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Background. Aging is a major risk factor for a range of chronic diseases. Oxidative stress theory of aging has been previously proposed
as one of the mechanisms responsible for the age-related decline in organ/tissue function and the development of age-related diseases.
Urine contains rich biological information on the health status of every major organ system and can be an important noninvasive
source for biomarkers of systemic oxidative stress in aging. Aims. The objective of this cross-sectional study was to validate a novel
panel of urinary oxidative stress biomarkers. Methods. Nucleic acid oxidation adducts and oxidative damage markers of lipids and
proteins were assessed in urine samples from nondiabetic and currently nonsmoking subjects (n = 198) across different ages (20 to
89 years old). Urinary parameters and chronological age were correlated then the biological age of enrolled individuals was
determined from the urinary oxidative stress markers using the algorithm of Klemera and Doubal. Results. Our findings showed
that 8-oxo-7,8-deoxyguanosine (8-oxoG), 8-oxo-7,8-dihydroguanosine (8-OHdG), and dityrosine (DTyr) positively correlated with
chronological age, while the level of an F2-isoprostane (iPF2α-VI) correlated negatively with age. We found that 8-oxoG, DTyr, and
iPF2α-VI were significantly higher among accelerated agers compared to nonaccelerated agers and that a decision tree model could
successfully identify accelerated agers with an accuracy of >92%. Discussion. Our results indicate that 8-oxoG and iPF2α-VI levels
in the urine reveal biological aging. Conclusion. Assessing urinary biomarkers of oxidative stress may be an important approach for
the evaluation of biological age by identifying individuals at accelerated risk for the development of age-related diseases.
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1. Introduction

Advancing age is a major risk factor for a range of chronic
diseases, including cardiovascular and cerebrovascular dis-
eases, cognitive impairment and dementia, and cancer [1–4].
The oxidative stress theory of aging, originally proposed by
Harman in 1956 [5], postulates that age-associated decline in
cellular functions and, by extension, the pathogenesis of age-
related diseases are caused by increased production of reactive
oxygen species (ROS) and a consequential accumulation of
oxidative damage to macromolecules (proteins, nucleic acids,
and lipids) [6, 7]. Although this theory has been repeatedly
challenged over the decades as the aging phenomena cannot
be simplified to a manifestation of accumulating oxidative
damage, ROS are shown to play a critical role in diverse
cellular processes of aging and contributes to physiological
deterioration in various organ systems, including the car-
diovascular system [1, 8–14].

Modern geroscience research has established that shared,
evolutionarily conserved cellular and molecular mechanisms
of aging do exist and contribute to the genesis of age-related
diseases. These synergistic processes of aging (referred to as
the “pillars of aging”) have been mechanistically linked,
either directly or indirectly, to increased oxidative stress. Pil-
lars of aging include increased inflammation, epigenetic
changes, loss of proteostasis, altered metabolism, impaired
stem cell regeneration, decreased adaptation to stress, and
macromolecular damage [15]. Prospective human studies
of aging and age-related diseases [16, 17] have suggested that
individuals age at different rates. The picture has emerged
that in every population, there are individuals with advanced
biological age (accelerated agers) having poorer physical
function and cognitive performance compared to a repre-
sentative age-matched reference sample. Accelerated agers,
whose biological age exceeds their chronological age (CA),
present with age-related diseases earlier in life than those
individuals with the same CA. Understanding the underly-
ing causes for heterogeneity in health and morbidity of older
adults is a fundamental question in geroscience research.
Given the vital role of ROS in various biological processes
of aging and the pathogenesis of age-related diseases, it is
essential to assess biomarkers of oxidative stress in prospec-
tive human studies of aging.

Measurement of net antioxidant capacity of serum and
circulating biomarkers of oxidative stress are available for
use in human studies, including assays of circulating isopros-
tanes, oxidative protein modifications, oxidized low-density
lipoprotein, and oxidized phospholipids [18–20]. Searching
for sensitive and noninvasive biomarkers, however, has been
a major challenge for geroscience research. Urine provides a
convenient biospecimen for analyzing age-related biomarkers
and can also be collected recurrently from older adults (in
whom compliance with invasive procedures is a major issue)
noninvasively and in large volumes. Urine contains rich and
multifaceted biological information on the health status of
every major organ system and may potentially be an impor-
tant and noninvasive source for biomarkers of systemic oxida-
tive stress in aging [21–26]. Yet, despite their importance,
urinary biomarkers have been underutilized in geroscience

research when investigating the mechanisms responsible for
the heterogeneity of aging and the pathogenesis of age-
related diseases.

