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As the main active ingredients of Panax ginseng, ginsenosides possess numerous bioactivities. Epidermal growth factor receptor
(EGFR) was widely used as a valid target in anticancer therapy. Herein, the EGFR targeting activities of 20(S)-ginsenoside Rh2
(20(S)-Rh2) and the relationship of their structure-activity were investigated. Homogeneous time-resolved fluorescence assay
showed that 20(S)-Rh2 significantly inhibited the activity against EGFR kinase. 20(S)-Rh2 was confirmed to effectively
inhibited cell proliferation in a dose-dependent manner by MTT assay. Furthermore, quantitative real-time PCR and western
blotting analysis revealed that 20(S)-Rh2 inhibited A549 cells growth via the EGFR-MAPK pathway. Meanwhile, 20(S)-Rh2
could promote cell apoptosis, block cell cycle, and reduce cell migration of A549 cells, respectively. In silico, the result
suggested that both hydrophobic interactions and hydrogen-bonding interactions could contribute to stabilize their binding.
Molecular dynamics simulation showed that the side chain sugar moiety of 20(S)-Rh2 was too flexible to be fixed at the active
site of EGFR. Collectively, these findings suggested that 20(S)-Rh2 might serve as a potential EGFR tyrosine kinase inhibitor.

1. Introduction

Lung cancer is the leading cause of cancer death worldwide.
Non-small-cell lung cancer (NSCLC) contributes over 80%
of lung cancer cases with a low 5-year survival rate [1].
The development of epidermal growth factor receptor-
tyrosine kinase inhibitors (EGFR-TKIs) plays a key role in
the targeted therapy of NSCLC. Epidermal growth factor
receptor (EGFR) is considered a receptor tyrosine kinase
with penetrating the cell membrane [2]. EGFR is composed
of an extracellular ligand-binding region, a transmembrane
region, and an intracellular tyrosine kinase region [3]. Bind-
ing to the ligand, EGFR forms a dimer and the phosphate of
ATP transfers into the tyrosine residue. Then, different
kinds of proteins bind to this phosphorylated tyrosine and
signals transmit to downstream pathways, such as
mitogen-activated protein kinase (MAPK) and phos-
phatidylinositol 3-kinase (PI3K) pathways [4, 5]. It is well
known that EGFR plays a key role in cell proliferation, apo-
ptosis, and migration [6]. Furthermore, EGFR is confirmed
to be dysregulated or overexpressed in various solid tumors

and used as one of the valid targets in anticancer therapy
[7, 8].

As the main active ingredients of Panax ginseng (P. gin-
seng), ginsenosides have been widely used in cancer treat-
ment with reduced side effects [9–11]. Ginsenoside Rh2
can be divided into 20(S)-ginsenoside Rh2 (20(S)-Rh2) and
20(R)-ginsenoside Rh2 (20(R)-Rh2) according to different
orientations of the hydroxyl group at C-20 position [12,
13]. Tumor-associated macrophages (TAMs) are confirmed
to play crucial roles in modulating the tumor microenviron-
ment and promoting tumor metastases [14]. Rh2 showed
potential to convert TAMs from the alternatively activated
M2 macrophages to classically activated M1 macrophages
in the microenvironment. Meanwhile, Rh2 prevented
NSCLC cell migration, suggesting the therapeutic effects of
Rh2 on lung cancer [15]. Rh2 was also demonstrated to
inhibit the proliferation and metastasis of NSCLC cells by
inducing apoptosis and suppressing epithelial-
mesenchymal transition, respectively [16]. In the chemo-
therapy for NSCLC patients, Rh2 enhanced the antitumor
effects of cisplatin through inhibiting the superoxide
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generation, PD-L1 expression, and cell autophagy [17].
However, the mechanism of 20(S)-Rh2 targeting EGFR to
inhibit cell proliferation is not clear enough now.

Hence, this work is aimed at identifying 20(S)-Rh2 as a
potential EGFR tyrosine kinase inhibitor by the combination
of in vitro and in silico approaches. Homogeneous time-
resolved fluorescence (HTRF) assay was performed to detect
the EGFR kinase activity after the treatment of 20(S)-Rh2.
Cell viability was measured by MTT assay. To investigate
whether 20(S)-Rh2 regulated the EGFR-MAPK pathway,
the changes in gene expressions and protein contents were
determined by quantitative real-time PCR and western blot
analysis, respectively. Meanwhile, cell apoptosis and cycle
analyses were taken by flow cytometry. Cell wound healing
assay was also performed to measure the migration of
A549 cells. On this basis, the possible binding conformation
of 20(S)-Rh2 with EGFR was predicted using molecular
docking. The binding stability of the EGFR-20(S)-Rh2 com-
plex was explored using molecular dynamics simulation.

