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Stroke is a neurological disease that causes significant disability and death worldwide. Ischemic stroke accounts for 75% of all
strokes. The pathophysiological processes underlying ischemic stroke include oxidative stress, the toxicity of excitatory amino
acids, ion disorder, enhanced apoptosis, and inflammation. Noncoding RNAs (ncRNAs) may have a vital role in regulating the
pathophysiological processes of ischemic stroke, as confirmed by the altered expression of ncRNAs in blood samples from
acute ischemic stroke patients, animal models, and oxygen-glucose-deprived (OGD) cell models. Due to specific changes in
expression, ncRNAs can potentially be biomarkers for the diagnosis, treatment, and prognosis of ischemic stroke. As an
important brain cell component, glial cells mediate the occurrence and progression of oxidative stress after ischemic stroke,
and ncRNAs are an irreplaceable part of this mechanism. This review highlights the impact of ncRNAs in the oxidative stress
process of ischemic stroke. It focuses on specific ncRNAs that underlie the pathophysiology of ischemic stroke and have
potential as diagnostic biomarkers and therapeutic targets.

1. Introduction

Globally, stroke is the cause of the second-highest deaths and
the most disability-adjusted life years (DALYs). Stroke is a sig-
nificant economic burden and stress on society worldwide [1,
2]. Nearly 60% of all strokes occur in people under 70 years
old, and stroke incidence rates have shown a sharp and steady
increase among young people aged 15 to 49 years [3]. Strokes
can be classified into hemorrhagic or ischemic strokes, and the
latter accounts for nearly 87% of all stroke cases [4]. A cerebral
artery embolism leads to ischemic stroke with ischemia and
hypoxia in the infraction of the corresponding brain areas,

resulting in neuronal death and irreversible neurological defi-
cits. After ischemia, neurons can immediately not maintain
their normal transmembrane ion gradient and homeostasis.
This triggers several processes that lead to cell death, such as
excitotoxicity, oxidative and nitratative stress, inflammation,
and apoptosis. These pathophysiological processes are highly
detrimental to neurons, glial, and endothelial cells [5–7]. They
are interrelated and continuously trigger each other in a posi-
tive feedback loop that destroys neurons [8]. Furthermore,
ischemia-reperfusion injury (IRI) that occurs once blood flow
is restored may exacerbate these processes [9]. During rapid
blood flow recanalization, the demand for sugars and oxygen
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increases rapidly, oxidase is activated in large amounts, and
the degree of tissue oxidation increases greatly. These
changes result in a cellular “oxidative burst” and excessive
formation of reactive oxygen species (ROS), leading to sec-
ondary cerebral ischemia and reperfusion brain damage. As
the most basic and critical pathological progression of brain
injury, oxidative stress causes neuronal apoptosis, activation
of inflammatory signaling pathways, and impairment of the
blood-brain barrier (BBB) [10–12].

ncRNAs are a class of functional RNAs. While they
cannot code for proteins, ncRNAs regulate gene expression
in a posttranscriptional manner, including microRNAs
(miRNAs), long noncoding RNAs (lncRNAs), and circular
RNAs (circRNAs) [13, 14]. NcRNAs have been reported to
be abundantly expressed in the mammalian brain. Addi-
tionally, recent studies have depicted that cerebral ische-
mia alters the expression profiles of ncRNAs [15, 16].
According to many studies, ncRNAs are involved in oxi-
dative stress by controlling transcription and translation,
thereby affecting neuronal cell survival [17–19].

Despite the unfavorable results of clinical trials, pre-
clinical studies have suggested that oxidative stress damage
may be a potential therapeutic target in ischemic stroke.
Dysregulation of ncRNAs is a known mechanism contrib-
uting to cerebral ischemia, and potential biomarkers and
therapeutic targets for treating cerebral ischemia have been
identified. However, none of these breakthroughs have
been successfully implemented in clinical practice. This
review is aimed at discussing the role of noncoding RNA
in oxidative stress in postischemic stroke brain injuries
to lay the foundation for therapy and prophylaxis.

