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Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. Redox metabolism has been
recognized as the hallmark of cancer. But the concrete role of redox-related genes in patient stratification of ccRCC remains
unknown. Herein, we aimed to characterize the molecular features of ccRCC based on the redox gene expression profiles from
The Cancer Genome Atlas. Differentially expressed redox genes (DERGs) and vital genes in metabolism regulation were
identified and analyzed in the ccRCC. Consensus clustering was performed to divide patients into three clusters (C1, C2, and
C3) based on 139 redox genes with median FPKMvalue > 1. We analyzed the correlation of clusters with clinicopathological
characteristics, immune infiltration, gene mutation, and response to immunotherapy. Subclass C1 was metabolic active with
moderate prognosis and associated with glucose, lipid, and protein metabolism. C2 had intermediate metabolic activity with
worse prognosis and correlated with more tumor mutation burden, neoantigen, and aneuploidy, indicating possible drug
sensitivities towards immune checkpoint inhibitors. Metabolic exhausted subtype C3 showed high cytolytic activity score,
suggesting better prognosis than C1 and C2. Moreover, the qRT-PCR was performed to verify the expression of downregulated
DERGs including ALDH6A1, ALDH1L1, GLRX5, ALDH1A3, and GSTM3, and upregulated SHMT1 in ccRCC. Overall, our
study provides an insight into the characteristics of molecular classification of ccRCC patients based on redox genes, thereby
deepening the understanding of heterogeneity of ccRCC and allowing prediction of prognosis of ccRCC patients.

1. Introduction

Kidney cancer is the sixth most commonly diagnosed cancer
in the male and the eighth in the female, accounting for 5%
and 3% of all cancers in the USA in 2019 [1]. Among renal
cell carcinoma (RCC) which accounts for more than 90%
of the kidney cancer, clear cell renal cell carcinoma (ccRCC)
is the most common subtype and accounts for the majority
of death from RCC [2, 3]. Due to the heterogeneity, prefer-
ence for metastasis, and complex metabolic processes of
ccRCC, significant survival benefits have not been achieved
in present treatment for these patients [4]. Emerging studies
seek to develop a model or classification for prognosis pre-

diction, but it still requires improvement in predictive accu-
racy or better molecular classification of ccRCC. Metabolism
reprogramming is thought as the hallmark of cancer and
characterized by dysregulated uptake of glucose and amino
acids, increased demand of more nutrients and nitrogen,
and use of glycolysis and tricarboxylic acid (TCA) cycle
intermediates for NADPH [5]. Redox balance plays a key
role in promoting tumorigenesis and metastasis [6]. The
redox metabolism signaling starts with the production of
reactive oxygen species (ROS) due to incomplete reduction
of oxygen molecules for mitochondrial ATP generation or
response to growth factor signaling by oxidase such as
NADPH oxidase [7]. During tumorigenesis, cancer cell
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increases metabolic activity and ROS production, which sub-
sequently activates downstream signaling pathways for pro-
liferation and survival [6]. Recently, the metabolism-
associated molecular classification for hepatocellular carci-
noma and colorectal cancer has been reported as prognostic
and promising classifiers [8, 9]. In ccRCC, it has been
reported that cancer cell depends on glutathione redox
metabolism for removal of ROS [10]. In addition, a redox-
related lncRNA signature and a redox-related gene signature
have been proposed as efficient prognostic tools for ccRCC.
These collectively indicated the vital role of redox metabo-
lism in ccRCC, but no research about redox-associated
molecular classification has been conducted in ccRCC.

In this study, we aimed to discover subclasses of ccRCC
based on redox genes using RNA sequencing data of 530
patients from The Cancer Genome Atlas (TCGA). We firstly
identified and analyzed differentially expressed redox genes
(DERGs) and key metabolism-regulated genes in ccRCC com-
pared with adjacent normal tissue.We stratified patients based
on redox gene expression profiles by consensus clustering
analysis and investigated functional differences among clus-
ters. Moreover, we clarified the association of clusters with
immune cell infiltration, immune markers, mutation, and
immunotherapy responses. Overall, our study provided a
new idea for molecular classification of ccRCC patients.

2. Materials and Methods

2.1. Data Collection and Processing. Level 3 RNA-seq tran-
scriptome data, corresponding clinical information, and
somatic mutation data (MAF files) of 539 ccRCC samples
and 72 normal samples were retrieved from TCGA (http://
cancergenome.nih.gov/). Raw counts and fragments per
kilobase of transcript per million mapped reads (FPKM)
were used for differential expression analysis and further
bioinformatic analysis, respectively. Patients with incom-
plete clinical information were excluded, and finally, 530
ccRCC samples and 72 normal samples were used for fur-
ther research. TCGA Batch Effects Viewer (http://
bioinformatics.mdanderson.org/tcgambatch/), allowing
identification and quantification of the batch effects pre-
sented in a given TCGA dataset, was used to analyze the
homogeneity of ccRCC samples. All ccRCC samples used
in this study were homogenous.

