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Background. Ovarian cancer (OC) is one of the most frequently seen and fatal gynecological malignancies, and oxidative stress
(OS) plays a critical role in the development and chemoresistance of OC. Materials and Methods. OS-related genes (OSRGs)
were obtained from the Molecular Signatures Database. Besides, gene expression profiles and clinical information from The
Cancer Genome Atlas (TCGA) were selected to identify the prognostic OSRGs. Moreover, univariate Cox regression, LASSO,
and multivariate Cox regression analyses were conducted sequentially to establish a prognostic signature, which was later
validated in three independent Gene Expression Omnibus (GEO) datasets. Next, gene set enrichment analysis (GSEA) and
tumor mutation burden (TMB) analysis were performed. Afterwards, immune checkpoint genes (ICGs) and the tumor
immune dysfunction and exclusion (TIDE) algorithm, together with IMvigor210 and GSE78220 cohorts, were applied to
comprehensively explore the role of OSRG signature in immunotherapy. Further, the CellMiner and Genomics of Drug
Sensitivity in Cancer (GDSC) databases were also applied in investigating the significance of OSRG signature in chemotherapy.
Results. Altogether, 34 prognostic OSRGs were identified, among which 14 were chosen to establish the most valuable
prognostic signature. The Kaplan-Meier (KM) analysis suggested that patients with lower OS-related risk score had better
prognosis. The area under the curve (AUC) values were 0.71, 0.76, and 0.85 in 3, 5, and 7 years separately, and the stability of
this prognostic signature was confirmed in three GEO datasets. As revealed by GSEA and TMB analysis results, OC patients in
low-risk group might have better immunotherapeutic response, which was consistent with ICG expression and TIDE analyses.
Moreover, both IMvigor210 and GSE78220 cohorts demonstrated that patients with lower OS-related risk score were more
likely to benefit from anti-PD-1/L1 immunotherapy. In addition, the association between prognostic signature and drug
sensitivity was explored. Conclusion. According to our results in this work, OSRG signature can act as a powerful prognostic
predictor for OC, which contributes to generating more individualized therapeutic strategies for OC patients.

1. Introduction

Ovarian cancer (OC) is a fatal female malignancy, and epi-
thelial ovarian cancer (EOC) is its most essential pathologi-
cal subtype, which ranks the fourth place among the causes
of cancer death in women in developed countries [1, 2].
According to the Global Cancer Statistics 2020, the inci-

dence and mortality rates of OC reported worldwide rank
the eighth place among female cancers [3]. OC has been
classified into stages I-IV by the International Federation
of Gynecology and Obstetrics (FIGO) classification system
[4]. Although some screening methods such as transvaginal
ultrasonography and biomarkers like human epididymis
protein 4 (HE4) and serum cancer antigen 125 (CA125)
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can screen early OC patients to a certain extent, only less
than half of the diagnosed patients can survive more than
five years or longer. This is usually due to the lack of detect-
able preinvasive phase and reliable biomarkers in OC; as a
result, over 75% of patients are diagnosed at the advanced
stage (FIGO stages III-IV) [1, 5–7]. With the development
of surgery, platinum-based adjuvant therapy, antiangiogenic
treatment, molecularly targeted treatment, and hormone
replacement therapy, the therapeutic effect of patients has
improved greatly. However, the survival rate cannot signifi-
cantly increase because of the factors such as disease recur-
rence, secondary adverse reactions, and drug sensitivity [2,
8–11]. In addition, the prognosis of OC is strongly linked
to the disease diagnosis stage; to be specific, the 5-year sur-
vival rates of patients diagnosed at stages I-IV are 93.3%,
67.7%, 26.9%, and 13.4%, respectively [12]. Given the diffi-
culty in early diagnosis and the heterogeneous prognosis of
OC, it is of great importance to investigate the carcinogenic
mechanisms, identify better prognostic indicators, and
develop individualized treatment for OC patients.