The present study was designed to provide initial val-
idation for a novel panel of urinary biomarkers of oxida-
tive stress with aging. In a cross-sectional study of 198
individuals, urinary markers of macromolecular oxidative
damage were assessed in urine samples—including 8-
oxo-7,8-deoxyguanosine (8-oxoG), 8-oxo-7,8-dihydrogua-
nosine (8-OHdG), dityrosine (DTyr), F2-isoprostanes
(iPF2α-III, iPF2α-VI), and 2,3-dinor-8-iso-prostaglandin
F2α (Dinor)—from nondiabetic and currently nonsmoking
subjects across different ages (20 to 89). To describe het-
erogeneity in aging, the BA of these individuals was
determined using the urinary oxidative stress markers
based on the algorithm proposed by Klemera and Doubal
[27]. The ability of BA calculation for the identification of
accelerated aging was assessed by classifying each subject with
the aid of a decision tree that uses a constellation of urinary
biomarkers of oxidative stress.

2. Materials and Methods

2.1. Study Participants’ Characteristics. This study was
performed on urine and blood samples collected from 198
adults (103 females and 95 males) of 20–89 years of chrono-
logical age, never smokers or ex-smokers (denied use of
tobacco in the previous 3 years) as described in Ref [28].
The research protocol was approved by the Arizona State
University Institutional Review Board, and subjects gave
written informed consent to participate. All subjects pro-
vided informed consent prior to participation in the study
[28]. To minimize confounding bias affecting apparent bio-
logical aging, subjects with active cancer, chronic cardiovas-
cular, renal or neurodegenerative diseases, prediabetic and
diabetic states, and with BMI < 20 or BMI > 30 were
excluded from the analysis. Individuals with a high fasting
blood glucose level (>6.0mmol/l) or with elevated hemoglo-
bin A1c (≥6%), indicating the average level of hemoglobin
glycosylation in the preceding 8-12 weeks, were also
excluded. A total of 131 subjects were selected for further
analyses. Characteristics of included participants are shown
in Table 1.

2.2. Laboratory Evaluation. For urinalysis of oxidative stress
markers, the primary outcome parameters, a first-morning
specimen was obtained from each participant. Aliquots of
urine were frozen to a temperature of −80°C immediately
after their collection, and measurements were performed
on defrosted and centrifuged urine samples as described pre-
viously [28, 29]. The concentration of all compounds was
determined by high-pressure liquid chromatography
(HPLC)/tandem mass spectrometry (MS). The HPLC sys-
tem consisted of three Shimadzu LC-10AD pumps, a Shi-
madzu degasser (Shimadzu Scientific Instruments,
Columbia, MD, USA), and a Perkin Elmer autosampler
(Perkin Elmer LLC, Norwalk, CT, USA). Briefly, for all oxi-
dative damage adducts, 10μl of standard or urine samples
was spiked and then injected onto a YMC ODS-AQ column
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(2:0 × 50mm, 3μm particle size; Waters, Milford, MA,
USA) with an identical guard column (2:0 × 10mm, 3μm).
The sample was delivered at a flow rate of 200μl/min. In
the case of oxidized nucleosides and dityrosine assessment,
the mobile phase consisted of 10mM ammonium acetate,
formic acid (A1), and methanol (B1). Subsequently, these
components were separated between 2 and 7.5min of HPLC
running time by using a solvent gradient program (95% A1
at time 0, a linear decrease to 50% A1 at 6.0min, hold for
30 s, drop to 0% A1 within 30 s, then increase from 0 to
95% A1 within 1min) and then injected into the MS. To
detect 8-oxoG and 8-OHdG, multiple reaction monitoring
(MRM) mode was used with ion pairs (m/z) of 300/168
284/168, respectively; while DTyr was detected in MRM
mode with positive ionization. For more details of the proce-
dure, see Ref. [28]. The samples used for assessment of
iPF2α-III, iPF2α-VI, and Dinor were dissolved in a mobile
phase consisting of methanol : acetonitrile (5 : 95 v/v) (A2)
and 2mM ammonium acetate (B2). These components were
separated between 3 and 8 minutes of HPLC running time
by using a solvent gradient program (15% A2 at time 0, a
linear increase to 70% A2 at 6min, a linear increase to
100% A2 at 8min, then a linear decrease from 100 to 15%
A2 within 1min) and then injected into the MS. The MRM
pairs for detecting iPF2α-III, iPF2α-VI, and Dinor were
353/193, 353/115, and 325/237, respectively; for further
details, see Ref. [29].