2. Oxidative Stress in Ischemic Stroke and
Ischemia-Reperfusion Injury

The brain accounts for 20% of the total oxygen consump-
tion. Accordingly, it has poor tolerance to hypoxia. When
blood flow is interrupted, the ischemic area of the brain can-
not maintain redox homeostasis and ion balance due to the
lack of oxygen and glucose, which affects cell electrochemis-
try, metabolism, and the release of toxic products. Anoxic
depolarization and various processes are triggered by the
massive efflux of K+ and influx of Na+, water, and Ca2+.
These result in oxidative and nitrosative stress, excitotoxi-
city, inflammation, and apoptosis, eventually injuring neu-
rons, glia, and endothelial cells [5, 7, 20–22]. During this
process, numerous free radicals are formed, including reac-
tive oxygen species (ROS) and reactive nitrogen species
(RNS), which participate in the breakdown of antioxidant
systems and lead to brain damage caused by ischemic stroke
as well as cerebral ischemia-reperfusion injury [23]. How-
ever, two phases of ischemia and reperfusion have differ-
ences with regard to the source of free radicals and state of
oxidative stress.

2.1. Oxidative Stress in the Phases of Ischemia. During the
ischemic period, restricted oxygen availability is associated
with acidosis, energy deficiency, and changes in ion homeo-
stasis, leading to compensatory brain dysfunction and even-

tually neuronal death [24, 25]. In the presence of residual
oxygen, e.g., in low-flow ischemia, ROS is produced
mainly in mitochondria. Under physiological conditions,
superoxide dismutase (SOD), glutathione peroxidase
(GPX), catalase, and other antioxidant enzymes can aid
in maintaining a neutral balance and catalytically protect
brain tissues from the cytotoxicity of reactive oxygen spe-
cies [26]. In addition, ROS play a physiological role by
regulating immune system function, maintaining redox
homeostasis, and participating in various metabolic path-
ways, even as second messengers [27, 28]. Endothelial cells
rich in mitochondria are efficient sources of ROS. Due to
their inherent characteristics and environmental factors,
they are especially vulnerable to oxidative stress-induced
damage. The effects of ROS include excessive lipid perox-
idation and alterations in the functions of receptors, ion
channels, and other membrane proteins, subsequently
affecting the fluidity and permeability of cell membranes
[29–31]. These pathologies cause damage to the blood-
brain barrier (BBB) and often lead to leukocyte infiltration
and edema [32, 33]. Furthermore, neuronal function relies
on the continuous availability of ATP. As ischemic stroke
depletes oxygen in the brain, neurons can no longer main-
tain their transmembrane gradient, and neuronal signaling
is impaired [34]. In addition, glucose and oxygen depriva-
tion inhibits ATP synthesis and blocks Na/K-ATPase
activity. As a result, calcium ions flow into the cell
[29–31]. Increased Ca2+ concentration activates cyclases
(cox-1 and cox-2) and phospholipase A2, which not only
increases ROS production but also enhances glutaminergic
neurotransmission [32, 35]. Increased levels of sodium,
calcium, and adenosine diphosphate (ADP) also contribute
to the overproduction of mitochondrial ROS (mROS) [36,
37]. inducing neuron apoptosis and death [38, 39].

Nitric oxide (NO) is another substance that promotes
oxidative stress. NO peaks rapidly at 0.5 h after MCAO
and immediately decreases to a low level at 4 h together with
eNOS/Nnos. Then, NO gradually increased with the increase
in iNOS and peaked at 46 h [40]. In studies of ischemic
stroke patients, increases in NO metabolites from day 1 to
day 2 were beneficial for neurological function, while sharp
increases in NO metabolites from days 2 to 7 were associated
with a doubling of infarct volume [40]. NO displays cytotox-
icity by destroying cellular DNA, blocking mitochondrial
activity, and enhancing nitrifying damage by forming per-
oxynitrite (ONOO-) [41, 42]. NO is usually produced by
endothelial nitric oxide synthase (eNOS). However, under
inflammatory conditions, smooth muscle cells and macro-
phages overexpress inducible nitric oxide synthase (iNOS),
thus producing large amounts of NO [43]. Moreover, NO
is also produced by neuronal nitric oxide synthase (nNOS)
[32, 40]. When it collides with NO, both molecules react
quickly to form highly reactive ONOO-[44]. Superoxide
anions can also be dismutated into the more stable H2O2

through a reaction catalyzed by superoxide dismutase
(SOD). In the central nervous system, O−

2 is one of the most
important reactive oxygen species as it damages ROS-
producing cells and neighboring cells [43, 45]. Superoxide,
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a byproduct of mitochondrial respiratory chain reactions, is
the product of xanthine oxidase (XO) and nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase (NOX)
activities [43, 46–48]. Interestingly, as the levels of superox-
ide increase, the NO radical has a dual effect. To be specific,
NO interferes with SOD by reducing the antioxidant effect
of SOD [43].