In healthy organisms, reactive oxygen species (ROS) and
reactive nitrogen species (RNS), the regular by-products of
biological metabolism, are concerned with the transduction
of various signaling pathways and the regulation of growth
factors, transcription, and hormones. Generally, the produc-
tion of ROS and RNS is balanced with multiple antioxidant
defenses [13, 14]. However, when the organism is stimulated
by endogenous factors (such as cellular aerobic metabolism,
inflammation, and enzymatic reaction) or exogenous factors
(like X radiation, ultraviolet radiation, and environmental
temperature changes), the excessive amounts of ROS and
RNS overpower the organism’s antioxidant defense system,
conducing to oxidative damage in cells and tissues, a process
called oxidative stress (OS) [15, 16]. To avoid excessive ROS
and RNS production, some compounds including flavo-
noids, catalase (CAT), glutathione (GSH), thioredoxin
(TXN), and reduced nicotinamide adenine dinucleotide
phosphate (NADPH) play important roles in countering
OS [17–19]. The concentrations of prooxidants have dual
effects on the occurrence and progression of cancers [20].
Specifically, excessive ROS and RNS amounts promote the
occurrence, progression, metastasis, and chemoresistance
of cancers [20, 21], whereas the higher ROS and RNS levels
have cytotoxic effects, which can suppress tumor develop-
ment through inducing apoptosis and other pathways [22].
Previous studies have indicated that OS is associated with
numerous diseases, including diabetes mellitus (DM) [23],
gliomas [24], leukemia [25], and OC [26]. The majority of
OC is caused by the interaction between environmental fac-
tors and genetic factors [1], so ROS and RNS levels may be
the significant factors.

OS has multiple and complex effects on OC. Accord-
ing to relevant evidence, OS levels are normally much
higher in OC patients due to the imbalance of antioxidant
mechanisms [27–29]. Moreover, oxidative damage and
mutation of deoxyribonucleic acid (DNA) bases caused
by OS are considered as the pivotal factors for the pro-
gression of multiple cancers, like breast cancer (BC) and
hepatocellular carcinoma (HCC) [30]. In particular, some

study shows that hydroxyl radical generated by Fenton
reaction can be the inducing molecule of DNA double-
strand breaks (DSB) in fallopian tubal epithelium, which
can stimulate the progression of OC [31]. More impor-
tantly, various signaling pathways modified by redox,
including Wnt/β-catenin signaling pathway [32], AKT/
mTOR signaling pathway [33], Nrf2/PGC1α signaling
pathway [34], and Notch signaling pathway [35], have
been proved to play vital roles in the pathogenesis of
OC. For instance, the nucleoredoxin oxidized by ROS
can activate Wnt/β-catenin signaling pathway [36], while
the activated Wnt/β-catenin signaling pathway has been
confirmed to be related to the enhanced platinum resis-
tance in OC [37]. OS is also involved in OC development
by affecting immune cells and metabolites in tumor micro-
environment (TME) [38, 39]. Compared with healthy
women, neutrophils have intensified functional activities
in advanced OC patients, and significantly increased
amounts of ROS are generated due to stimuli [40]. As sug-
gested in the previous studies, OS has a certain impact on
the therapeutic effect in OC patients. To be specific, OS
can affect chemoresistance through specific point muta-
tions of key redox enzymes [41]. Besides, ROS is one of
an important second messengers of immune cells, which
provides an opportunity for applying antioxidants in
immunomodulatory therapy [42]. The abovementioned
evidence strongly suggests that OS level affects the progno-
sis and treatment of OC patients. Therefore, identifying
the latent value of OS-related genes (OSRGs) is momen-
tous for predicting clinical outcomes and providing novel
therapeutic strategies for OC patients. However, to our
knowledge, no previous studies have focused on screening
OSRGs as the biomarkers and constructing the prognostic
model of OC.