2. Materials and Methods

2.1. Materials. HTRF® KinEASE-TK assay kit was obtained
from Cisbio (Codolet, France). EGFR protein (GST-tagged)
was obtained from Thermo Fisher Scientific (Carlsbad, CA,
USA). Dulbecco’s modified Eagle’s medium (DMEM, low
glucose), penicillin and streptomycin, trypsin, and phos-
phate buffer saline (PBS) were obtained from Gibco (Paisley,
UK). Fetal bovine serum (FBS) was obtained from Zhejiang
Tianhang Biotechnology Co., Ltd. (Zhejiang, Hangzhou,
China). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide (MTT) was obtained from Shanghai Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China).
20(S)-Rh2 and bovine serum albumin (BSA) were obtained
from Yuanye Biotech Co., Ltd. (Shanghai, China). Dimethyl
sulfoxide (DMSO) was obtained from Beijing Solarbio Sci-
ence & Technology Co., Ltd. (Beijing, China). Ethylenedia-
mine tetraacetic acid (EDTA) was obtained from Sigma-
Aldrich (MO, USA). Goat anti-rat IgG secondary antibody
was obtained from Sino Biological Inc. (Beijing, China).
Antibody against GAPDH was obtained from Gene Tex
(Irvine, CA, USA). Other primary antibodies were all
obtained from Abcam (Cambridge, MA, USA). All other
chemical reagents were of analytical grade.

2.2. Measurement of EGFR Kinase Activity by 20(S)-Rh2. The
enzyme reaction was conducted for 40min at room temper-
ature in white HTRF 96-well low volume plate. 20(S)-Rh2
was 10-fold serial dilutions from 103 to 10-3μM. During
the enzymatic step, 20(S)-Rh2 (4μL) and the TK
Substrate-biotin (50μM, 2μL) were incubated with the
EGFR kinase (41 nM, 2μL); then, ATP (1.41μM, 2μL) was
added to start the reaction. The enzymatic buffer contained
5mM MgCl2, 1mM MnCl2, and 1mM DTT. Subsequently,
at the detection step, streptavidin-XL665 (16.67μM, 5μL)
and TK-antibody labeled with Eu3+-cryptate (5μL) in the
detection buffer with EDTA were added to stop the kinase
activity. After incubation for another 1 h at room tempera-
ture, fluorescence was measured at both 620nm and

665 nm with a microplate reader (Tecan Spark® 10M,
Tecan, Männedorf, Switzerland) [18, 19]. The half maximal
inhibitory concentration (IC50) was calculated by PRISM
version 5.0 software (GraphPad Software Inc., CA, USA).

2.3. Cell Culture. The human non-small-cell lung cancer cell
line A549 was obtained from Cell Bank of Chinese Academy
of Sciences (Shanghai, China). A549 cells were cultured in
the DMEM supplemented with 10% FBS, 100U/mL penicil-
lin, and 0.1mg/mL streptomycin, at 37°C in a humidified
atmosphere of 5% CO2.

2.4. MTT Assay. A549 cells were seeded in 96-well plates at a
density of 1 × 104 cells per well and incubated for 24 h to
allow for cell attachment. Then, A549 cells were incubated
with different concentrations (5, 10, 20, 30, 40, 50, 60, 80,
100, and 120μM) of 20(S)-Rh2 for another 24h. The culture
medium was removed and replaced with new culture
medium with MTT solution (5mg/mL) and incubated at
37°C for 4 h. Then, the medium was removed and DMSO
(110μL) was added to each well to dissolve the crystals.
The absorbance at 490 nm was measured with a microplate
reader (Bio-Rad, Hercules, CA, USA). The cell viabilities of
A549 cells were calculated as the percentage of absorbance
compared to DMSO control cells.