A total of 174 genes directly and indirectly involved in
redox metabolism were obtained from Benfeitas et al. [11].
These genes are mainly responsible for antioxidant and
ROS-dependent activities, producing compounds with redox
characteristics, folate metabolism, malate metabolism, and
transcription factors associated with oxidative stress [11].
Redox genes with median FPKMvalue > 1 across patients
with ccRCC were selected for further analysis.

2.2. Identification of Differentially Expressed Redox Genes. To
identify differentially expressed genes (DEGs), raw counts of
ccRCC samples and normal samples were analyzed using the
‘edgeR’ package of R software [12]. Additionally, to identify
cluster-specific genes, we performed differential expression
analyses using the ‘edgeR’ package in ccRCC samples

between one cluster and remaining clusters. Genes with ∣
log ðfold changeÞ ∣ ≥1 and FDR adjusted P < 0:05 (Benja-
mini & Hochberg method) were considered DEGs.

DERGs were common genes in DEGs and redox genes,
and their prognostic value in ccRCC were analyzed. Addi-
tionally, we obtained a list of key genes in regulating metab-
olism [13, 14] and then analyzed their expression as well as
prognostic value in ccRCC. The GEPIA2 portal (http://
gepia2.cancer-pku.cn/#index), which was a database inte-
grating RNA-seq expression data and clinical data from
TCGA, was used to perform survival analysis of selected
genes [15]. In the survival analysis, all ccRCC patients were
divided into two groups according to the cutoff determined
by 50% of the gene expression. The survival analyses were
performed using the Kaplan-Meier method and log-rank
test. Log-rank P < 0:05 was used as the significance cutoff.
For multiple comparison in the survival analysis, adjusted
P < 0:05 (Benjamini & Hochberg method) was used as the
significance cutoff. The hazard ratio was calculated for each
analysis. Additionally, the Human Protein Atlas (HPA)
database (https://www.proteinatlas.org/) was used to analyze
the protein expression of selected proteins in ccRCC tissue
compared with normal kidney tissue.

2.3. Hierarchical Clustering Analysis. In order to identify
ccRCC clusters with similar molecular function, tumor samples
were divided into different clusters by using the ‘Consensu-
sClusterPlus’ R package based on the normalized expression
profile of 139 redox genes [16]. The resampling method was
used to sample 80% of the patients for 50 times, and the Euclid-
ean distance was used to estimate similarity among samples. All
ccRCC samples were clustered into k (2–6) groups. We deter-
mined the optimal number of clusters according to clinical con-
sideration and cumulative distribution function (CDF). Then,
we distributed all ccRCC patients into different clusters and
investigated their clinical traits. The principal component anal-
ysis (PCA) was performed to analyze the expression differences
among clusters. Cluster-specific genes were defined as DEGs
only in one cluster.

2.4. Functional Enrichment Analysis. To determine the func-
tional differences among clusters, the gene set variation anal-
ysis (GSVA) in terms of 113 metabolism-associated
signatures which were obtained from Rosario et al. [17],
was performed using the ‘GSVA’ R package [18]. The differ-
ences between samples were analyzed by using the ‘Limma’
R package with a cutoff of ∣ log ðfold changeÞ ∣ ≥0:2 and
adjusted P < 0:05 [19]. In addition, to explore the potential
function and signaling pathways of cluster-specific genes,
the gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses were performed
using ‘ClusterProfiler’ R package [20]. Terms with adjusted
P < 0:05 were considered statistically significant.

2.5. Estimation of the Immune Infiltration. The CIBER-
SORTx algorithm [21], which decoded cellular heterogeneity
and estimated the abundance of 22 immune cell types in
complex tissue, was used to estimate the cell abundance in
each sample using the RNA-seq data of KIRC from TCGA.
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Significant results (P < 0:05) were selected for subsequent
analysis. The abundances of immune cells were compared
among clusters.

2.6. Association of Clusters with Mutation, TMB, CYT, and
Neoantigen. Genetic somatic mutation data of KIRC from
TCGA were used to analyze the differences among clusters.
The ‘maftools’ R package was used to analyze differences of
genetic mutation among clusters [22]. The tumor mutation
burden (TMB) was calculated from somatic mutation fre-
quency by using data from the ‘TCGAmutations’ R package
[23]. Neoantigen and aneuploidy scores of KIRC samples
were retrieved from previous study [22, 24]. The cytolytic
activity (CYT) score represented the activity of cytotoxic T
cells, and it was estimated by the mean mRNA expression
of granzyme A (GZMA) and perforin 1 (PRF1) [24].

