s
instructions. Samples were examined using an inverted fluo-
rescence microscope (Leica, Germany), and fluorescence
intensity was detected using the ImageJ software.

2.11. Luciferase Reporter Assay. To detect the regulatory rela-
tionship between tRF-5009A and mTOR mRNA, a dual-
luciferase reporter assay was performed using SW1353 cells
(a human chondrosarcoma cell line). The 3′-untranslated
region (UTR) of mTOR mRNA with the tRF-5009A-
binding site or its mutant construct was inserted into a lucif-
erase reporter plasmid (Promega, USA). The luciferase
reporter was cotransfected with the mTOR 3′-UTR fusion
vector and the tRF-5009A mimic or corresponding NC into
SW1353 cells. Cells were collected 48h later and subjected to
a dual-luciferase reporter assay (Promega, USA) using a
Synergy H1 microplate reader (BioTek Instruments, USA)
for the detection of firefly and Renilla luciferase activities.

2.12. Statistical Analysis. Data were analyzed using Graph-
Pad Prism 8.0 (GraphPad, La Jolla, CA, USA) or SPSS
v26.0 (IBM Corp., USA). The Shapiro-Wilk normality test
was used to explore data distribution. For values with
normal distribution, unpaired t-tests for 2 groups and one-
way analysis of variance (ANOVA) for multiple groups were
used. The Mann–Whitney test for 2 groups and Kruskal-
Wallis test for multiple groups were used for the analysis
of differences in values with nonnormal distribution. The
relationship between tRF-5009A and mTOR was analyzed
using simple linear regression. The relationships between
tRF-5009A or mTOR expression and baseline characteristics
of patients with OA were evaluated using the chi-squared
test and Spearman’s correlation analysis. R2 < 0:16 means a
low linear correlation; 0:16 ≤ R2 < 0:49 means a significant
correlation; 0:49 ≤ R2 < 1 means a high linear correlation.
p < 0:05 was considered significant.

3. Results

3.1. tRF-5009A Was Downregulated in Cartilage of
Osteoarthritic Knee, Especially in the Damaged Area, and
Associated with Clinicopathological Features. In our previous
study, tRF array analysis and qRT-PCR showed that tRF-
5009A was downregulated in OA anterior cruciate ligament
(ACL) cells [27]. To evaluate the potential role of tRF-5009A
in OA, we first explored the expression of tRF-5009A in car-
tilage, meniscus, ACL, synovial membrane, and infrapatellar
fat pad. Our qRT-PCR results showed that the expression of
tRF-5009A was downregulated the most in the cartilage of
OA knees compared with that in normal (Figure 2(a)).
Therefore, we selected the cartilage for subsequent analysis
of tRF-5009A. Next, we compared the relative RNA expres-
sion of tRF-5009A, COL2A1, and MMP13 in OA and in OA
with IL-1β-treated cells (Figure 2(b)). The tRF-5009A
sequence was derived from the 5′-end of tRNAValCAC

(Figure 2(c)). To better study the potential role of tRF-
5009A in OA cartilage, we collected cartilage samples from
30 patients with knee OA and divided them into undamaged
(U) and damaged (D) areas based on preoperative
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Figure 2: Continued.
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Figure 2: The expression of tRF-5009A was downregulated in the cartilage of knees with osteoarthritis (OA), especially in IL-1β-treated and
damaged area cells. (a) The expression of tRF-5009A was downregulated most significantly in the cartilage compared with that in meniscus,
anterior cruciate ligament, synovial membrane, and infrapatellar fat pad of OA knees. (b) The RNA expression of tRF-5009A, COL2A1, and
MMP13 in OA and IL-1β-treated OA cells. (c) Structure and sequence of tRF-5009A, derived from tRNAValCAC. (d) Plain radiograph (n = 3).
A-P: anterior-posterior. (e) The RNA expression of tRF-5009A, COL2A1, and MMP13. (f) Alcian blue, safranin O, and toluidine
blue staining. (g) RNA fluorescence in situ hybridization analysis of tRF-5009A in undamaged (U) and damaged (D) OA cartilage.
(h) Heatmaps of relative RNA expression of tRF-5009A in undamaged (U) and damaged (D) areas (n = 30). (i, j) Relationship between age,
sex, obesity grade, affected side, disease duration, obesity grade, Kellgren-Lawrence grade, and expression of tRF-5009A in the damaged area
represented by the Sankey diagram. All data were expressed as the mean ± SEM: ∗∗p < 0:01, ∗∗∗p < 0:001,and∗∗∗∗p < 0:0001.
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radiography (Figure 2(d)). Imaging of surgical specimens,
alcian blue, safranin O, and toluidine blue staining showed
that the undamaged cartilage appeared smooth, whereas
the damaged cartilage had defects and cracks (Figure 2(f)).
Immunofluorescence showed that the expression of tRF-
5009A was clearly reduced in the damaged compared with
that in the undamaged cartilage (Figure 2(g)). We further
detected the relative RNA expression of tRF-5009A,
COL2A1, and MMP13 using qRT-PCR. We found that the
expression of tRF-5009A was considerably downregulated
in the damaged cartilage of patients with knee OA
(Figures 2(f) and 2(h)).