2.5. Quantitative Real-Time PCR. A549 cells were seeded in
10 cm discs at a density of 1 × 106 cells per disc and incu-
bated overnight; then, cells were incubated with different
concentrations (15, 22, and 35μM) of 20(S)-Rh2 for another
24 h. Total RNA was extracted using TRIzol reagent (Trans-
gen Biotech Co., Ltd., Beijing, China). Reverse transcription
and PCR amplification were carried out with TransScript
one-step gDNA removal and cDNA synthesis supermix kit
(Transgen Biotech Co., Ltd., Beijing, China). Quantitative
real-time PCR was conducted using CFX96™ real-time sys-
tem (Bio-rad®, Hercules, CA, USA) along with the primer
pairs listed in the past article of our team [20]. The relative
expression levels of mRNA were calculated by the 2-ΔΔCT

method normalized with the GAPDH RNA level.

2.6. Western Blotting Analysis. A549 cells were seeded in
10 cm discs at a density of 5 × 106 cells per disc and incubated
for 24h; then, cells were incubated with different concentra-
tions (15, 22, and 35μM) of 20(S)-Rh2 for another 24h. Cell
samples were washed with the ice-cold PBS and lysed with
RIPA buffer (Cell Signaling Technology, Danvers, MA, USA)
containing protease/phosphatase inhibitors (Cell Signaling
Technology, Danvers, MA, USA). Cell protein lysates were
separated by SDS-polyacrylamide gel electrophoresis (PAGE)
and then transferred onto a polyvinylidene difluoride (PVDF)
membrane (Millipore, USA). After being blocked with 5%
skim milk or BSA dissolved in TBST buffer, the membranes
were incubated with primary antibodies at 4°C overnight.
Then, goat anti-rat IgG secondary antibody was added. Fol-
lowing the washing step of the TBST buffer, an ECL immuno-
blotting detection kit (Clinx Science Instrument Co., Ltd.,
Shanghai, China) was used to detect the visualization. Anti-
body against GAPDH was used as an internal control.
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2.7. Analysis of Cell Apoptosis and Cycle by Flow Cytometry.
A549 cells were seeded in 6-well plates at a density of 2:5
× 105 cells per well and incubated for 24h; then, cells were
incubated with different concentrations (15, 22, and
35μM) of 20(S)-Rh2 for another 24h. A549 cells were har-
vested with EDTA-free trypsin and washed with the ice-
cold PBS. Then, cell apoptosis analysis was performed using
annexin V-FITC/PI apoptosis detection kit (Meilunbio,
Dalian, China). Followed by centrifugation at 1000 g for
5min, the cells were resuspended in the 1× binding buffer.
After annexin V-FITC (5μL) and PI (7μL) were added to
each group, samples were incubated for 15min at room tem-
perature. Cell apoptosis analysis was detected with a flow
cytometry (Cytoflex, Beckman, Coulter, CA, USA).

On the other hand, cell cycle analysis was performed
using PI staining cell cycle detection kit (Meilunbio, Dalian,
China). Followed by centrifugation at 1000 g for 5min, the
cells were resuspended in the ice-cold buffer. After fixed with
75% ice-cold ethanol at 4°C overnight, the cells were stained
with PI staining buffer at 37°C for 30min from light. Cell
cycle analysis was also detected with a flow cytometry (Cyto-
flex, Beckman, Coulter, CA, USA).

2.8. Wound Healing Assay. Wound healing assay was taken
to measure the capacity of 20(S)-Rh2 in A549 cells migration
and invasion. A549 cells were seeded in 6-well plates at a
density of 1 × 106 cells per well; after the cells grew to a
monolayer, a pipette tip (200μL) was used to scraped the
monolayer to create an artificial wound field. Then, cells
were incubated with different concentrations (15, 22, and
35μM) of 20(S)-Rh2. DMSO was used as a blank control.
Photographs were taken at 0, 6, 12, and 24 h using an
inverted microscope (Olympus, Tokyo, Japan). The surface
areas of cell wound were quantified by ImageJ software
(National Institute of Health, Bethesda, MD, USA).