Creatinine content of urine was determined using a
commercially available clinical test kit with a chemistry ana-
lyzer system (Synchron Clinical System LX20; Beckman
Coulter, Fullerton, CA, USA) [28] and was regarded as a
confounder of the outcome measures. Hence, to normalize
urinary oxidative stress markers, their measured concentra-
tions (measured in ng/ml) were divided by urinary creati-
nine content (measured in μg/g).

2.3. Calculation of Biological Age. Klemera and Doubal
developed a mathematical model (KDM [27]) that estimates
biological age based on selected variables that correlate with
the chronological age for any sex. It is assumed that fluctua-
tion of BA around CA is represented in the variation of any
parameter that systematically changes with age (CA predic-
tors). Hence, their difference is defined as a random variable
(RBA) with mean zero and variance s2AB:

BA − CA = RAB 0 ; s2BA
� �

: ð1Þ

As KDM requires independent variables, principal
component analysis was performed to obtain m = 6 predic-
tors explaining >95% variability of CA, which also reduced
the dimensionality of the data. The actual value of aging
markers (xj) can be affected by transient random effects

(with mean 0 and variance S2j ) independent from BA that
is described as

xj = Fj BAð Þ + Rj 0 ; s2j
� �

: ð2Þ

In the simplest case, a linear relationship is assumed
with Fj between xj and BA with a slope kj and intercept
(bias) qj: xj = kjBA + qj. The most accurate estimate of
BA uses CA as an aging biomarker and is given by the fol-
lowing equation:

cBA =
∑m

j=1 xj − qj
� �

kj/s2j
� �

+ CA/s2BA
� �

∑m
j=1 kj/sj
� �2 + 1/s2BA

� � : ð3Þ

The BA was calculated as the value corresponding to
the minimal distance between regression lines in an m
-dimensional predictor space, which is achieved by esti-
mating slope, intercept, and variance parameters of the
fitted regression model. In this study, we used all parame-
ters of urine samples as initial independent parameters
that were correlated with CA (inclusion criterium: r > 0:1
[30]). Biological age was then calculated using the True-
Trait function of the WGCNA R package, separately for
men and women [31] (see the R script in the Appendix).

Finally, participants were assigned into groups of acceler-
ated (A) or nonaccelerated (N) aging based on the difference
between their BA and CA. The threshold value was set to
2.679 years, which is just sufficient to achieve a significant dif-
ference (p = 0:0500) in BA between such identified A and N
groups.

2.4. Statistical Analysis. Statistical analyses were carried out
using the Statistica 13.5 (TIBCO, Palo Alto, CA, USA) soft-
ware. The normal distribution of data was evaluated using
Shapiro-Wilk’s test. The relationship betweenmeasures of uri-
nary oxidative stress parameters (dependent variable) and CA
was assessed by Pearson correlation. Linear regression analy-
ses have been performed with CA, smoking, sex, and BMI,
as predictors along with their first-order interactions. The

Table 1: Characteristics of the participants. For each age group, distribution of males, females, ex-smokers, and never-smokers are shown.

Age groups Female nonsmoker Female ex-smoker Male nonsmoker Male ex-smoker BMI

20-29 y. o. 10 1 10 5 24:7 ± 3:0
30-44 y. o. 7 2 10 5 25:4 ± 3:1
45-59 y. o. 6 2 5 6 25:9 ± 2:2
61-75 y. o. 5 3 9 5 25:0 ± 2:4
61-70 y. o. 4 1 6 15 25:6 ± 2:6
71-80 y. o. 6 5 0 3 23:8 ± 3:6
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displayed results are grouped by sex or past smoking history,
and figures were created with the Gramm toolbox [32] imple-
mented in MATLAB 2017 (MathWorks, MA, Natick, USA).
For hypothesis testing, the threshold level of significance
was set to 0.05. Following standard conventions, p and β
denote the probability of type I and type II error, respec-
tively, thus, the power of the statistical test is 1 − β.