2.7. Evaluation of the Benefit of Three Clusters from
Immunotherapy. The data of the immunotherapy efficacy
from melanoma patients were used to predict the immune
checkpoint inhibitors’ efficacy of our clusters [25]. Mela-
noma patients were treated with cytotoxic T-lymphocyte-
associated protein-4 (CTLA-4) blockade and programmed
cell death protein-1 (PD-1) blockade. SubMap (subclass
mapping method) is an unsupervised method to estimate
the significance of the association between subclasses in
two independent datasets which were comprised of multiple
tissue types or datasets from various platforms [26]. SubMap
analysis in GenePattern (https://cloud.genepattern.org/gp/
pages/login.jsf) was performed to evaluate the potential of
our clusters’ responses to immunotherapy by comparing
the similarity of gene expression profiles between our sub-
classes and melanoma patients.

2.8. Quantitative Real-Time PCR (qRT-PCR). Total RNAwas
isolated from the ccRCC cell line A498 and normal human
renal tubule epithelial cell line HK-2 using TRIzol reagent
(Invitrogen, Thermo Fisher Scientific, United States). The
RNA was then used to perform reverse transcription using
the 1st Strand cDNA Synthesis (+gDNA wiper) Kit (Vazyme,
Nanjing, China). The ABI QuantStudio™ 5 (Thermo Fisher
Scientific, Inc.) and SYBR Green PCR Master Mix (Vazyme,
Nanjing, China) were used in qRT-PCR based on the manu-
facturer’s guideline. The relative mRNA expression levels were
calculated using the 2-ΔΔCt method with normalization to
GAPDH mRNA. The primers used in this study are listed in
Supplementary Table S1.

2.9. Statistical Analysis. Statistical analyses were performed
using GraphPad Prism software version 8 (GraphPad Soft-
ware, San Diego, CA, USA), SPSS 25 (SPSS, Inc., Chicago,
IL, USA), and R software 3.5.2. Survival analysis and cate-
gorical variables among clusters were compared by the chi-
square test and Fisher’s exact test. Differences between two
groups were compared using Student’s t-test or the Mann–
Whitney test. The qRT-PCR results were presented as
mean ± standard deviation. All the tests were two-sided,
and a value of P < 0:05 was considered statistically signifi-
cant. Benjamini & Hochberg method was used to adjust P
values.

3. Results

3.1. Identification of DERGs in the ccRCC. To analyze the dif-
ference of gene expression between the ccRCC and normal
tissue, we firstly identified 2,684 DEGs with ∣log ðfold
changeÞ ∣ ≥1 and FDR adjusted P < 0:05 in ccRCC com-
pared with normal tissue using TCGA data. A list of 174
redox genes were obtained from Benfeitas et al. [11], and
139 redox genes with median FPKMvalue > 1 were selected
for subsequent analysis (Supplementary Table S2). A total of
31 DERGs among DEGs were identified (Figure 1(a)), and
their mRNA expression levels were shown in the heatmap
(Figure 1(b); Supplementary Table S3). To identify
prognostic DERGs, overall survival (OS) analysis was
performed and 7,543 prognostic genes were found in
ccRCC. Then, six prognostic DERGs including ALDH6A1,
ALDH1L1, SHMT1, GLRX5, ALDH1A3, and GSTM3 were
identified (Figure 1(c)), and all genes were significantly
downregulated in ccRCC patients (P < 0:001; Figure 1(d)).
Survival analysis indicated that reduced expression of these
genes except ALDH1A3 significantly correlated with poor
prognosis of both OS and disease-free survival (DFS) in
ccRCC patients (log-rank P < 0:05; Figures 1(e) and 1(f)).

Moreover, we obtained vital genes for metabolism regu-
lation from Tong et al. and Massari et al. (Supplementary
Table S4) [13, 14] and analyzed their expression levels and
prognostic value in ccRCC. Specifically, ACACA, FBP1,
BAP1, FH, HIF1A, KRAS, MTOR, VHL, PBRM1,
PRKAA1, and SETD2 were downregulated, while ACLY,
AKT1, MYC, G6PD, HIF2A, SLC2A1, and TP53 were
upregulated in ccRCC tissues compared with normal tissue
(Figure 2(a)). Survival analysis showed that decreased
expression of FBP1, ACLY, AKT1, FH, HIF2A, KRAS,
MTOR, VHL, PBRM1, PRKAA1, and SETD2 correlated
with worse OS (log-rank P < 0:05; Figure 2(b)). Thus,
aberrantly expressed and prognostic genes in redox
metabolism and metabolism regulation had been identified
and suggested possible function in ccRCC.