2.9. Molecular Docking. Based on the structure of EGFR-
erlotinib complex (PDB 1M17), molecular docking was per-
formed to predict the possible binding conformation of
20(S)-Rh2 with EGFR [21]. The cocrystallized ligand erloti-
nib as well as all water molecules were dislodged using Chi-
mera 1.11 to complete the preparation of EGFR structure.
The hydrogen atoms were added using AutoDockTools-

1.5.6 [22]. The structure of 20(S)-Rh2 was generated using
GaussView 5.0 and then was subject to the energy minimiza-
tion using Gaussian 09W [23]. Afterward, 20(S)-Rh2 was
docked to the binding pocket of EGFR with a Lamarckian
genetic algorithm using AutoDockTools-1.5.6. The grid
box was generated at the center of the cocrystallized ligand
erlotinib. Taken together with the above docking parame-
ters, 10 independent calculations were performed and the
conformation of 20(S)-Rh2 with lowest binding energy was
visualized using PyMOL.

2.10. Molecular Dynamics Simulation. Based on the optimal
conformation of 20(S)-Rh2 obtained from molecular docking,
a 20ns molecular dynamics simulation was performed using
GROMACS 2019 [24]. The topologies of EGFR and 20(S)-
Rh2 were developed using CHARMM36 all-atom force field
and CGenFF server, respectively [25, 26]. Afterward, the
EGFR-20(S)-Rh2 complex was placed in a cubic box filling
with water. The whole system was appended with counterion
to obtain electrostatic neutrality. Energy minimization was
completed followed with constant NVT (number of parti-
cles-volume-temperature) and constant NPT (number of par-
ticles-pressure-temperature) equilibration procedure for
0.1 ns. With the desired temperature and pressure, the posi-
tion restraint on the system was released. On this basis, molec-
ular dynamics simulation was run and the data was collected
to calculate the root mean squared deviation (RMSD) values.

2.11. Statistical Analysis. All experiments were performed
independently at least three times, and all the data were
expressed as mean ± standard error of measurement (SEM).
Analysis of variance (ANOVA) was used to assess the statisti-
cal significance of experimental manipulations. The difference
compared with the control group was considered statistically
significant at ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.

3. Results and Discussion

3.1. 20(S)-Rh2 Inhibited the Activity of EGFR Kinase. HTRF
assay is a homogeneous time-resolved assay that generates a
signal by fluorescence resonance energy transfer (FRET)
between the donor and acceptor molecules [27]. The donor
is a Eu3+ caged in the polycyclic cryptate, while the acceptor
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Figure 1: (a) 20(S)-Rh2 inhibited the activity of EGFR kinase and (b) A549 cell proliferation. DMSO-treated group was used as control.
∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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is a streptavidin-XL665 labeled protein. Laser excitation of
the donor at 337nm leads to the transfer of energy to the
acceptor at 620nm when they are in the close proximity,
resulting in the emission of light over a prolonged period
of milliseconds at 665 nm [28]. In this assay, HTRF was per-
formed to analyze the effect of 20(S)-Rh2 on EGFR kinase
activity. 20(S)-Rh2 altered EGFR kinase activity in a dose-
dependent manner, and the inhibitory curve was presented
in Figure 1(a). The IC50 of 20(S)-Rh2 on EGFR kinase activ-
ity was determined to be 2:78 ± 0:16μM with the average of
at least three independent experiments. The data demon-
strated that 20(S)-Rh2 inhibited the activity of EGFR kinase.

3.2. Effect of 20(S)-Rh2 on the Inhibition of A549 Cell
Proliferation. Exponentially growing A549 cells were seeded
continuously in the presence or absence of different concen-
trations of 20(S)-Rh2. The effect of 20(S)-Rh2 on cell growth
was assessed by the MTT assay. As shown in Figure 1(b),
20(S)-Rh2 inhibited the growth of A549 cells in a dose-
dependent manner. DMSO was used as a blank control.
The 20%, 40%, and 60% inhibitory concentrations (IC20,
IC40, and IC60) of 20(S)-Rh2 on A549 cells were 15, 22,
and 35μM, respectively.