To predict accelerated aging at an individual level, a
decision tree analysis was performed using the “Data Min-
ing” module of Statistica 13.5. A and N labels were the
dependent variables in the decision tree model. Urinary
oxidative stress markers and BMI were used as continuous

predictors together with sex and smoking history (categor-
ical predictors). The test error of the algorithm was evalu-
ated using a 10-fold cross-validation scheme. In that, the
dataset was split randomly into ten nonoverlapping sub-
groups, and in each iteration, nine of them were used
for training and with the tenth as a test set for the deci-
sion tree (hyperparameters: minimum n of cases: 13, max-
imum n of nodes: 1000). Proportions of A and N cases
were similar in all subgroups. Classifier performance was
characterized by the average number of correctly identified
and misclassified cases summarized in an average confu-
sion matrix.
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Figure 1: Relationship between chronological age (CA) and 8-oxo-7,8-deoxyguanosine (8-oxoG). 8-oxoG concentrations are normalized to
urinary creatinine content, and their natural logarithmic values are shown (measurement unit: μg/g). Ln(8-oxoG) significantly correlated
with CA in females (r = 0:33, p = 0:016) but neither in males (r = 0:116, p = 0:306) (a); nor ex-smokers (r = 0:264, p = 0:056), nor never-
smokers (r = 0:053, p = 0:645) (b).
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Figure 2: Relationship between chronological age (CA) and 8-oxo-7,8-dihydroguanosine (8-OHdG). 8-OHdG concentrations are
normalized to urinary creatinine content, and their natural logarithmic values are shown (measurement unit: μg/g). Ln(8-OHdG)
significantly correlated with CA in females (r = 0:289, p = 0:037) but neither in males (r = 0:043, p = 0:700) (a); nor ex-smokers (r = 0:164
, p = 0:239), nor never-smokers (r = 0:057, p = 0:619) (b).
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3. Results

3.1. Correlation of Urinary Oxidative Stress Markers with
Chronological Age. We determined whether urinary markers
of oxidative stress were useful predictors of CA by estimat-
ing the correlation between these variables. Urinary oxida-
tive stress markers followed a log-normal distribution,
which was considered in the linear regression analysis. The
normalized urinary concentration of 8-oxoG, the main
product of oxidative DNA damage, showed a moderate pos-
itive correlation with CA (r = 0:500 for females and r = 0:101

for males). This correlation depended on sex, indicated by a
significantly steeper slope (p = 0:020) for female subjects
(Figure 1(a)). The relationship for never and ex-smokers
was not statistically different (Figure 1(b)). The normalized
levels of 8-OHdG, an oxidant derived from RNA and
excreted in the urine, showed a weak correlation with CA
(r = 0:108 for females and r = 0:101 for males), which was
not influenced by smoking history or sex (Figure 2).

Normalized urinary DTyr, a marker of oxidative protein
damage, increased with chronological age but the positive
correlation was not significant (r = 0:365, p = 0:231).
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Figure 3: Relationship between chronological age (CA) and dityrosine (DTyr). DTyr concentrations are normalized to urinary creatinine
content and their natural logarithmic values are shown (measurement unit: μg/g). (a) Ln(DTyr) significantly correlated with CA both in
females (r = 0:433, p = 0:001) and in males (r = 0:340, p = 0:002). (b) Ln(DTyr) significantly correlated with CA both in nonsmokers
(r = 0:274, p = 0:015) and in ex-smokers (r = 0:441, p < 0:001).
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Figure 4: Relationship between chronological age and isoprostane-F2α-VI (iPF2α-VI). iPF2α-VI concentrations are normalized to urinary
creatinine content, and their natural logarithmic values are shown (measurement unit: μg/g). Ln(iPF2α-VI) did not correlate with CA
regardless of sex (females: r = 0:006, p = 0:962; males: r = 0:122, p = 0:518) (a) or smoking history (never-smokers: r = 0:065, p = 0:567;
ex-smokers: r = 0:098, p = 0:4838) (b).
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Figure 3 also shows that sex and smoking status did not alter
this relationship. The only lipid peroxidation marker that
showed correlation with CA was iPF2α-VI (Figure 4), indi-
cated by r = −0:145 for females and r = −0:374 for males.
In contrast, the linear relationship was much weaker for
iPF2α-III and Dinor (data not shown), thus, these variables
were excluded from BA calculation. The negative linear rela-

tionship is not explained by any of the examined predictors;
however, BMI was significantly associated with the iPF2α-VI
levels (p = 0:02, see Table 2).