3.2. Identification of Three Clusters in ccRCC Based on Redox
Genes. Based on the expression similarity of 139 redox
genes in TCGA, the consensus clustering for combining
K-means clustering of ccRCC samples was performed.
Combining clinical consideration and CDF, k = 3 was
selected as the optimal value with clustering increasing
from k = 2 to k = 8 (Figures 3(a) and 3(b)). The consensus
matrix heat map kept sharp and distinct boundaries when
k = 3, suggesting robust clustering for all samples
(Figure 3(c)). Patients with ccRCC were divided into three
clusters (three clusters were assigned C1, C2, and C3), and
the PCA showed distinct differences among clusters
(Figure 3(d)). Survival analysis of OS and DFS among
clusters showed relatively evident distinction (Figures 3(e)
and 3(f)). C2 had shorter OS (adjusted P < 0:01) and
DFS (adjusted P < 0:001) than C3, while no significant dif-
ference was seen between C1 and C3 in both OS or DFS.
Overall, ccRCC patients could be classified into three clus-
ters with significant differences in gene expression and
survival based on the redox gene expression profile.
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Figure 1: Continued.
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3.3. Functional Annotation of Clusters and Cluster-Specific
Genes. To better characterize three ccRCC clusters, we
sought to identify cluster-specific genes and analyzed
involved function and signaling pathways of each cluster.
Differential expression analyses were performed for each
cluster compared with remaining clusters. There were 32
DEGs for C1 compared with C2 and C3, 74 DEGs for C2
compared with C1 and C3, and 72 DEGs for C3 compared
with C1 and C2. Then, these genes were selected for func-
tional enrichment analyses to clarify the function of each
cluster. The results showed that C1 mainly enriched in lipid
metabolism including cholesterol metabolism, fat digestion,
glycolipid and cellular lipid catabolic processes, triglyceride
metabolic process, and PPAR signaling pathway
(Figure 4(a)). The potential function of C2 and C3 was sim-
ilar but C3 mainly enriched in transferrin transport and iron
ion transport (Figure 4(b) and 4(c)). To further identify the
metabolic differences among clusters, GSVA analysis in

terms of metabolic pathways obtained from Rosario et al.
[17], showed evident distinction in three clusters. Each sam-
ple got a GSVA score (pathway enrichment score) for each
metabolic pathway. Significantly differential metabolic path-
ways (adjusted P < 0:05) were identified by performing dif-
ferential analysis among clusters (Figure 4(d)). Pathways
with the highest GSVA score were defined as cluster-
specific metabolic pathways. C1 and C2 had 81 and 23
cluster-specific metabolic pathways while C3 had only 2
cluster-specific metabolic pathways. Therefore, we regarded
C1 and C3 as metabolic active and metabolic exhausted sub-
type, respectively. And C2 was seen as the intermediate sub-
type. As shown in Supplementary Table S5, C1 had the most
differential metabolic signatures including glucose, lipid, and
protein metabolism. On the other hand, C2 was associated
with purine metabolism, pyrimidine metabolism, and
glycan synthesis. Moreover, to identify cluster-specific
genes which were considered differentially expressed genes
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Figure 1: Identification of differentially expressed redox genes (DERG) in the ccRCC. (a) Venn diagram showing 31 DERGs in 2,684
differentially expressed genes and 139 redox genes. (b) The heat map displaying the expression profile of 31 DERGs in ccRCC tissue (T)
and normal tissue (N) in TCGA database. (c) Venn diagram showing six prognostic DERGs among prognostic genes in ccRCC and
DERGs. (d) Expression levels of six prognostic DERGs in ccRCC compared with normal tissues. Expression data were normalized by
log2 transformation. ∗∗∗P < 0:001. (e, f) Overall survival and disease-free survival analyses of patients with six prognostic DERGs in
TCGA database using the GEPIA2 portal. The Kaplan-Meier method and log-rank test were used in the survival analysis.
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Figure 2: The expression profile and survival analysis of vital genes in metabolism regulation. (a) The expression of vital genes in ccRCC
compared with normal tissues using TCGA data. Expression data were normalized by log2 transformation. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗

P < 0:001. (b) Overall survival analyses of vital genes using the GEPIA2 portal. The Kaplan-Meier method and log-rank test were used in
the survival analysis.
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in only one cluster, we identified 8 cluster-specific genes for
C1, 22 for C2, and 23 for C3 after exclusion of common
genes (Figure 4(e); Supplementary Table S6). In summary,
these results revealed potential function and involved
pathways of three clusters.