3.3. 20(S)-Rh2 Regulated the EGFR-MAPK Pathway in A549
Cells. To investigate whether 20(S)-Rh2 regulated the MAPK
pathway through affecting the expressions of EGFR, the
changes in gene expressions and protein contents were
determined by quantitative real-time PCR and western blot
analysis, respectively. As shown in Figure 2(a), after the
treatment of 20(S)-Rh2, the gene expression of EGFR was
all downregulated. Similarly, the protein contents of total-
EGFR and phospho-EGFR were all downregulated after the
treatment of 20(S)-Rh2 compared to the DMSO-treated
group (Figures 2(b) and 2(c)). Combined with the result of
HTRF, 20(S)-Rh2 could inhibit the phosphorylation of
EGFR. After the treatment of 20(S)-Rh2, the gene expres-
sions of Ras and BRAF were downregulated (Figure 2(a));
the protein content of Ras was also slightly downregulated;
however, the protein content of BRAF was firstly upregu-
lated then downregulated. Especially, the protein content
of phospho-BRAF was significantly downregulated at the
concentrations of 35μM (Figure 2(c)). The gene expression
of Raf1 was upregulated after the treatment of 20(S)-Rh2;
however, the protein content of Raf1 was significantly down-
regulated (Figure 2(c)). Apart from the gene expression of
MEK2 downregulated, the gene expressions of MEK1,
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Figure 2: 20(S)-Rh2 regulated the EGFR-MAPK pathway in A549 cells. (a) Quantitative real-time PCR and (b) western blot analysis of
20(S)-Rh2 to EGFR-MAPK pathway. (c) Quantitative analyses of the levels of EGFR-MAPK pathway related proteins compared to
GAPDH. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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ERK1, and ERK2 were all significantly upregulated after the
treatment of 20(S)-Rh2 (Figure 2(a)). As for the protein con-
tents, phospho-MEK and phospho-ERK were upregulated at
15μM and then downregulated at 22 and 35μM
(Figure 2(c)); total-MEK and total-ERK were downregulated
(Figure 2(c)). Taken together, the results indicated that

20(S)-Rh2 inhibited the activation of EGFR to regulate the
MAPK pathway leading to suppress A549 cells growth.

3.4. 20(S)-Rh2 Promoted the Apoptosis of A549 Cells. PARP1
is the first member of the PARP family that acts as a DNA
damage sensor [29]. After binding on DNA damaged
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Figure 3: 20(S)-Rh2 promoted the apoptosis of A549 cells. The effect of 20(S)-Rh2 on A549 cells apoptosis was evaluated by (a) quantitative
real-time PCR and (b) western blot analysis. (c) Quantitative analyses of the levels of cell apoptosis-related proteins compared to GAPDH.
The results of (d) flow cytometry and (e) apoptotic cells of each group. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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structures, PARP1 serves as a survival factor and recruits
repair enzymes [30]. Caspases cleave various proteins that
are necessary for the cell survival and function during the

apoptosis phase [31]. PARP1 protein is cleaved by caspase-
3 and caspase-7 to retain basal enzymatic activity without
to be stimulated by DNA damage [32, 33]. Through this
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Figure 4: 20(S)-Rh2 blocked A549 cells cycle at G0/G1 phase. The effect of 20(S)-Rh2 on A549 cells cycle was evaluated by (a) quantitative
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process, the cleavage of PARP1 may help to induce cells to
the apoptotic pathway. As shown in Figure 3(a), after the
treatment of 20(S)-Rh2, although the gene expression of
PARP1 was nearly unchanged, the protein content of PARP1
was firstly upregulated then downregulated at 35μM
(Figures 3(b) and 3(c)) to induce A549 cell apoptosis.

The caspase cascade system plays a crucial role in the
induction, transduction, and amplification of cell intracellu-
lar apoptotic signals [34, 35]. Once caspases activated, the
cells are dismantled by selectively cleaving key proteins.
Caspase-9 is activated after cytochrome c (Cyt c) was
released; then, effector caspases and Bid are activated to
remodel the mitochondria [36]. However, the process of cell
death is promoted by caspase-3, which is the primary execu-

tioner of apoptosis. In this work, as for the caspase-9 and
caspase-3, their gene expressions were significantly upregu-
lated after the treatment of 20(S)-Rh2; meanwhile, their pro-
tein contents were also upregulated, especially at 22μM
(Figure 3(c)). As a member of the inhibitor of apoptosis fam-
ily, survivin expressed in various human cancers may induce
evasion from aberrant mitotic and apoptosis progression.
The treatment of 20(S)-Rh2 downregulated the protein con-
tent of survivin at 22 and 35μM (Figure 3(c)) to induce
A549 cell apoptosis.