2.2. Oxidative Stress in the Phases of Reperfusion. The reper-
fusion of ischemic tissue has long been thought to be bene-
ficial for tissue injury recovery. However, in the 1970s,
reports of paradoxical enhancement of the injury response
after ischemic (or hypoxic) tissue reperfusion (or reoxygen-
ation) appeared, and the assumed beneficial effects of early
reperfusion on tissue recovery after ischemia were ques-
tioned [49]. The question was solved when it was first found
that the sudden resupply of molecular oxygen to energy-
(and oxygen-) deficient tissues resulted in a special injury
response not seen in hypoxic stress [50]. The discovery of
this reoxygenation-dependent injury response, now known
as “reperfusion injury,” established a new field of scientific
research that has since grown rapidly and continuously.

During reperfusion, the overproduction of ROS origi-
nates from four pathways: mitochondrial respiratory chain,
cyclooxygenase-2-catalyzed arachidonic acid reaction,
NADPH oxidase, and xanthine and hypoxanthine via xan-
thine oxidase (Figure 1). In the stage of early reperfusion,
when microglia and other peripheral immune cells infiltrate,
activation of NADPH oxidase in these immune cells contrib-
utes to the production of ROS, a phenomenon known as the
“oxygen burst.” NADPH oxidase also produces ROS in other
cells, such as vascular endothelial cells [51]. When the blood
flow is reinstated, a large amount of oxygen arrives and
accelerates oxidative damage. Furthermore, oxidative stress
during ischemia and reperfusion is known to activate proa-
poptotic signaling pathways such as cytochrome c signaling,
induce DNA damage, alter protein structure and function,
and induce lipid peroxidation [52–54]. In addition, oxidative
stress can directly regulate important molecules in cellular
signaling circuits, such as ion channels and protein kinases
[55]. Over the past 25 years, researchers have found that
hydrogen peroxide and possibly superoxide play a physio-
logical role in cell signaling and transcriptional regulation
[56]. Later research revealed that hydrogen peroxide is also
produced under physiological conditions, e.g., in response
to growth signals, and it can be overproduced in trans-
formed cells expressing oncogenic mutant Ras [57]. ROS is
produced in response to various ligands, including growth
factors, cytokines, and G protein-coupled receptors [58,
59]. Therefore, during the recovery phase of reperfusion,
low ROS concentrations play a key role in biotransduction
signaling, which may be an important reason for promoting
recovery from brain tissue damage during the recovery
phase.

As displayed in Figure 1, NO and ONOO- are two com-
mon types of RNS frequently reported in cerebral ischemia-
reperfusion injury. Low levels of NO, produced by endothe-
lial nitric oxide synthase, have physiological functions; con-
versely, high levels of NO, produced by inducible nitric

oxide synthase (NOS) and neuronal nitric oxide synthase
(nNOS), have effects on ischemic brain tissue. iNOS and
nNOS are known to lead to inflammation, cell death,
increased blood-brain barrier permeability, and increased
infarct size. During cerebral ischemia or cerebral ischemia-
reperfusion injury, NO is produced simultaneously with
superoxide anion (O2-) and rapidly reacts with O2- at a
diffusion-limited rate to generate ONOO-. Peroxynitrite
readily penetrates the lipid bilayer. It then impairs cell sig-
naling by causing lipid peroxidation of the membrane, medi-
ates nitration of tyrosine residues, and inhibits tyrosine
phosphorylation. Peroxynitrite inactivates aconitase and
superoxide dismutase, mediates NO-induced BBB damage,
and triggers apoptotic cell death (Figure 1).