To explore the clinical significance of tRF-5009A in OA,
we used Sankey diagrams to present the relationships
between the levels of tRF-5009A in the damaged area and
patient characteristics, including age, sex, obesity grade,

affected side, disease duration, and Kellgren-Lawrence grade
(Figures 2(i) and 2(j)). We observed that among the 30
patients with OA, 17 had low expression of tRF-5009A,
whereas 13 had high expression in the damaged area
(Table 1). Chi-squared tests indicated that the low expres-
sion of tRF-5009A was significantly correlated to the
Kellgren-Lawrence grade (p < 0:001) (Table 2). In addition,
Spearman’s correlation analysis showed that the low

Table 1: Baseline characteristics of patients with knee osteoarthritis
(n = 30).

Characteristics Number of cases (%)

Age (years)

<65 11 (36.7)

≥65 19 (63.3)

Gender

Male 6 (20.0)

Female 24 (80.0)

Obesity gradationa

Underweight 0 (0.0)

Normal weight 9 (30.0)

Overweight 12 (40.0)

Obesity 9 (30.0)

Affected side

Left 16 (53.3)

Right 14 (46.7)

Disease duration (years)

<10 18 (60.0)

≥10 12 (40.0)

Kellgren-Lawrence gradation

III 13 (43.3)

IV 17 (56.7)

Expression of tRF-5009Ab

Low expression 17 (43.3)

High expression 13 (56.7)

Expression of mTORc

Low expression 12 (40.0)

High expression 18 (60.0)
aUnderweight: BMI < 18:5; normal weight: 18:5 ≤ BMI < 24; overweight:
24 ≤ BMI < 28; obesity: BMI ≥ 28. bThe maximal difference (eighteenth
minus seventeenth is 0.0115 in ascending order) near median was used to
classify between the low expression or high expression of tRF-5009A
instead of the median (sixteenth minus fifteenth is 0.0002 in ascending
order). cThe maximal difference (thirteenth minus twelfth is 0.0833 in
ascending order) near median was used to classify between the low
expression or high expression of mTOR instead of the median (sixteenth
minus fifteenth is 0.0149 in ascending order).

Table 2: Correlation between tRF-5009A expression and the
baseline characteristics of patients with knee osteoarthritis (n = 30).

Characteristics
tRF-5009A
expression p value

Low High

Age (years)

<65 5 6
0.454

≥65 12 7

Gender

Male 3 3
1.000

Female 14 10

Obesity gradation

Underweight 0 0 0.414

Normal weight 4 5

Overweight 6 6

Obesity 7 2

Affected side

Left 8 8 0.431

Right 9 5

Disease duration (years)

<10 10 8 0.880

≥10 7 5

Kellgren-Lawrence gradation

III 2 11 <0.001
IV 15 2

p values were analyzed using the chi-squared test with p < 0:05 as
significant.

Table 3: Spearman correlation analysis between tRF-5009A
expression and the baseline characteristics of patients with
osteoarthritis (n = 30).

Variables
tRF-5009A expression

Spearman p value

Age -0.271 0.148

Gender -0.250 0.182

Weight -0.377 0.040

Height 0.183 0.333

Body mass index -0.490 0.006

Obesity gradation -0.477 0.008

Affected side -0.023 0.903

Disease duration -0.173 0.361

Kellgren-Lawrence gradation -0.727 <0.001
Note: p < 0:05 considered significant.
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expression of tRF-5009A was associated with weight
(p = 0:040), body mass index (BMI; p = 0:006), obesity
grade (p = 0:008), and Kellgren-Lawrence grade (p < 0:001)
(Table 3).