In this study, data from The Cancer Genome Atlas
(TCGA), Molecular Signatures Database (MSigDB), and
Gene Expression Omnibus (GEO) databases were integrated
to construct and validate an original prognostic signature
based on OSRGs. On this basis, the differences in TME,
immune cell infiltration, signaling pathways, and tumor
mutation burden (TMB) between the high- and low-risk
patients were comprehensively analyzed, which provided
various novel immunotherapy and chemotherapy strategies
for OC.

2. Materials and Methods

2.1. Data Collection and Processing. In this study, the RNA-
seq profiles (FPKM) of OC patients and relevant clinical
information were acquired from TCGA data portal
(https://portal.gdc.cancer.gov). Besides, GSE14764,
GSE63885, and GSE23554 datasets from the GEO database
(http://www.ncbi.nlm.nih.gov/geo) were selected as the
external validation datasets, whereas GSE78220 and IMvi-
gor210 cohorts were selected to testify the effect of OSRG
signature on immunotherapy. The “GOBP_RESPONSE_
TO_OXIDATIVE_STRESS” gene set containing 436 OSRGs
was obtained from MSigDB (https://www.gsea-msigdb.org/
gsea/msigdb). For further analysis, TCGA-derived OC
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patients with complete clinical information and overall sur-
vival >30 days were retained. Finally, the integrated RNA-
seq profiles involved 364 OC patients and 423 OSRGs. The
detailed design process of this study is shown in Figure 1.

2.2. Differentially Expressed Gene (DEG) Identification. R
package “limma” (version 3.47.16) was employed to discover
DEGs. Adjusted P < 0:05 and jlog 2FoldChangeðFCÞj > 0:5
were set as the cutoff values to select significant DEGs.
Moreover, DEGs were visualized by R package “pheatmap”
(version 1.0.12) and “ggplot2” (version 3.3.3).

2.3. Functional Annotation. To investigate the potential sig-
naling pathways and biological functions enriched by the
target gene sets, R package “clusterProfiler” (version 3.99.2)
was utilized for gene set enrichment analysis (GSEA) and
Gene Ontology (GO) functional annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses. The enrichment results were visualized
by R package “enrichplot” (version 1.11.3) and “ggplot2”
(version 3.3.3), with adjusted P < 0:05 being the threshold
of significance.

2.4. Construction of a Protein-Protein Interaction (PPI)
Network. The Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database (http://www.string-db
.org/) was applied to establish the PPI network based on
prognostic OSRGs, and the network was drawn with
Cytoscape.

2.5. Establishment and Verification of the Prognostic
Signature. OSRGs with potential prognostic value were iden-
tified by univariate Cox regression analysis, with P < 0:05
being the threshold to select prognostic OSRGs. The Least
Absolute Shrinkage and Selection Operator (LASSO), a kind
of regression algorithm preserving valuable variables and
avoiding overfitting [43], was utilized to shrink the number
of OSRGs and to select the most valuable prognostic signa-
ture from all those identified OSRGs. Thereafter, the multi-
variate Cox regression algorithm was utilized to calculate
individual-level risk scores. For each OC patient, the risk
score represented the sum of the product of the expression
levels of prognostic signature genes and corresponding coef-
ficients obtained by multivariate Cox regression analysis:

Risk score = 〠
n

i=1
βi × Expið Þ, ð1Þ

where βi represents the coefficient of signature gene i, Expi
indicates the expression level of signature gene i, and n sug-
gests the total number of signature genes. R package “sur-
vival” (version 3.2.11) and R package “glmnet” (version
4.1.3) were employed for univariate and multivariate Cox
regression analyses and LASSO regression analysis,
respectively.

Thereafter, the accuracy and robustness of this prognos-
tic signature were evaluated. Firstly, R package “survminer”
(version 0.4.9) was adopted to draw the Kaplan-Meier
(KM) survival curves, which revealed the difference in

patient survival between different groups. Moreover, R pack-
age “timeROC” (version 0.4) was applied in drawing the
time-dependent receiver operating characteristic (t-ROC)
curves. Besides, GSE14764, GSE23554, and GSE63885 data-
sets were chosen as the external datasets to further validate
this prognostic signature.