3. Roles of ncRNAs in Ischemia Stroke-Induced
Oxidative Stress

3.1. miRNA Involved in Oxidative Stress following Ischemia
Stroke. miRNAs, small noncoding RNA superfamily mem-
bers, are endogenous single-stranded RNA molecules of
about 18–25 nucleotides [60]. They act as negative regulators
for more than 60% of protein-coding gene expressions by
degrading or translationally inhibiting target mRNAs
[61–63]. miRNAs can simultaneously modulate targets
involved in the pathophysiological process of cerebral ische-
mia. Therefore, they are considered to have potential as
diagnostic and prognostic biomarkers and promising thera-
peutics in treating ischemic stroke [64, 65]. miRNAs are pro-
duced as long primary transcripts (prior-miRNAs) and
cleaved by Drosha RNase III endonuclease to result in dry
ring intermediates (pre-miRNAs) of approximately 60 to
70 nucleotides [66]. The pre-miRNAs are then exported
from the nucleus to the cytoplasm, where they are treated
by Dicer RNase II endonucleases to form mature miRNAs
of approximately 22–25 nucleotides [67]. Next, the mature
miRNAs bind to multiprotein complexes called RNA-
induced silencing complexes (RISC), which then bind to
the 3′-untranslated region (UTR) of their respective target
mRNAs to inhibit translation [68]. Previous studies have
found that miRNAs can be potential targets and modulators
of oxidative stress-related pathways [69]. miRNAs associated
with oxidative stress-related pathways are known as oxida-
tive stress-responsive miRNAs [70]. Intracellular ROS can
inhibit or promote miRNA expression and thus produce
subsequent biological effects by regulating their direct target
genes [71] (Figure 2).

The transient expression of miRNA was observed in
blood and brain samples in the MCAO model after reperfu-
sion. Additionally, miR-124a and -290 were upregulated
after IR, targeted VSNL1 [72], encoded neuronal calcium
sensor proteins in cerebellar granulosa cells, and regulated
intracellular signaling pathways directly or indirectly by reg-
ulating cyclic nucleotide and MAPK pathways [73], there-
fore playing an active role in cell death, migration, and
neuronal plasticity under pathological conditions such as
stroke [74, 75]. Furthermore, miR30a-3p, -99a, -99b, -100,
-223, and -383 were upregulated after IR and targeted
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AQP4 [72], which was speculated to reduce cerebral edema
due to its action as a water-selective channel in the plasma
membrane of many cells and maintains cerebral hydroho-
meostasis [76, 77]. miR-132 and -664 were downregulated
after IR and targeted MMP9 [72], which disrupted the
blood-brain barrier and caused cerebral edema. In addition,
serum MMP-9 level was noted to be correlated with the
severity of clinical stroke [78–80].

Based on transcriptome analysis, mitochondrial dysfunc-
tion and increased oxidative stress were the molecular mech-
anisms of miR-210 blockade, leading to increased tissue
damage. While miR-210 can alleviate the decreased oxida-
tive metabolism caused by tissue hypoxia, miR-210 also
increases the accumulation of ROS, causing cell death and
tissue damage [81–83]. However, in ischemic rats, the neu-

roprotective effects of decreased apoptosis and antioxidant
stress response to vagus stimulation were associated with
increased miR-210 expression. Protection decreased when
miR-210 was blocked, thus suggesting that miR-210 is a neu-
roprotective factor against ischemia/reperfusion injury [84].

miR-124 is preferentially expressed in the cerebral cortex
and cerebellum, initially at low levels in neural progenitors
and subsequently at high levels in differentiated and mature
neurons [85, 86]. In addition, miR-124 has been reported to
protect PC12 cells from OGD/R-induced apoptosis by
reducing oxidative stress via the PI3K/AKT/Nrf2 pathway
[87]. Moreover, miR-124 enhances neurological recovery in
various neurological illnesses by reducing oxidative stress
after spinal cord damage via Bax [88, 89]. miR-124 inhibits
inflammatory activation under oxidative stress and thereby
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Figure 1: The sources of ROS and RNS during cerebral ischemia-reperfusion injury. During reperfusion, the overproduction of ROS
originates from four pathways: mitochondrial respiratory chain, cyclooxygenase-2-catalyzed arachidonic acid reaction, NADPH oxidase,
and xanthine and hypoxanthine via xanthine oxidase. In addition, NO and ONOO- are two common types of RNS that have been
frequently reported in cerebral ischemia-reperfusion injury.
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delays the progression of Alzheimer’s disease (AD) [90].
These findings suggest that miR-124 is an important thera-
peutic target for inhibiting oxidative stress in ischemic
stroke.

miR-217 is highly expressed in MCAO rats and the
OGD cell model, and its expression level positively corre-
lates with cognitive impairment in MCAO rats. miR-217
also deregulates MEF2D, regulates HDAC5 and ND6
expression, and promotes mitochondrial ROS production,
thus leading to enhanced neuronal damage in ischemic
stroke and IR [91].