3.2. Prediction of the Target Gene of tRF-5009A. We first
used TargetScan and miRanda to predict possible targets of
tRF-5009A. We further used GO and KEGG pathway analy-
ses to predict the functional enrichment and pathways of the

assumed target genes. Our results revealed that mTOR was a
potential target gene of tRF-5009A (Figures 3(a)–3(e)).

3.3. Expression of mTOR and Correlation between mTOR
and tRF-5009A in Undamaged (U) and Damaged (D)
Cartilage of OA Knee. To evaluate the role of mTOR in
OA, we examined the expression of mTOR in undamaged
(U) and damaged (D) cartilages. We found that mTOR
was highly expressed at both mRNA and protein levels in

(e)

Figure 3: Bioinformatic analysis of tRF-5009A. (a) Barplot showing Gene Ontology (GO) enrichment for biological processes with top 10
scores. (b) Barplot showing significant GO terms as enrichment score values of significantly enriched pathways with top 10 scores for
biological processes, cellular components, and molecular functions. (c) Dotplot showing gene ratios in the pathways with top 10 scores.
The size of the dot indicates the number of genes with biological process terms, while the color represents the p value. (d) Barplot
showing significantly enriched pathways with top 10 scores. (e) GO-directed acyclic graph explanation. When a gene is annotated to a
specific node, it is also considered annotated to the parent nodes.
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Figure 4: Expression of mTOR and correlation between tRF-5009A and mTOR in undamaged (U) and damaged (D) cartilage of OA knee.
(a, b) Expression of mTOR detected by immunofluorescence and qRT-PCR in undamaged (U) and damaged (D) OA cartilage. (c) Western
blotting of mTOR, COL2A1, and MMP13. (d) Quantification analysis of western blotting results in undamaged (U) and damaged (D) areas.
(e) Quantification using heatmaps for the relative protein expression of mTOR in undamaged (U) and damaged (D) areas (n = 30).
(f, g) Relationship between age, sex, obesity grade, affected side, disease duration, obesity grade, Kellgren-Lawrence grade, and
expression of mTOR in the damaged area represented by the Sankey diagram. (h, i) Linear regression analysis of the expression
of tRF-5009A and mTOR, respectively, in damaged (D) and undamaged (U) areas (n = 30). All data were presented as the
mean ± SEM: ∗p < 0:05, ∗∗p < 0:01, and∗∗∗∗p < 0:0001.
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damaged compared with those in undamaged areas
(Figures 4(a)–4(d)). To further investigate the clinical signif-
icance of the expression of mTOR and the correlation
between mTOR and tRF-5009A in OA, we also tested the
relative RNA expression of mTOR in the undamaged (U)
and damaged (D) cartilage of 30 patients with knee OA
(Figure 4(e)). We specifically detected that among the 30
patients with OA, 12 had low expression, whereas 18 had
high expression of mTOR in the damaged cartilage
(Table 1). The relationships between the expression of
mTOR in the damaged area of the cartilage with patient
characteristics, including age, sex, obesity grade, affected
side, disease duration, and Kellgren-Lawrence grade are
presented in the Sankey diagram in Figures 4(f) and 4(g).
We further found that the expression of mTOR was
negatively correlated with that of tRF-5009A in the damaged
cartilage (Figure 4(h)), whereas no significant correlation
was observed in the undamaged cartilage (Figure 4(i)).
Chi-squared tests showed that the high levels of mTOR were
associated with Kellgren-Lawrence gradation (p < 0:001)
(Table 4). Finally, Spearman’s correlation analysis revealed
that the high levels of mTOR were significantly correlated
with weight (p = 0:044), BMI (p = 0:010), obesity grade
(p = 0:013), and Kellgren-Lawrence grade (p < 0:001)
(Table 5).