It is of note that urinary creatinine content and mea-
sured concentrations of all urinary oxidative stress markers
are inversely correlated with chronological age in both sexes
(p < 0:05). Thus, it was necessary to obtain normalized
values of oxidative damage adducts to take into account
the bias due to age-related changes in kidney function.

3.2. Characteristics of the Accelerated Aging Group. We cal-
culated the BA using the KDM algorithm from important
predictors of CA, including 8-OHdG, 8-oxoG, DTyr, and
iPF2α-VI. Figure 5 depicts the BA as a function of CA; cases
of accelerated aging are marked with pink. A decision tree
(Figure 6) was generated to classify between accelerated
(n = 48) and nonaccelerated agers (n = 83) using urinary oxi-
date stress markers, smoking, sex, and BMI as features. The
high classifier performance is justified by the number of mis-
classified and correctly identified cases (Table 3) which cor-
responded to an accuracy of 92.3%. Significantly higher
levels were found in the accelerated ager group for 8-oxoG
(7:1485 ± 1:3813 ng/ml vs. 4:5245 ± 1:3822, t-test for the
log-transformed values: df = 129, β ≈ 0, Cohen’s d = 1:90),
DTyr (20:1459 ± 1:2761 vs. 16:6448 ± 1:2642, t-test, df =
129, β = 0, Cohen’s d: 2.76), and iPF2α-VI
(2:2733 ± 1:56261 vs. 1:4591 ± 1:5540, t-test, df = 129, β =
0:12, Cohen’s d: 0.52) were significantly higher among accel-
erated agers compared to nonaccelerated agers, while these
groups were not statistically different in terms of 8-OHdG
concentration (Figure 7).

To evaluate the predictive capability of urinary oxidative
stress markers, the analytical and statistical procedures were
repeated on a comprehensive panel of serum parameters
measured in venous blood samples (obtained after >10
hours of fasting). Specifically, BA was calculated from vari-
ables that correlate with CA with r > 0:1 from complete
blood count and chemistry, including electrolytes, transport
nutrients, lipids, proteins, hormones, antioxidants, vitamin-
like compounds, metabolites, and waste products (see Sup-
plementary Material (available here)). The deviation of the

Table 2: Regression coefficients and their significance: ∗ indicates p < 0:05. Each column represents a model for each response (dependent)
variable of interest, while model terms (categorical/continuous predictors) are listed in rows, n = 131.

Model term 8-oxoG 8-OHdG DTyr iPF2a-VI

Chronological age 0.0048 0.0094 0.0035 0.0260

Sex 0.0358 -0.0026 -0.0418 1.357

Smoking history 0.2736 0.2051 -0.2002 -0.1714

BMI -0.0001 0.0229 0.0075 0.1084∗

CA ∗ sex -0.0104∗ 0.0006 -0.0025 -0.0101

CA ∗ smoker 0.0077 0.0007 0.0035 0.0087

CA ∗ BMI 0.0001 -0.0003 ≈0 -0.0013

Sex ∗ smoker -0.0567 -0.0726 0.0607 0.1495

Sex ∗ BMI 0.0162 -0.0026 -0.004 -0.0500

Smoker ∗ BMI -0.0262 -0.0103 -0.009 -0.0107

Power (Cohen’s f 2 for effect size) 0.94 (0.09) 0.52 (0.03) 0.96 (0.11) 0.99 (0.26)
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Figure 5: Relationship between biological age (BA) and chronological
age (CA). Each dot represents BA and CA of one subject, color marks
accelerated (n = 48) and nonaccelerated (n = 83) agers, symbol marks
female never smokers (n = 38) and ex-smokers (n = 14), and male
never smokers (n = 40) and ex-smokers (n = 39).
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estimated BA from CA was much higher compared to BA
estimation of urine samples, and there were no significant
differences between the accelerated aging and nonacceler-
ated aging group. This indicates that urinary oxidative stress
parameters are significantly better predictors of biological
aging than blood chemistry parameters.