3.2. lncRNAs Involved in Oxidative Stress following Ischemia
Stroke. lncRNAs of more than 200 nucleotides are cell- and
tissue-specific. These may be classified based on the genomic
placement between the coding areas of their functional genes
(long intergenic ncRNAs) or by coding gene overlap in
either the consensus or antisense direction [92, 93]. As
guides for chromatin modification complexes or transcrip-
tion factors in the nucleus, cytoplasmic lncRNAs typically
regulate mRNA translation by acting as competing endoge-
nous RNA (ceRNA) or controlling mRNA stability [94].
Also, the lncRNA expression profile in the ischemic
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penumbra was significantly altered after 1 h reperfusion in
MCAO rats [95] (Figure 2).

In patients with ischemic stroke, lncRNA ZFAS1 is sig-
nificantly downregulated [96, 97]. However, upregulated
lncRNA-ZFAS1 can ameliorate brain injury in MCAO rats.
It directly sponges miR-582 by promoting NOS3 expression
and attenuating I/R-induced inflammation and cell apopto-
sis via oxidative stress. Studies have also mentioned that
lncRNA-ZFAS1 can scavenge miR-186-5p by increasing
the expression of the apoptosis regulator MCL1 and rescuing
OGD-induced apoptosis of N2a cells [98].

lncRNA-H19 is a maternally derived gene on human
chromosome 11. It is associated with stroke susceptibility
in the Chinese population [99]. A previous study found
that lncRNA-H19 was upregulated within 3 h after stroke,
whereas levels of lncRNA-H19 were positively correlated
with NIHSS scores of stroke patients within 3 h after
stroke onset [100]. It demonstrated antioxidant capacity
in metformin-mediated neuronal protection in ischemic
stroke [101]. In the OGD/R model, inhibited lncRNA-
H19 could reverse metformin-mediated SOD accumula-
tion and MDA elimination [101]. This function was
enabled by direct targeting of miR-148a-3p to regulate
Rock2/HO-1/Nrf2 [101]. lncRNA-H19 also inhibited
miR-19a and upregulated the inhibitor of DNA binding/
differentiation 2 (Id2) that led to neuronal apoptosis
induced by hypoxia [100].

lncRNA-SNHG14, also known as UBE3A-ATS, is an
inhibitor of UBE3A, a brain-specific gene associated with
neuronal development. It is involved in neuroinflammation
after stroke [102]. lncRNA-SNHG14 promotes the accumu-
lation of NO in microglia, leading to continuous activation
of microglia, which causes apoptosis of neurons via the
miR-145-5p/PLA2G4A axis [102]. Moreover, inhibition of
lncRNA-SNHG14 SOD inhibits MDA accumulation and
degradation in the BV-2 OGD model by regulating the
miR-199b/AQP4 axis [103].

In lncRNA PVT1-inhibited MCAO rats, oxidative
stress and neuron apoptosis were limited, and neurologi-
cal impairments improved. In MCAO rats, the lncRNA
PVT1 was activated by the sex-determining region Y-
box 2 (SOX), sponged miR-24-3p, and regulated STAT3
expression [104].

In the SH-SY5Y OGD/R model, lncRNA SNHG15 was
highly expressed and promoted the activation of oxidative
stress signaling pathways by directly targeting miR-141/
SIRT1 [105]. Moreover, miR-183-5p reversed lncRNA
SNHG15-induced ROS accumulation in OGD/R-treated
SH-SY5Y by directly targeting FOXO1 [106]. Furthermore,
lncRNA SNHG15 retention reduced ROS accumulation in
PC12 cells treated with OGD/R via the miR-455-3p/
TP53INP1 axis [107].

Next, lncRNA OIP5-AS1 was downregulated in ischemic
stroke patients, MCAO/R rats, and OGD/R-treated BV2
cells. Overexpression of OIP5-AS1 significantly decreased
MDA accumulation, GSH, and overconsumption of SOD,
thus counteracting neuroinflammation and oxidative stress
and protecting neuronal injury by activating CTRP3 via
sponging of miR-186-5p [108].