3.4. Clinicopathological Characteristics of the ccRCC Clusters.
We investigated the correlation between clinical characteris-
tics and three clusters. The heatmap showed the expression
levels of cluster-specific genes, and correlation between clus-
ters and clinical characteristics including grade, AJCC stage,
T stage, N stage, M stage, gender, age, and survival outcome
(Figure 5). The results of the chi-square test revealed that
C1, C2, and C3 were significantly associated with grade
(P < 0:05) (Table 1). C1 and C2 correlated with advanced his-
tologic grade while C3 was associated with histologic G1 and
G2. But there was no significant difference between clusters
and age, gender, T stage, N stage, M stage, and AJCC stage.

3.5. Correlation of the ccRCC Clusters with Immune
Infiltration. To characterize the differences of the immunologic
landscape among clusters, the CIBERSORTx algorithm was
used to estimate the immune cell infiltration of ccRCC samples.
The results showed that there were significant differences in six
immune cells including naive B cells, CD4+memory activated T
cells, regulatory T cells, resting NK cells, M0 macrophages, and
resting mast cells among three clusters (Figure 6(a)). More rest-
ing NK cells and naive B cells enriched in C3 compared with C1
and C2. Additionally, C2 showed upregulated signature of M0
macrophages and activated memory CD4+ T cells and regula-
tory T cells compared with C1 and C3.

We then investigated immune checkpoint genes that
played vital roles in immune regulation. Significant differ-
ences were found in CD274 (PD-L1), CD276 (B7-H3),
CD272 (BTLA), CXCR4, HAVCR2 (TIM-3), TGFB1, and
IL-6 (Figure 6(b)). The expression of PD-L1 and BTLA were
significantly higher in C3, while novel immune checkpoint
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Figure 3: Classification of patients into three clusters by consensus clustering analysis. Consensus clustering CDF (a) and relative change in
area under CDF curve (b) for k = 2-8. (c) Clustering matrix when k = 3. (d) Principal component analysis of gene expression of three
clusters. (e, f) Survival analysis using the Kaplan-Meier method for three clusters of ccRCC. The adjusted P value (Benjamini &
Hochberg method) was calculated with the log-rank test by comparing three clusters.
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Figure 4: Continued.
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genes CD276, CXCR4, TGFB1, and IL-6 were upregulated in
C2. Only HAVCR2 was higher in C1 compared with other
clusters. However, the expression of other immune check-
point genes such as PD-1, B7-H4, and CTLA4 did not differ
among clusters. Collectively, we discovered significant differ-
ences in immune cell abundance and immune checkpoint
genes among clusters.

3.6. Correlation of the ccRCC Clusters with Mutation, TMB,
CYT, and Immune Response. The link between metabolic
alteration and gene mutation has been unraveled recently
[27]. We investigated somatic mutation frequency among
three clusters. Results showed that genes with high mutation
frequency were similar in three clusters although different
clusters tended to have different proportions for each
mutated gene (Figure 7(a)). The top 10 mutated genes
accounted for more proportion of overall mutation in C2
compared with C1 and C3. Moreover, it has been demon-
strated that the overall mutation load and neoantigen load
may drive T cell response [24, 28]. The number of mutation

was calculated, and it showed that C2 had the most overall
mutation numbers and TMB (Figure 7(b)). In terms of pre-
dicted neoantigen, C2 had more neoantigen loads than other
clusters. Tumor aneuploidy is associated with reduced
response to immunotherapy and inversely related to patient
survival. Therefore, it might be used to help identify patients
that possibly respond to immunotherapy [29]. The aneu-
ploidy score was higher in C2 while C3 scored the lowest.
In addition, the CYT estimated by average gene expression
of GZMA and PRF1, represented the cytotoxic T cell activa-
tion [24]. Among various cancers, the ccRCC had high level
of CYT, which were increased in response to CTLA-4 and
PD-L1 immunotherapy as well as CD8+ T cell activation
[30–32]. We analyzed the correlation of the CYT score with
abundance of CD8+ T cells and the expression of PD-L1
(Figure 7(c)). The CYT score exhibited strong correlation
with CD8+ T cells (Pearson’s correlation r = 0:7875, P <
0:0001) and medium correlation with PD-L1 (Pearson’s cor-
relation r = 0:3515, P < 0:0001). Additionally, C3 had higher
CYT score, indicating more cytotoxic T cell activation.

Table 1: Clinicopathological characteristics between three clusters in TCGA cohort.