3.4. tRF-5009A Inhibitor Suppressed Autophagy and
Promoted Degeneration of OA Cartilage. To further investi-
gate whether tRF-5009A regulates the expression of mTOR
in OA cartilage, we first transfected cells with a tRF-5009A
inhibitor and found that it decreased the expression of
tRF-5009A (Figure 5(a)). We further detected that the
expression of mTOR was significantly upregulated at both
the mRNA and protein levels after transfection of cells with
a tRF-5009A inhibitor (Figures 5(b)–5(f)). Moreover, we
found that the levels of autophagy-related protein markers
downstream of mTOR, including p-ULK1, ATG13, Beclin1,
p62, and LC3 II/I, were also accordingly changed
(Figures 5(c)–5(e)). We specifically noticed that COL2A1, a
protective cartilaginous marker, was significantly downregu-
lated at both the mRNA and protein levels, whereas
MMP13, a destructive marker, was significantly upregulated
(Figures 5(b)–5(d)). Transmission electron microscopy
(TEM) following double labelling with mRFP-GFP-LC3 ade-
novirus showed that the levels of autolysosomes (ALs) and
autophagosomes (APs) were downregulated after treatment
with the tRF-5009A inhibitor (Figures 5(g)–5(j)). Moreover,
DCFH-DA staining showed that the levels of ROS were
increased, while flow cytometry analysis revealed that cell
apoptosis was also increased (Figures 5(k)–5(m)). Together,
these results suggested that the tRF-5009A inhibitor sup-
pressed autophagy and promoted the degeneration of OA
cartilage by regulating mTOR.

3.5. tRF-5009A Overexpression Promoted Autophagy and
Suppressed Degeneration of OA Cartilage. To further identify
the role of tRF-5009A in the treatment of OA, we trans-
fected OA cartilage cells with a tRF-5009A mimic and found
that it significantly increased the expression of tRF-5009A

(Figure 6(a)). We also detected that the expression of mTOR
was downregulated, and the levels of its downstream
autophagy-related protein markers were accordingly signifi-
cantly altered (Figures 6(b)–6(f)). In addition, we found that
the levels of the COL2A1 protective marker were upregu-
lated, whereas those of the MMP13 destructive marker were
significantly downregulated (Figures 6(b)–6(d)). TEM fol-
lowing double labelling with mRFP-GFP-LC3 adenovirus

Table 4: Correlation between mTOR expression and the baseline
characteristics of patients with knee osteoarthritis (n = 30).

Characteristics
mTOR expression

p value
Low High

Age (years)

<65 5 6
0.712

≥65 7 12

Gender

Male 3 3
0.660

Female 9 15

Obesity gradation

Underweight 0 0 0.422

Normal weight 5 4

Overweight 5 7

Obesity 2 7

Affected side

Left 7 9 0.654

Right 5 9

Disease duration (years)

<10 8 10 0.709

≥10 4 8

Kellgren-Lawrence gradation

III 10 3 0.001

IV 2 5

p values were analyzed using the chi-squared test with p < 0:05 as
significant.

Table 5: Spearman correlation analysis between mTOR expression
and the baseline characteristics of patients with osteoarthritis
(n = 30).

Variables
mTOR expression

Spearman p value

Age 0.179 0.344

Gender 0.202 0.284

Weight 0.371 0.044

Height -0.156 0.411

Body mass index 0.461 0.010

Obesity gradation 0.447 0.013

Affected side 0.023 0.903

Disease duration 0.185 0.328

Kellgren-Lawrence gradation 0.672 <0.001
Note: p < 0:05 considered significant.
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Figure 5: tRF-5009A inhibitor suppresses autophagy and promotes degeneration of OA cartilage. (a) Inhibitor efficiency of tRF-5009A by
qRT-PCR. (b) qRT-PCR analysis of the expression of mTOR, COL2A1, and MMP13 after 24 h of OA cell transfection with a tRF-5009A
inhibitor. (c) Western blotting results of COL2A1, MMP13, LC3, p62, Beclin1, ATG13, p-ULK1, ULK1, and mTOR. (d, e) Quantification
analysis of western blotting results. (f) Expression of mTOR detected by immunofluorescence. (g) Double labelling with mRFP-GFP-LC3
adenovirus and (h) quantification of mRFP and merge dots per cell in chondrocytes. mRFP (red) represents autolysosomes (ALs); merge
(yellow) represents autophagosomes (APs). (i) Transmission electron microscopy (TEM) analysis (blue arrows =APs and ALs) and
(j) quantitative analysis. (k) Levels of reactive oxygen species (ROS) analyzed by DCFH-DA staining and (l) quantification analysis
of mean fluorescence intensity (MFI). (m) Evaluation of cell apoptosis rate by flow cytometry. All data were expressed as the mean
± SEM. ns: not significant, ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001,and∗∗∗∗p < 0:0001.
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showed that the levels of ALs and APs were increased
(Figures 6(g)–6(j)), whereas those of ROS and apoptosis
decreased after overexpression of tRF-5009A (Figures 6(k)–
6(m)). These results suggested that overexpression of tRF-
5009A promoted autophagy and suppressed OA cartilage
degeneration by regulating mTOR.