3.3. circRNA Involves in Oxidative Stress after Ischemia
Stroke. circRNAs (single-stranded and conserved RNA mol-
ecules) are formed by the cleavage of many primary RNA
transcripts that synthesize mRNA [109]. As they lack a
well-defined 50- and 30-terminus [110], circRNAs can
remain stable under the stress of RNase. circRNA regulates
gene expression by various mechanisms, including function-
ing as a cornea through spongy miRNAs, forming ternary
complexes with proteins, and encoding proteins [111–113].
circRNAs are abundant in brain tissue and involved in the
development of vascular disease. Accordingly, they have
been associated with neurological function [114] and acute
ischemic stroke [115] (Figure 2).

Based on gene sequencing and KEGG analysis, circRyr2_
23, circGucy1a2_7, circCamta1_9, circSmad4_4, and cir-
cDlgap3_1 play important roles in regulating oxidative stress
by accessing Hif-1, Nrf, and VEGF signaling pathways [116].
The downregulation of circGucy1a2_7 and circRyr2_36 that
occurs after stroke should spontaneously resist oxidative
stress by adsorbing miR-7a5p to regulate Keap1/NRF-2 sig-
naling [116–118].

circCCDC9 was downregulated in MCAO mice and
remained at a low level for 72h [119]. The upregulated
circCCDC9 could restore eNOS expression, reduce oxidative
stress, and protect the blood-brain barrier [119–121].

In patients with acute cerebral ischemic stroke, blood
levels of circPHKA2 were downregulated. The same results
were noted in human brain microvascular endothelial cells
(HBMECs) treated with OGD [122]. Further studies con-
firmed that the upregulation of circPHKA2 decreased the
accumulation of ROS and MDA, as well as increased SOD
and GSH in OGD-HBMECs, which was due to the compet-
itive binding of miR-574-5p to modulate SOD2 [122].

Various studies on microarrays and sequencing analyses
have reported abnormal circRNA expression in ischemic
stroke. Furthermore, analyses of Gene Ontology (GO) and
Kyoto Encyclopaedia of Genes and Genomes (KEGG)
recalled these circRNAs to be prominent in neuroinflamma-
tion, apoptosis, and oxidative stress [123]. However, a few
studies have explained the mechanism of circRNA involve-
ment in oxidative stress after ischemic stroke, which has also
been explored in other diseases [124] (Table 1).

4. Noncoding RNA Therapy for Ischemic Stroke

It is extremely important to find objective and effective bio-
markers for stroke, because these indicators can not only
help the early diagnosis and prognosis assessment of stroke
but also serve as therapeutic targets to assist the develop-
ment of new drugs. Universality, stroke can cause cascade
changes of chemicals and transcripts in brain tissue, while
conserved expression, defined specificity, high stability, and
abundance are the main characteristics of ncRNAs that ren-
der them very attractive diagnostic tools for assessing dis-
eases. Thus far, studies have demonstrated the potential of
ncRNAs as a cancer diagnostic marker, and recently, studies
have shown that ncRNA is also a potential diagnostic
marker for neurodegenerative diseases [92, 125, 126].
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In the past few years, several in vivo and in vitro studies
have demonstrated that certain ncRNAs change over time
after ischemic stroke, and they are expected to be widely used
as biomarkers in clinical practice. The observed variations in
ncRNA amounts in blood samples could be helpful biomark-
ers that reflect the pathophysiological state of the brain, thus
implying that circulating ncRNAs have potential prospects.
In addition, Dykstra-Aiello et al. [127] discovered aberrant
ncRNA expression in peripheral blood of stroke patients with
sex differences, suggesting that certain ncRNAs may be useful
biomarkers for stroke development. Wang et al. [128] investi-
gated patients with ischemic stroke and reported that muta-
tions in the H19 gene increased the risk of ischemic stroke.
Another independent study revealed that lncRNA H19 levels
were significantly increased in the blood and cytoplasm of
stroke patients, with high diagnostic sensitivity and specificity
levels. This indicates that lncRNA H19 may be a novel diag-
nostic and therapeutic target for ischemic stroke. Moreover,
Mehta et al. [129] suggested that lncRNA FosDT could reduce
the loss of motor function after cerebral infarction and stroke
via the regulation of REST downstream genes.