4. Discussion

In the present study, our aim was to evaluate whether uri-
nary oxidative stress markers correlate with chronological
age (CA) and investigate whether these markers can predict
biological age (BA) and accelerated aging. Major findings of
this study are threefold: (1) urinary biomarkers of oxidative
stress 8-oxoG, 8-OHdG, and DTyr positively correlated with
CA, while iPF2α-VI correlated negatively with CA; (2) 8-
oxoG, DTyr, and iPF2α-VI were significantly higher among
accelerated agers compared to non-accelerated agers; and
(3) a decision tree model could successfully identify acceler-
ated aging with an accuracy of >92%.

The oxidative stress theory of aging implies that
increased macromolecular oxidative damage contributes to
the pathogenesis of age-related diseases. Consistent with
predictions based on the oxidative stress theory of aging, uri-
nary biomarker levels of oxidative stress were elevated in
subjects with accelerated aging when compared to nonaccel-
erated agers. The observed elevated urinary levels 8-oxoG
and 8-OHdG, Dinor, and DTyr reflect a higher degree of
oxidative damage of nucleic acids and proteins in older
adults, respectively [33, 34]. As to iPF2, a lipid peroxidation
product of arachidonic acid, it was higher in young patients
and in accelerated agers compared to old (Figure 4) or non-
accelerated agers (Figure 6), respectively. Our findings on
urinary oxidative stress biomarkers extend the results of pre-
vious studies demonstrating age-related increases in levels of
similar markers but in the systemic circulation [35, 36].
Accordingly, increased circulating levels of biomarkers of
oxidative stress were shown to associate with multiple age-
related diseases, including cancer, diabetes mellitus [21],
neurodegenerative diseases, and cardiovascular diseases, as
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Figure 6: Decision tree for classifying accelerated aging. Squares represent nonterminal nodes with the number of corresponding cases (n).
Each classified case appears in a terminal node denoted by a triangle (either A—accelerated agers or N—nonaccelerated ager cases). Decision
rules based on thresholds for the given urinary oxidative stress marker levels and corresponding paths (yes/no) are illustrated by circles with
branching arrows.

Table 3: Confusion matrix and performance of the decision tree.

True labels
Predictive values (PV)

A N

Predicted labels
A 74 9 Positive PV: 98.7%

N 1 47 Negative PV: 83.9%

True A/N rates Sensitivity: 98.7% Specificity: 83.9% Accuracy: 92.3%
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Figure 7: Continued.
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well as pathological conditions characterized by ongoing
inflammatory processes [37, 38]. On another note, nitrative
stress—imposed by reactive derivatives of NO—contributes
to a plethora of pathophysiological processes as well as aging
[7, 39–41].

This study also found that concentrations of urinary bio-
markers of oxidative stress varied considerably in older indi-
viduals. Thus, we attempted to incorporate this novel set of
biomarkers in estimating the BA of healthy individuals in
the present cohort. The concept of BA has been introduced
to geroscience research and has been refined throughout
the past decades [27]. A recent study comparing four com-
mon BA estimation methods concluded that the Klemera
and Doubal mathematical model (KDM) provides the most
accurate risk estimation for morbidity and mortality
[42–44]. Thus, in the present study, BA was estimated by
the KDM method using specific urinary biomarkers of oxi-
dative stress that correlated with chronological age (CA).

These biomarkers have several advantages over circulat-
ing biomarkers in that they are noninvasive, can be used for
cross-species comparison [45], quantitative, change at rate
reflecting the rate of aging, are relevant for physiological
dysfunction, reproducible, show significant difference
between individuals, and monitor a basic mechanism of
aging. Smoking was reported to be associated with higher
levels of nucleic acid oxidation adducts, iPF2α, and DTyr
in the urine [28]; thus, we excluded current smokers from
the present analysis.

The data obtained in this study were used to build a deci-
sion tree to identify accelerated agers whose BA exceeded
CA with a statistically defined threshold. Although 8-oxoG,
8-OHdG, DTyr, and iPF2α-VI levels were used for calcula-
tion of BA, urinary concentrations of 8-oxoG and iPF2α-VI

were sufficient to classify each subject with >90% of accu-
racy. Ultimately, these were the most important predictors
of accelerated aging according to feature importance analy-
sis, while BMI, smoking, and gender were the least
important.