Annexin V-FITC/PI staining was performed on the A549
cells, and the fluorescence was recorded using flow cytometry
(Supplementary Figure S1). After the treatment of 20(S)-Rh2,
the number of necrotic cells at Q1 and early apoptotic cells at
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Figure 5: 20(S)-Rh2 reduced A549 cell migration. (a) The wound healing assay was performed on A549 cells after the treatment of 20(S)-
Rh2. (b) Healing rate of each group. DMSO was used as control. ∗p < 0:05.
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Figure 6: The result of molecular docking. (a) Docked 20(S)-Rh2 (cyan sticks) and cocrystallized ligand erlotinib (magenta sticks) in the
binding pocket of EGFR (green cartoon). (b) Amino acid residues (magenta lines) of EGFR that lie within 4Å away from 20(S)-Rh2
(cyan sticks). The hydrogen bonds were shown as black dotted lines.
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Q3 changed little. However, the number of late apoptotic cells
at Q2 significantly increased, especially at 22 and 35μM
(Figure 3(d)). The total apoptotic cells also increased in a
dose-dependent manner (Figure 3(e)). Taken the results
together, 20(S)-Rh2 could promote the apoptosis of A549
cells.

3.5. 20(S)-Rh2 Blocked A549 Cell Cycle at G0/G1 Phase. As
key regulators of the cell cycle, cell division cycle 25
(Cdc25) phosphatase family mainly contain Cdc25A,
Cdc25B, and Cdc25C [37]. Although sharing the common
biochemical mechanism of action, members of Cdc25 phos-
phatase family have unique characteristics and play specific
roles in the cell cycle regulation [38]. Cdc25A plays a crucial
role at the transition of G1 to S phase [39]. Cdc25B is acti-
vated during S phase and induces the activation of cyclin-
dependent protein kinase 1- (CDK1-) cyclin B in the cyto-
plasm [40]. Then, activated CDK1-cyclin B phosphorylates
and activates Cdc25C resulting in a positive feedback mech-
anism and entering into mitosis [41]. As shown in
Figure 4(a), after the treatment of 20(S)-Rh2, although the
gene expression of Cdc25A was upregulated at high concen-
trations, the protein contents of total-Cdc25A and phospho-
Cdc25A were initially upregulated and then downregulated
at 35μM (Figures 4(b) and 4(c)). Thus, high concentrations
of 20(S)-Rh2 could downregulate the expression of Cdc25A
to inhibit the transition of G1 to S phase.

The phosphorylation of CDKs promotes the process of
cell cycle. CDKs are initially activated by the combination
of cyclin subunits, as well as the phosphorylation on the
threonine residue in a conserved amino-acid sequence
[42]. After cyclin E complexed with CDK2, this complex
entries cell cycle into S phase and induces the initiation of
DNA replication [43]. Subsequently, cyclin A is expressed
at the boundary of G1 to S phase and forms complex with
CDK2 [44]. Then, the complex of cyclin A-CDK2 is neces-
sary for both S phase transition and DNA replication [45].
It is determined that after the treatment of 20(S)-Rh2, the
gene expressions of cyclin A, cyclin E, and CDK2 were all
downregulated, especially for cyclin A (Figure 4(a)). Further-
more, the protein contents of cyclin A, cyclin E, and CDK2
were initially upregulated and then downregulated at high
concentrations (Figure 4(c)). The downregulated contents

of cyclin A, cyclin E, and CDK2 inhibited the formation of
cyclin A-CDK2 and cyclin E-CDK2 to block cell cycle at
G0/G1 phase.

As a transcription factor, p53 is highly inducible by var-
ious stress signals, such as oncogene activation, DNA dam-
age, and nutrient deprivation [46]. Activation of the p53
can lead to cell cycle arrest and cell apoptosis [47]. The cru-
cial mechanism of p53-mediated arrest is the transcriptional
downregulation of many cell cycle-related genes [41]. As
shown in Figure 4(c), after the treatment of 20(S)-Rh2, the
protein contents of total-p53 and phospho-p53 were all sig-
nificantly upregulated to arrest cell cycle.

PI staining was performed on the A549 cells, and the
fluorescence was recorded using flow cytometry (Supple-
mentary Figure S2). After the treatment of 20(S)-Rh2, the
number of cell counts at G0/G1 phase was increased in a
dose-dependent manner. Meanwhile, the number of cell
counts at S or G2/M phase was decreased compared to the
DMSO control groups (Figures 4(d) and 4(e)). Taken the
results together, 20(S)-Rh2 could block A549 cell cycle at
G0/G1 phase.