In clinical practice, noncoding RNAs are abnormally
expressed in the blood of ischemic stroke patients and are
closely related to patient prognosis. In whole blood, studies

have found that miR-122, miR-148a, let-7i, miR-19a, miR-
320d, and miR-4429 are downregulated, while miR-363 and
miR-487b are upregulated [130]. Moreover, Lu et al. [131]
put forward the idea of noncoding RNAs as potential clinical
biomarkers for disorders in the CNS. They suggest that non-
coding RNAs can regulate CNS function and many diseases
and can be used as a potential biomarker for the diagnosis
and prognosis of CNS diseases, as well as combined with other
biomarkers and imaging tools to improve the diagnostic
power. Subsequently, Mehta et al. [16] conducted a compre-
hensive circRNA expression profile analysis on male tMCAO
mice. microRNA-binding sites, transcription factor binding
and gene ontology of circRNAs altered after ischemia were
determined under cerebral ischemia. In their study, a total of
1322 detectable circRNAs were comprehensively analysed, of
which 283 had significant changes. Their research shows that
these noncoding RNAs altered after stroke may be controlled
by a set of transcription factors. These noncoding RNAs are
involved in many processes and functions such as biological
regulation, metabolism, cell communication, and binding with
proteins, ions, and nucleic acids. Liu et al. [132] also studied
the expression profile of ncRNAs in ischemic stroke and con-
firmed that noncoding RNA is a potential target for diagnosis
and treatment of stroke.

Table 1: A list of ncRNAs involved in oxidative stress under cerebral ischemia-reperfusion injury.

ncRNAs Functions References

miRNA

miR-124a Encoding neuronal calcium sensor proteins in cerebellar granulosa cells [68, 70]

miR-290 Regulating cyclic nucleotide and MAPK pathways [69, 71]

miR30a-3p Migration and neuronal plasticity [72]

miR-99 Regulates AQP4 [73]

miR-100 Connects the DNA damage response to histone H4 acetylation [74]

miR-223 Regulates serum MMP-9 level [75]

miR-383 Regulates AQP4 and causes cerebral edema [76]

FmiR-132 Involves the blood-brain barrier disruption [70]

miR-210 Alleviates the decreased oxidative metabolism caused by tissue hypoxia [79–81]

miR-124
Protects PC12 cells from OGD/R-induced apoptosis by reducing oxidative stress via the PI3K/AKT/Nrf2

pathway
[83–85]

miR-217
Deregulates MEF2D, regulates the expression of HDAC5 and ND6, and promotes mitochondrial ROS

production
[89]

lncRNAs

lncRNA ZFAS1 Downregulated by oxidative stress [93, 94]

ANRIL Represses the expression of INK4A-ARF-INK4B [96]

lncRNA-H19 Reverses metformin-mediated SOD accumulation and MDA elimination [98, 99]

lncRNA-
SNHG14

Promotes accumulation of NO in microglia, leading to continuous activation of microglia [99, 100]

lncRNA PVT1 Regulated STAT3 expression and activated by the sex-determining region Y-box 2 (SOX) [101]

lncRNA
SNHG15

Reduces ROS accumulation of PC12 cells treated with OGD/R via the miR-455-3p/TP53INP1 axis [102–104]

lncRNA OIP5-
AS1

Protecting neuronal injury by activating CTRP3 via sponging miR-186-5p [105]

circRNAs

circCCDC9 Restores eNOS expression, reduces oxidative stress, and protects the blood-brain barrier [106–108]

circPHKA2 Decreases the accumulation of ROS and MDA and increases SOD by competitive binding miR-574-5p [109]
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Current research has discovered the role of certain
functional ncRNAs such as lncRNA H19 and MALAT1 in
ischemic stroke. However, research on ncRNAs still faces
many challenges. For example, it is difficult to study their
molecular mechanisms due to the complexity of the various
functions of ncRNAs. Furthermore, many ncRNAs are
expressed only in primates. Even though a significant part
of the molecular mechanism has been identified, there is still
a long way to go before it can be implemented in clinical use.

5. Conclusion

In this review, the mechanisms of oxidative stress in ische-
mic stroke and reperfusion injury were discussed, alongside
the involvement of ncRNAs in the pathological process.
Additionally, the potential of three types of ncRNAs for
treating stroke was explored. With advances in clinical and
experimental techniques, continued research into ncRNAs
and their pathways could likely lead to developing a new
treatment for ischemic stroke.
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