2.6. Cancer Subtype. Consensus clustering (CC), a class dis-
covery algorithm specific to gene expression data, allows to
efficiently discover biologically meaningful clusters [44]. In
this study, R package “CancerSubtypes” (version 1.17.1)
was employed to apply the CC algorithm in prognostic
OSRGs, so as to identify distinct OS-related patterns. After-
wards, the optimal cluster number was determined by con-
sensus heatmap, cumulative distribution function (CDF)
curve, and silhouette width.

2.7. Calculation of Immune, Stromal, and Estimate Scores.
The ESTIMATE algorithm can utilize gene expression signa-
tures to deduce the proportions of immune and stromal
components in TME [45]. In this work, immune scores,
stromal scores, and estimate scores were calculated by R
package “estimate” (version 1.0.13), respectively.

2.8. Tumor Mutation Burden Analysis. TMB is a useful bio-
marker for predicting the immunotherapeutic response.
Generally speaking, highly mutated tumors are more likely
to contain neoantigens and respond to immune checkpoint
inhibitors (ICIs) [46]. The present study adopted R package
“maftools” (version 2.8.5) to calculate and visualize TMB in
TCGA-derived OC samples.

2.9. Immune Cell Infiltration and Immune Checkpoint Gene
Analyses. By using R package “GSVA” (version 1.40.0), the
immune cell infiltration levels in OC patients were evaluated
by single-sample gene set enrichment analysis (ssGSEA).
The characteristic gene sets containing 28 immune cell sub-
sets were acquired from the research by Charoentong et al.
[47]. Besides, the relations between the immune cell infiltra-
tion levels and the expression levels of prognostic OSRGs
were also explored.

Immune checkpoint genes (ICGs) play essential parts in
immunotherapeutic effect. In this regard, 16 previously
reported ICGs, including B7-H3, CD27, CD270, CD40,
CD58, CD70, CD86, CTLA4, ICOS, IDO1, LAG3, PD-1,
PD-L1, PD-L2, TIGIT, and TIM-3 [48], were selected to ana-
lyze the differences in their expression levels between
patients in high- and low-risk groups, which shed new lights
on the immunotherapy for OC. In addition, the Spearman
correlation analysis was conducted to explore the relations
between these ICGs and OS-related risk score.

2.10. Prediction of Immunotherapeutic Response. The tumor
immune dysfunction and exclusion (TIDE) algorithm
(http://tide.dfci.harvard.edu) was utilized to predict the
response to ICIs in each OC patient [49]. In terms of param-
eter selection, cancer type was selected as melanoma,
whereas the previous immunotherapy as Yes. Moreover,
IMvigor210 and GSE78220 cohorts were obtained to explore
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the ability of the as-constructed OSRG-based prognostic sig-
nature in predicting clinical response to immunotherapy.

2.11. Drug Sensitivity Analysis. The CellMiner database
(https://discover.nci.nih.gov/cellminer/home.do) provides
us with various drugs approved by clinically tested and by
the Food and Drug Administration (FDA) together with
drug activity levels [50]. High-grade serous OC has been
widely reported to benefit from platinum-based drugs [51].
Consequently, this study focused on three platinum-based
drugs (cisplatin, carboplatin, and oxaliplatin) obtained from
the CellMiner database, so as to unveil the relations between
the 50% growth inhibitory level (GI50/IC50) of platinum-
based drugs and the expression levels of signature genes.
Moreover, the Genomics of Drug Sensitivity in Cancer
(GDSC) database (https://www.cancerrxgene.org/), one of
the largest public databases for cancer drugs, has combined
large-scale drug sensitivity datasets and genomic datasets
[52]. Therefore, R package “oncoPredict” (version 0.2) was
adopted to predict the difference in IC50 values of various
drugs between the high- and low-risk patients.