Characteristics Cluster 1 (n, %) Cluster 2 (n, %) Cluster 3 (n, %) P value

Age 0.348

>65 62 (36.9%) 66 (36.1%) 54 (30.2%)

≤65 106 (63.1%) 117 (63.9%) 125 (69.8%)

Gender 0.574

Male 110 (65.5%) 123 (67.2%) 111 (62%)

Female 58 (34.5%) 60 (32.8%) 68 (38%)

T stage 0.116

T1 92 (54.6%) 84 (45.9%) 85 (53.1%)

T2 17 (10.1%) 23 (12.6%) 29 (16.2%)

T3 54 (33.5%) 70 (38.2) 53 (29.6%)

T4 3 (1.8%) 6 (3.3%) 2 (1.1%)

N stage 0.281

N0 83 (49.4%) 76 (41.5%) 80 (44.7%)

N1 3 (1.8%) 9 (4.9%) 4 (2.2%)

Nx 82 (48.8%) 98 (53.6%) 95 (53.1%)

M stage 0.521

M0 140 (83.3%) 146 (79.8%) 154 (86%)

M1 24 (14.3%) 34 (18.6%) 22 (12.3%)

Mx 4 (2.4%) 3 (1.6%) 3 (1.7%)

AJCC stage 0.059

Stage I 90 (53.6%) 81 (44.3%) 95 (53.1%)

Stage II 13 (7.7%) 17 (9.3%) 27 (15.1%)

Stage III 40 (23.8%) 49 (26.8%) 35 (19.6%)

Stage IV 25 (14.9%) 36 (19.7%) 22 (12.3%)

Grade 0.024

G1 4 (2.4%) 3 (1.6%) 7 (3.9%)

G2 60 (35.7%) 76 (41.5%) 93 (52%)

G3 78 (46.4%) 70 (38.3%) 59 (33%)

G4 25 (14.9%) 33 (18%) 17 (9.5%)

Gx 1 (0.6%) 1 (0.5%) 3 (0.9%)
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Considering the strong correlation between clusters and
immune infiltration, the responses of ccRCC clusters to
immune checkpoint anti-CTLA-4 and anti-PD-1 therapy
were investigated using SubMap analysis, which could esti-
mate the significance of association between subclasses.
The expression profiles of our three clusters were used to
compare with a published profile with immunotherapy
response of 47 melanoma patients [25]. The SubMap analy-
sis revealed that C2 showed significant correlation with the

CTLA-4 response group, indicating that C2 patients might
benefit from anti-CTLA-4 immunotherapy (Figure 7(d)).
However, this prediction was inconsistent with aforemen-
tioned analyses, therefore more research was necessary to
confirm the response of clusters to the immunotherapy.

3.7. Validation of DERG in the ccRCC. To verify the expres-
sion level of the six prognostic DERGs, the mRNA expression
level was further validated by qRT-PCR in normal renal
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Figure 6: Correlation of the ccRCC clusters with immune infiltration estimated by the CIBERSORTx algorithm. (a) Differences in fraction
of immune cells were compared among three clusters. (b) Expression levels of seven dysregulated immune checkpoint genes (CD274,
CD276, CD272, CXCR4, HAVCR2, TGFB1, and IL-6) in three clusters. FPKM data were used and normalized by log2 transformation.
∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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tubular epithelial cell line (HK-2) and ccRCC cell line (A498).
Consistent with the results of the database analysis,
ALDH6A1, ALDH1L1, GLRX5, ALDH1A3, and GSTM3were
downregulated in ccRCC cell compared with normal cell
(Figure 8(a)). But SHMT1 was upregulated in ccRCC. More-
over, the HPA database was used to analyze the protein
expression of these prognostic DERGs. The immunohisto-
chemical results showed that ALDH6A1, ALDH1L1, GLRX5,
ALDH1A3, and GSTM3 were decreased in ccRCC compared
with normal kidney tissues but there was no significant differ-
ence in SHMT1. Collectively, these results confirmed the low
expression of prognostic DERGs except SHMT1 in ccRCC.

4. Discussion

Increasing evidence seeks to uncover molecular characteris-
tics of cancer cells and propose molecular classification
based on gene expression profiles [33–36]. However, no con-
sensus has been reached in molecular classification of