3.6. Effects of mTOR Knockdown on OA Cartilage. To con-
firm that tRF-5009A regulates autophagy and degeneration
of the OA cartilage by targeting mTOR, we knocked down
the latter using mTOR shRNAs. To determine which mTOR
knockdown (KD) shRNA (KD-01/02/03/04) was the most
effective in OA cartilage compared with knockdown nega-
tive control (KD-NC), we performed qRT-PCR analysis

and found that mTOR KD-02 had the highest efficiency
(Figure 7(a)). Thus, we used mTOR KD-02 in subsequent
experiments. Our results revealed that cotransfection of
cells with mTOR KD-02 and the tRF-5009A inhibitor sig-
nificantly reversed the changes downstream of mTOR,
increased the levels of COL2A1, ALs, and APs, but
decreased those of MMP13, ROS, and cell apoptosis.
Conclusively, we observed that mTOR KD-02 blocked
the tRF-5009A inhibitor-mediated upregulation of mTOR
(Figures 7(b)–7(j)).

3.7. Inhibition of Luciferase Reporter Activity of the 3′-UTR
of mTOR mRNA by tRF-5009A. To demonstrate the mecha-
nism underlying the regulation of the expression of mTOR
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Figure 6: Overexpression of tRF-5009A promotes autophagy and suppresses degeneration of OA cartilage. (a) Overexpression
efficiency of tRF-5009A by qRT-PCR. (b) qRT-PCR analysis of the expression of mTOR, COL2A1, and MMP13 after OA cell
transfection with a tRF-5009A mimic. (c) Western blotting results of COL2A1, MMP13, LC3, p62, Beclin1, ATG13, p-ULK1, ULK1, and
mTOR. (d, e) Quantification analysis of western blotting results. (f) Expression of mTOR detected by immunofluorescence. (g) Double
labelling with mRFP-GFP-LC3 adenovirus and (h) quantification of mRFP and merge dots per cell in chondrocytes. mRFP (red)
represents autolysosomes (ALs); merge (yellow) represents autophagosomes (APs). (i) Transmission electron microscopy (TEM) analysis
(blue arrows =APs and ALs) and (j) quantitative analysis. (k) Levels of reactive oxygen species (ROS) analyzed by DCFH-DA staining and
(l) quantification analysis of mean fluorescence intensity (MFI). (m) Flow cytometry analysis. All data were expressed as the mean ± SEM.
ns: not significant, ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001,and∗∗∗∗p < 0:0001.
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by tRF-5009A, we analyzed the 3′-UTR sequence of human
mTOR mRNA. We used the predictive bioinformatic
programs miRanda and TargetScan to determine whether
the 3′-UTR of mTOR contained a potential tRF-5009A-
binding site. In addition, we performed a dual-luciferase
reporter assay to determine whether the 3′-UTR of mTOR
contained a tRF-5009A interaction sequence and subse-
quently mutated the ACAGAAG sequence into UCUG
CAC (Figure 7(k)). We observed that the luciferase activity
of wild-type mTOR varied substantially when tRF-5009A
was overexpressed in cells. In contrast, the mutated binding
sequence did not alter the mTOR 3′-UTR reporter activity
when tRF-5009A was overexpressed (Figure 7(l)). These
results confirmed that tRF-5009A reduced the luciferase
activity by binding to the 3′-UTR of mTOR.

4. Discussion

An increasing number of studies have shown that tRNAs
and tRFs play important roles in various cells [9, 10, 32].
tRFs are small noncoding RNAs (ncRNAs) that were discov-
ered over the last few years. The implementation of novel
improved techniques used for the sequencing of tRFs
revealed that miRNA-like tRNA fragments are highly abun-
dant in various cell types [33, 34]. For instance, tRF-3003a
was identified by sequencing of the OA cartilage in a previ-
ous study [11]. In this study, we found that tRF-5009A was
downregulated in OA ACL cells. OA is considered an
intra-articular disease, characterized by cartilage degenera-
tion, synovial membrane and infrapatellar fat pad inflam-
mation, meniscus damage, and other important structural
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Figure 7: Effects of tRF-5009A binding to the 3′-UTR of mTOR on translation. (a) qRT-PCR analysis of the expression of mTOR, COL2A1,
and MMP13 in OA cells transfected with mTOR knockdown (KD) shRNAs or negative control (NC). (b) qRT-PCR, (c) western
blotting, (d) mRFP-GFP-LC3 adenoviral double labelling, (f) transmission electron microscopy (TEM), (h) levels of reactive oxygen
species (ROS), and (j) flow cytometry evaluation of the effects of cotransfection of cells with a mTOR KD-02 and a tRF-5009A
inhibitor. (e) Quantification analysis of mRFP (red) and merge (yellow) dots per cell. (g) TEM images and (i) mean fluorescence
intensity (MFI) of ROS. (k) Schematic illustration showing the flowchart of the prediction of the tRF-5009A-binding site in mTOR
using a mutant. (l) Relative luciferase activity. All data were presented as the mean ± SEM. ns: not significant, ∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001,and∗∗∗∗p < 0:0001.
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pathological changes [35]. Therefore, we explored the
differences in the expression of tRF-5009A between OA
and non-OA joint tissues.