2.12. Statistical Analysis. All statistical analyses were per-
formed with R (Version 4.1.0). The Spearman correlation
analysis was conducted to explore the relation between the
two continuous variables, while log-rank test was applied
to determine the significance of survival curves. Moreover,
the Wilcoxon test was utilized to compare the paired inde-
pendent samples, and the Kruskal-Wallis test was used to
compare three or more independent samples.

3. Results

3.1. Identification and Biological Functions of Prognostic
OSRGs. Based on the integrated gene expression profiles
involving 364 TCGA-derived OC samples and 423 OSRGs,
384 OSRGs were retained after removing genes with low
expression levels. Subsequently, univariate Cox regression
analysis was conducted to identify prognostic OSRGs, and
finally, 34 OSRGs were selected for subsequent analysis
(P < 0:05) (Figure 2(a), Supplemental Table 1).

To investigate the latent biological functions of these
OSRGs, GO and KEGG enrichment analyses were carried out

GO and KEGG
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regression analyses

Construction of OSRGs
model in TCGA cohorts
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immunotherapy

Differences in
biological function

Gene set enrichment
analysis

Tumor mutation
burden analysis

Immune checkpoint
genes analysis

Tumor immune
dysfunction and

exclusion analysis

Anti-PD-1/L1 cohorts
evalute immune
response rates

CellMiner Genomics of drug
sensitivity in cancer

Differences in
chemotherapy

ssGSEA for
immune cell

infiltration analysis

ESTIMATE
identifies tumor

microenvironment

Consensus clustering for
cancer subtypes

Interactions with
transcription factors

Cross-referenceClinical information
from TCGA (n = 376)

RNA-seq
profiles from TCGA

(n = 379)

RNA-seq profiles for further research (n = 364)

Univariate Cox regression analysis
identifies prognostic OSRGs

Cross-reference

Patients including:
complete clinical information
overall survival more than 30 days

Genes including:
shared oxidative stress-related genes

Oxidative stress-
related genes from
MSigDB (n = 436)

Biological functions of
prognostic OSRGs

Figure 1: The flow chart of this study.
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at first. As revealed by GO functional annotation, these OSRGs
were mainly enriched in cellular response to oxidative stress,
chemical stress, reactive oxygen species, hydrogen peroxide,
and cell death in response to oxidative stress in terms of biolog-
ical process (BP) category; while with regard to molecular func-
tion (MF) category, these prognostic OSRGs were enriched in
antioxidant, peroxidase, oxidoreductase, receptor antagonist,
protein tyrosine kinase, hydrolase, and binding of histone ace-
tyltransferase and heme (Figure 2(b)). Based on KEGGpathway
enrichment analysis, 34 OSRGs were mainly enriched into
pathways like nicotinate and nicotinamide metabolism, EGFR
tyrosine kinase inhibitor resistance, Th1 and Th2 cell differenti-
ation, prolactin signaling pathway, PD-L1 expression and PD-1
checkpoint pathway in cancer, and proteoglycans in cancer
(Figure 2(c)). The results of GO andKEGG analyses are, respec-
tively, displayed in Figures 2(d) and 2(e). To sum up, these
results demonstrated that prognostic OSRGs were closely asso-
ciated with ROS generation, various metabolic processes regu-
lating the occurrence and progression of tumors, drug
resistance, and immune response.

Afterwards, the PPI network incorporating 34 prognos-
tic OSRGs was constructed based on the STRING database,
which was further visualized by Cytoscape (Figure 2(f)). As
a result, there were 34 nodes and 91 edges in this network,
and some key proteins such as STAT1, DUOX1, PRDX6,
JAK2, CD38, FOXO1, HGF, SRXN1, and SIRT2 might play
key roles in the oncogenesis of OC.

According to the previous studies, some transcription fac-
tors (TFs) can act as the regulators of cellular defense mecha-

nisms to prevent OS [53]. Therefore, TFs related to prognostic
OSRGs were predicted through the TRRUST database. Accord-
ing to the results, there were some interactions between the
eight prognostic OSRGs and eight TFs (Figure 2(g)).