ccRCC. The present study identified DERGs and
metabolism-regulating genes in ccRCC and investigated
their prognostic value. Based on the 139 metabolic gene
expression profile, ccRCC patients were stratified into three
clusters (C1, C2, and C3). We explored the association of
clusters with clinical traits, potential function, prognostic
value, mutation, immune filtration, and immunotherapy
efficacy. The GSVA results revealed that C1 had the most
cluster-specific pathways which were mainly lipid metabo-
lism, and thus, C1 was regarded as metabolic active subtype.
Patients in C1 might respond to metabolic therapeutics and
had moderate prognosis. Intermediate metabolic subclass C2
had higher aneuploidy score, TMB, neoantigen, and more
infiltration of regulatory T cells. Besides, C2 patients tended
to have advanced histologic grade and worse prognosis. But
C2 was predicted to possibly respond to anti-CTLA-4
immunotherapy. Metabolic exhausted C3 exhibited higher
CYT scores and better prognosis than C1 and C2. Collec-
tively, this study presented a novel redox-associated
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Figure 7: Association between three clusters and mutation, neoantigen, aneuploidy, cytolytic score (CYT), and immune response. (a) The
oncoprint analyses of mutation status of top 10 genes in C1, C2, and C3. The proportion of mutated genes was shown on the right of each
plot. (b) Comparison of the number of mutations, TMB, predicted neoantigen, aneuploidy score, and CYT score among three clusters. (c)
The Spearman correlation analyses between the CYT score and CD8+ T cell abundance as well as PD-L1 expression. Correlation coefficient r
and P values were shown. (d) Prediction of immune response of three clusters to anti-CTLA-4 and anti-PD-1 immunotherapy by the
SubMap analysis. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 8: Validation of the mRNA and protein expression levels of six prognostic DERGs in ccRCC. (a) qRT-PCR results showed relative
mRNA expression of ALDH6A1, ALDH1L1, SHMT1, GLRX5, ALDH1A3, and GSTM3 in ccRCC cell line (A498) and normal renal tubular
epithelial cell (HK-2). GAPDHmRNA was used as an internal control. Data are presented asmean ± standard deviation. n = 3 in ccRCC and
normal group. (b) The immunohistochemical results of ALDH6A1, ALDH1L1, SHMT1, GLRX5, ALDH1A3, and GSTM3 in ccRCC
compared with normal kidney tissues from the HPA database. The antibody used was shown below the gene name. ∗P < 0:05, ∗∗P < 0:01,
∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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classification of ccRCC, which could help uncover the het-
erogeneity of ccRCC and might be applied to improve ther-
apeutic strategies.

Redox metabolism sustains normal cellular function and
ensures cell survival, characterized by the production of ROS
which exerts oxidative stress and renders dysfunctional cells
to death [6, 37]. But it is recognized as the hallmark of can-
cer cells whose elevated antioxidant defense mechanisms are
interfered by ROS, supporting the proliferation and survival
of cancer cells [24]. In hepatocellular carcinoma, Benfeitas
et al. highlighted substantial differences in redox metabolism
and identified subtypes with various redox behavior based
on redox genes [11]. Several studies had linked redox
homeostasis to ccRCC. A nine redox-related lncRNA signa-
ture had been proposed to predict OS of ccRCC patients
[38]. Additionally, renal cancer cells highly depended on
the glutathione redox system to prevent lipid peroxidation
and ferroptosis [10]. It has been reported that accumulation
of fructose 1,6-bisphosphate and downregulation of aldolase
B protected ccRCC from oxidative stress [10]. In our
research, six prognostic DERGs including ALDH6A1,
ALDH1L1, ALDH1A3, GSTM3, SHMT1, and GLRX5 were
identified in ccRCC. Low expression of them was associated
with worse prognosis while upregulated ALDH1A3 corre-
lated with worse prognosis. The qRT-PCR results validated
the low expression of these genes except SHMT1 which
was increased in ccRCC cells. ALDH6A1 and ALDH1L1
which belong to the aldehyde dehydrogenase family were
reported to correlate with poor prognosis and advanced
stage of ccRCC [39, 40]. A polymorphism of GSTM3,
GSTM3-rs1055259 could suppress ROS activity and prevent
ccRCC progression [24]. However, no detailed research on
SHMT1 and GLRX5 in ccRCC has been conducted.

Moreover, we obtained a list of vital genes in major met-
abolic pathways in cancer [13, 14] and investigated their
expression levels and prognostic value in ccRCC. As drivers
of the metabolic reprogramming in cancer, MYC, AKT1,
and TP53 were overexpressed in ccRCC but KRAS was
downregulated. Only AKT1 and KRAS were prognostic
genes of ccRCC based on TCGA data. AKT1 was regarded
as the major regulator in metabolism of cancer growth and
KRAS could promote autophagy under metabolic stress
[41]. Highly expressed G6PD in ccRCC could stimulate the
growth and invasion of ccRCC through ROS-associated
pathway [42]. BAP1, PBRM1, and SETD2 were character-
ized as regulators of metabolism which increased depen-
dence on pentose phosphate shunt and reduced TCA cycle
[14]. The downregulated expression of them were found in
ccRCC tissues and closely correlated with worse prognosis.
Furthermore, they were recurrently mutated in all three
clusters of ccRCC. In the TCA cycle, alteration of FH deter-
mines lots of changes in cancer cellular metabolism such as
glycolytic switch towards ROS [43]. We found that patients
with downregulated FH had worse prognosis though more
experiments on its function in ccRCC were needed. ACLY
which converted citrate to cytosolic acetyl-CoA linked glu-
cose metabolism to lipid synthesis and was highly expressed
in ccRCC tissues. Diminished expression of ACLY was
shown to correlate with poor prognosis but Hatzivassiliou