Interestingly, we found that tRF-5009A was downregu-
lated most significantly in the cartilage of patients with OA
and was associated with certain clinical factors. Hence, we
further investigated the expression of tRF-5009A in dam-
aged and undamaged areas of the cartilage and found that
it can be used to predict OA severity, especially in the
Kellgren-Lawrence grade. Considering that OA is related to
many pathogenic factors, including age, sex, obesity grade,
and Kellgren-Lawrence grade, we explored the correlation
between the level of expression of tRFs with these factors
and further performed a regression analysis of influencing
factors. As most patients with end-stage OA undergoing
total knee arthroplasty are middle-aged or elderly, we
enrolled 30 patients with knee OA aged 54 to 86 years.
Therefore, in this study, we established 2 groups: the rela-
tively young group (<65 years old) and the older group
(≥65 years old). However, there was no significant difference
in the expression of tRF-5009A between these 2 groups. This
demonstrated that the expression of tRF-5009A is not nec-
essarily associated with aging. Nonetheless, we found that
the expression of tRF-5009A was positively correlated with
obesity.

We revealed that the expression of the tRNAValCAC

derived fragment tRF-5009A promoted autophagy and sup-
pressed cartilage degeneration in OA via inhibition of the

mTOR pathway. Autophagy plays an important role in
a variety of diseases, including cartilage degeneration
[36, 37]. Recent evidence has suggested that autophagy
stabilizes the chondrocyte extracellular matrix, increases
anabolism, but decreases catabolism, apoptosis, and ROS
production [12, 38]. Several studies have shown that mTOR
signaling is involved in the activation of autophagy in chon-
drocytes in OA [36, 39, 40]. Inhibition of the activity of
mTOR improves autophagy by directly phosphorylating the
serine sites of ULK1, an important regulatory protein for
autophagy induction [41]. This inhibition effectively elevates
autophagic flux, including the levels of Beclin1 and LC3 II.
Previous studies have indicated that some microRNAs
induce autophagy by inhibiting mTOR [42, 43]. Recent
studies have also shown that tRF3008A suppresses the pro-
gression and metastasis of colorectal cancer by destabilizing
FOXK1 in an AGO-dependent manner [9], while tRF-
3001b aggravates the development of nonalcoholic fatty liver
disease by inhibiting autophagy via the same mechanism
[44]. Therefore, we hypothesized that tRF-5009A silences
genes via base pairing with mTOR mRNA. In a previous
study, tRF-3003a was identified by sequencing of the OA
cartilage [11]. They found that a specific tRF, namely, tRF-
3003a, can posttranscriptionally regulate JAK3 expression
via AGO/RISC formation in chondrocytes. However, they
did not explore the expression pattern of the tRF in human
OA cartilage specimens and clinically relevant influencing
factors as this work did. We firstly used more clinical samples
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Figure 8: Schematic showing the proposed mechanism of suppression of cartilage degeneration through the regulation of autophagy by the
binding of tRF-5009A to the 3′-UTR of mTOR in OA.
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to explore the differences of the tRF and explored the func-
tions of the tRF in regulating chondrocyte autophagy in
OA, which provided an additional tool for the clinical diag-
nosis and novel targeted therapies of OA.

5. Conclusions

In conclusion, we demonstrated that tRF-5009A promoted
autophagy and suppressed cartilage degeneration in OA by
inhibiting mTOR (Figure 8). To the best of our knowledge,
this is the first study to demonstrate a relationship between
autophagy and tRFs in OA. These findings provide a new
direction for the study of cartilage degeneration and the
pathophysiological process of OA, thus providing an
additional tool for the clinical diagnosis and novel targeted
therapies of OA.
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