3.2. Consensus Clustering for Identifying Different Cancer
Subtypes. Taking 34 prognostic OSRGs as the characteris-
tic genes, cancer subtypes were identified by the consensus
clustering algorithm with R package “CancerSubtypes.” The
number of candidate clusters was set as 2-10, while the optimal
number of clusters was decided by overall consideration of
consensus heatmap, consensus cumulative distribution func-
tion (CDF) curves, and silhouette width. As a result, compared
with other numbers of clusters, consensus heatmap and CDF
curve weremore effective and the average silhouette width also
presented sufficient robustness when OC samples were
divided into four clusters (Figures 3(a) and 3(b) and Supple-
mental Figure 1a-l). Besides, the KM survival curves unveiled
that patients in subtype1 and subtype2 had noticeably
greater survival ability than those in subtype3 and subtype4
(Figure 3(c)). Therefore, four clusters were selected as the
final cancer subtypes, namely, subtype1 (n = 98 patients),
subtype2 (n = 91), subtype3 (n = 78), and subtype4 (n = 97).

3.3. Differences in Tumor Immune Microenvironment
(TIME) among the Four Subtypes. Previous studies have sug-
gested that OS is the key factor for immune cell functions in
TME [54]. TME includes not only tumor constituents but
also some nontumor constituents such as stromal and

STAT1

SIRT2

CD38

SIGMAR1

OGG1ESR1

SP1

SP3

BRCA1

ATF4

RELA

TP53

STAT3 JAK2
MICB

HGF

(g)

Figure 2: Overview for biological functions of prognostic OSRGs. (a) Forest map showing the prognostic information of 34 OSRGs. Hazard
ratios ðHRÞ < 1 represent favorable prognosis, while HR > 1 indicate poor prognosis. (b) Histogram presenting GO functional annotation on
prognostic OSRGs. (c) Histogram showing KEGG enrichment analysis on prognostic OSRGs. (d) Interactions of the top 25 GO terms. (e)
Interactions of the top 10 KEGG pathways. (f) The PPI network constructed based on prognostic OSRGs. (g) Interactions between
prognostic OSRGs (green) and transcription factors (orange).
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immune cells. The proportions of stromal and immune cells
and the purity of tumors can be evaluated by ESTIMATE
algorithm. In this work, the estimated score of subtype3
was significantly higher than those of other three subtypes,
suggesting the lowest tumor purity in subtype3. Specifically,
the immune score of subtype3 was the highest, followed by
that of subtype1, and subtype2 had the lowest immune
score. As for the stromal score, the score of subtype3 was
also the highest, that of subtype1 was the lowest, and those
of subtype2 and subtype4 were moderate (Figures 3(d)–
3(f)). Besides, correlation analysis between 34 prognostic
OSRGs and three kinds of ESTIMATE scores was also con-
ducted (Spearman, P < 0:05). According to the research
results, the three scores were positively correlated with over
half of the prognostic OSRGs, including CD38, FZD1,
HGF, IL18BP, JAK2, PDGFRA, SIRPA, and TRPM2, while
prognostic OSRGs like PRDX6 and SIGMAR1 had negative
correlation with these scores (Figure 3(g)).