et al. reported that ACLY inhibition could suppress the
growth of advanced malignancies through glucose-
dependent pathway [44]. With similar function to ACLY,
ACACA decreased in ccRCC but no significant difference
was found in the survival analysis. In ccRCC, VHL was the
most frequently mutated gene and responsible for regulation
of oxygen and iron sensing pathway that regulated HIF
including HIF-1α and HIF-2α [45]. Alteration of VHL led
to accumulation of HIFα subunits, whose activity influenced
angiogenesis, metastasis, and invasion [46]. Additionally, we
validated that downregulated FBP1 was associated with
shorter OS in ccRCC. FBP1 was shown to interfere ccRCC
progression through inhibiting the Warburg effect and inhi-
biting nuclear HIF function [47].

Consensus clustering analysis is an unsupervised cluster-
ing method applied to investigate subclasses [16]. It has been
used to identify four stable subtypes with survival signifi-
cance in both mRNA and miRNA expression profiles in
ccRCC from TCGA [48]. Our research focused on redox-
associated molecular classification and identified three dis-
tinct clusters with significant prognostic value and clinical
association. Still, we found significant correlation of our
clusters (C1, C2, and C3) with aforementioned TCGA
mRNA clusters (P = 5:60E − 13) and miRNA clusters
(P = 2:19E − 09; Supplementary Table S7). GSVA results
revealed that metabolic active C1 with the most cluster-
specific metabolic pathway. It was mainly involved in
glucose, protein, and especially lipid metabolism including
cholesterol metabolism, fat digestion, glycolipid, and
cellular lipid catabolic processes. It has been reported that
ccRCC showed metabolic reprogramming in terms of
glucose, fatty acid metabolism, and tricarboxylic acid cycle
[38]. The high enrichment in metabolic pathways indicated
that C1 patients might benefit from metabolic therapies,
providing alternatives for patients with unsatisfactory
chemotherapy or immunotherapy. Moreover, C1 was
associated with moderate histologic grade and moderate
survival prognosis. These results suggested that C1 patients
might have intermediate severity and prognosis and
possibly respond to metabolic therapeutics. On the other
hand, the intermediate metabolic subclass C2 was mainly
involved in purine metabolism, pyrimidine metabolism,
and glycan synthesis. Aneuploidy score and infiltration of
regulatory T cells were inversely related to patient’s
survival in cancer [29]. Our results showed that C2
patients had the highest aneuploidy score and the most
abundance of regulatory T cells. To some extent, this
might contribute to the worst prognosis of C2 patients.
Higher TMB followed by more neoantigen could increase
T cell recognition and correlated with better response to
immune checkpoint inhibitors [49]. C2 had more TMB,
neoantigen, and high expression of several immune
checkpoint genes (CD276, CXCR4, TGFB1, and IL-6),
suggesting possible drug sensitivities towards immune
checkpoint inhibitors [38]. Moreover, results of the
SubMap analysis indicated that C2 might respond to anti-
CTLA-4 therapy. The other cluster C3 had only two
cluster-specific metabolic pathways, and thus, it was seen
as metabolic exhausted subtype. It mainly correlated with
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lower histologic grade and the best prognosis. The removal
of regulatory T cells could enhance antitumor immune
response [50], and low infiltration of regulatory T cells
found in C3 might suggest better response to
immunotherapy. It was reported that CYT scores were
positively correlated with prolonged survival in a variety of
cancers [24], and higher CYT score in C3 suggested better
prognosis than C1 and C2. Collectively, these results
showed the heterogeneity of ccRCC and clarified
differences in metabolism and immune in each cluster.

However, some limitations should be pointed out in this
study. First, more datasets were necessary to validate robust-
ness of our classification. Additional experiments should be
carried out to validate potential function of DERGs and
functional differences among clusters in ccRCC. It would
be more convincing if clinical samples could be used for
analysis, and large-scale clinical trials were needed to further
validate the classification.

5. Conclusions

The present study stratified ccRCC patients into three clus-
ters with distinct metabolic function and prognosis using
redox gene expression profile. These three clusters exhibited
significant differences in terms of immune infiltration, clini-
cal traits, and mutation. Our classification might help pre-
dict prognosis of ccRCC patients and support the
development of new therapeutic strategies.
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