3.6. 20(S)-Rh2 Reduced A549 Cell Migration. The inhibition
activity of 20(S)-Rh2 on A549 cell migration was assessed
by cell wound healing assay [48]. Photomicrographs were
taken at 0, 6, 12, and 24 h after wounding (Figure 5(a)).
The DMSO-treated group was used as a control. As a per-
centage of the initial wound area, the remaining cell-free
area was taken as an index of wound healing [49, 50]. In
the DMSO control group, about 8% of the wound area
healed at 6 h after wounding compared to the 0 h. Mean-
while, the wound area of the 20(S)-Rh2-treated group signif-
icantly healed at 22μM (6.8%) and 35μM (6.4%). After the
treatment of 20(S)-Rh2 at 12 h, the migration rate of the
transfected A549 cells significantly reduced in a dose-
dependent manner. The healing rate reduced to 7.5% at
35μM of 20(S)-Rh2 compared to the 17.3% of the DMSO-
treated group. Interestingly, the healing rate also signifi-
cantly reduced at 24 h indicated that 20(S)-Rh2 inhibited
the A549 cell mobility at 24 h. In general, after the treatment
of 20(S)-Rh2, the closure of the wounded area healed slowly
(Figure 5(b)). Therefore, 20(S)-Rh2 could reduce A549 cell
migration.
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Figure 7: Variations of root mean square deviation (RMSD) values for the (a) backbone of EGFR and (b) 20(S)-Rh2 during a 20 ns
molecular dynamics simulation.
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3.7. Possible Binding Conformation of 20(S)-Rh2 with EGFR.
The result of molecular docking suggested that 20(S)-Rh2
was accommodated in the binding pocket of EGFR, adopting
a similar binding conformation with that of co-crystallized
ligand erlotinib (Figure 6(a)). As shown in Figure 6(b),
20(S)-Rh2 made hydrophobic interactions with 11 amino
acid residues, including Leu694, Phe699, Val702, Ala719,
Ile720, Met742, Leu768, Met769, Pro770, Phe771, and
Leu820. The side chain sugar moiety attached at C-3 posi-
tion (Figure 1(a)) formed hydrogen bonds with residues
Glu738, Thr766, Thr830, and Asp831. Meanwhile, the
hydroxyl group at primary ring also formed a hydrogen
bond with residue Cys773. Collectively, these findings sug-
gested that both hydrophobic interactions and hydrogen-
bonding interactions could contribute to stabilize the
EGFR-20(S)-Rh2 binding.

3.8. Binding Stability of the EGFR-20(S)-Rh2 Complex. In
this work, a 20 ns molecular dynamics simulation was per-
formed to explore the binding stability of the EGFR-20(S)-
Rh2 complex. The backbone of EGFR basically kept stable
during the whole simulation process with the average RMSD
values of 0:25 ± 0:03nm (Figure 7(a)), indicating that 20(S)-
Rh2 caused little conformational change toward EGFR. Con-
versely, 20(S)-Rh2 underwent a relatively severe disturbance
during 20ns molecular dynamics simulation, with the aver-
age RMSD values of 0:82 ± 0:08nm (Figure 7(b)). As shown
in Figures 1(a) and 6(a), the side chain sugar moiety of
20(S)-Rh2 was too flexible to be fixed at the active site of
EGFR, which might be responsible for the structural distur-
bance of 20(S)-Rh2.

4. Conclusion

HTRF assay was taken to confirm that 20(S)-Rh2 signifi-
cantly inhibited the activity of EGFR kinase. The changes
in gene expressions and protein contents demonstrated that
20(S)-Rh2 regulated the EGFR-MAPK pathway to inhibit
A549 cell proliferation. The findings of the present study
suggested that 20(S)-Rh2 could promote cell apoptosis,
block cell cycle, and reduce cell migration of A549 cells.
The result of molecular docking suggested that both hydro-
phobic interactions and hydrogen-bonding interactions
could contribute to stabilize the EGFR-20(S)-Rh2 binding.
Further exploration of their binding stability was also per-
formed by molecular dynamics simulation. Collectively,
these findings suggested that 20(S)-Rh2 might serve as a
potential EGFR tyrosine kinase inhibitor.
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