The present study has several limitations, including the
sample size and the number of predictor and confounder
variables. A larger population would allow for statistical
adjustment of more confounders and to implement a more
accurate supervised machine learning model either for clas-
sifying accelerated aging, presence of disease, or other major
clinical outcomes. To implement more effective interven-
tions in healthy aging, additional reliable, independent
estimators for the rate of aging are warranted. Urinary bio-
markers of oxidative stress and aging could be combined
with a number of validated biomarkers of aging, including
an array of circulating and/or urinary protein, lipid, exoso-
mal, metabolomic, transcriptomic, and/or epigenetic bio-
markers. It is likely that different sets of biomarkers are
needed to predict mortality, healthspan, and longevity [46].
Longitudinal studies with large sample sizes and clinically
relevant endpoints would help validating the proposed bio-
markers of aging and measures of BA in terms of their pre-
dictive values for healthspan, longevity, and morbidity of
age-related diseases. Lifespan, healthspan, and mortality
are determined by many factors, including environmental
and lifestyle factors as well genetic factors. The effect of these
factors on urinary biomarkers of oxidative stress should also
be investigated.

Taken together, our findings suggest that the use of
urinary oxidative stress biomarkers can be an important
approach for the evaluation of biological age by identifying
individuals at accelerated risk for the development of age-
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Figure 7: Group-level comparisons of urinary oxidative stress markers. Natural logarithm of concentrations was compared between
accelerated (n = 48) and nonaccelerated (n = 83) agers (top panels, t-test) and across sexes and smoking history (bottom panels, see
Table 1 for sample sizes; two-way ANOVA, Bonferroni post hoc test). (a, e) 8-oxo-7,8-deoxyguanosine (8-oxoG); (b, f) 8-oxo-7,8-
deoxyguanosine (8-oxoG); (c, g) dityrosine (DTyr); (d, h) 8-oxo-7,8-deoxyguanosine (iPF2α-VI). Abbreviations: A: accelerated aging; N:
nonaccelerated aging; ♀ns: female nonsmoker; ♀es: female ex-smoker; ♂ns: male nonsmoker; ♂es: male ex-smoker.
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related diseases. Testing this hypothesis in future longitudi-
nal studies is thus warranted, given that it cannot be con-
firmed with a cross-sectional design such as the currently
presented work. The use of urinary biomarkers may also
provide an easy, robust, and noninvasive tool for evaluation
of the effect of antiaging interventions aimed at reducing
age-associated inflammatory responses and oxidative stress
in prospective cohort studies.

Appendix

library(readxl).
library(tidyverse).
library(WGCNA).
library(xlsx).
library(writexl).
dir_project <- “D:/Urinary_Oxidative_Stress/”.
setwd(dir_project).
knitr::opts_knit$set(root.dir = dir_project).
male_biomarker <- read_excel(“Male_UOS_data.xls”).
female_biomarker <- read_excel(“Female_UOS_data.xls”).
bm_pc_m< -prcomp(male_biomarker[,37 : 40], cen-

ter =TRUE, scale. =TRUE).
bm_pc_f< -prcomp(female_biomarker[,37 : 40], cen-

ter =TRUE, scale. =TRUE).
bm_pc_m_mat <-bm_pc_m$x.
bm_pc_f_mat <-bm_pc_f$x.
kdm_m< - TrueTrait(datX=bm_pc_m_mat, y =male_

biomarker$Age, corFnc = “bicor”, corOptions =“use = ‘pair-
wise.complete.obs’“).

kdm_m_ba <-kdm_m$datEstimates.
kdm_f< - TrueTrait(datX=bm_pc_f_mat, y = female_

biomarker$Age, corFnc = “bicor”, corOptions =“use = ‘pair-
wise.complete.obs’“).

kdm_f_ba <-kdm_f$datEstimates.
ba_female_data <- cbind(data.frame(female_biomarker

$ID, female_biomarker$Age), kdm_f_ba, female_
biomarker).

ba_male_data <- cbind(data.frame(male_biomarker$ID,
male_biomarker$Age), kdm_m_ba, male_biomarker).

write_xlsx(ba_female_data, “BiolAge_female.xlsx”).
write_xlsx(ba_male_data, “BiolAge_male.xlsx”).
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