Since the immune score of subtype3 was significantly
higher than those of the other three subtypes, the differ-
ence in TIME among OC subtypes was subsequently ana-
lyzed by ssGSEA. In general, compared with subtype1 and
subtype4, the immune cell infiltration level of subtype3
was the highest, while that of subtype2 was the lowest.
Furthermore, the infiltration levels of some immune cells
such as activated CD4 T cells, activated CD8 T cells, effec-
tor memory CD8 T cells, gamma delta T cells, immature B
cells, MDSC, and type2 T helper cells of subtype1 were
second only to those of subtype3 (Figures 4(a) and 4(b)).
Thereafter, the Spearman correlation analysis was performed
to examine the relations between the infiltration degrees of 28
immune cells and the expression levels of 34 prognostic OSRGs.
As a result, some genes like CD38, HGF, IL18BP, JAK2, and
SIRPAwere positively correlated with almost all the 28 immune
cells, while PRDX6 was negatively correlated with these
immune cells (Figure 4(c)). According to our study, one OSRG
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Figure 3: Tumor microenvironment in different OC subtypes. (a) Consensus heatmap showing four subtypes. (b) Silhouette width plot of
four subtypes. (c) Survival curve of four subtypes. (d–f) The tumor purity and proportions of immune and stromal constituents between
different subtypes evaluated by the ESTIMATE algorithm. (g) The correlation matrix between the three ESTIMATE scores and 34
prognostic OSRGs. ∗: P ≤ 0:05; ∗∗: P ≤ 0:01; ∗∗∗: P ≤ 0:001.
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Figure 4: Immune cell infiltration analysis among the four OC subtypes. (a) The heatmap showing immune infiltration analysis on 28 kinds
of immune cells based on the ssGSEA algorithm among the four subtypes. (b) The significant test of immune cell infiltration levels among
the four subtypes by the Kruskal-Wallis test. (c) The correlation matrix between 28 immune cells and 34 prognostic OSRGs. (d–k) The
Kaplan-Meier survival analysis on different infiltration levels of immune cells in OC. ∗: P ≤ 0:05; ∗∗: P ≤ 0:01; ∗∗∗: P ≤ 0:001.

19Oxidative Medicine and Cellular Longevity



−6

−0.2

0.0

Co
ef

fic
ie

nt
s 0.2

0.4

−5 −4
Log (𝜆)

−3 −2

33

34

22

20

4
12
5
9
6
2

16
32
29

25
21
33
199

1724
18
272611
15103131141328

31 27 22 0

23

(a)

−6

11.0

11.1Pa
rt

ia
l l

ik
el

ih
oo

d 
de

vi
an

ce

11.2

11.3

11.4

−5 −4
Log (𝜆)

−3 −2

33 31 27 22 233 33 33 33 33333333 30 29 27 27 24 24 24 23 22 19 16 8

(b)

Figure 5: Continued.

20 Oxidative Medicine and Cellular Longevity



OGG1

ARL6IP5

Hazard ratio

CD38

DUOX1

FOXO1

GPR37

HGF

IL18BP

MAPK13

PLA2R1

SCGB1A1

SIGMAR1

SLC7A11

TRPM2

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

(N = 364)

# Events: 221; Global p-value (log-rank): 6.8439e−13
AIC: 2122.09; concordance index: 0.68

0.1197

0.0572

0.0582

0.0465

0.0529

0.0091

0.0823

0.0451

0.0556

0.0255

0.0014

0.0882

0.0568

<0.001

1.392
(0.918 − 2.111)

0.798
(0.633 − 1.007)

0.727
(0.523 − 1.011)

1.230
(1.003 − 1.508)

1.211
(0.998 − 1.471)

0.763
(0.623 − 0.935)

1.390
(0.959 − 2.015)

0.719
(0.521 − 0.993)

0.806
(0.647 − 1.005)

1.501
(1.051 − 2.143)

0.863
(0.788 − 0.944)

0.817
(0.648 − 1.031)

0.816
(0.663 − 1.006)

1.657
(1.262 − 2.177)

⁎⁎⁎

⁎⁎

⁎

⁎

⁎⁎

⁎

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

(c)

0

0

2000

Su
rv

iv
al

 ti
m

e (
da

ys
) 4000

100 200
Patient ID (increasing risk score)

300

Death
Event

Alive

(d)

Figure 5: Continued.

21Oxidative Medicine and Cellular Longevity



0

−4

−3

Ri
sk

 sc
or

e

−2

100 200
Patient ID (increasing risk score)

300

−1

High
Risk group

Low

(e)

−10

−5

0

5

10

Low
Risk type

High

OGG1

ARL6IP5

CD38

DUOX1

FOXO1

GPR37

HGF

IL18BP

MAPK13

PLA2R1

SCGB1A1

SIGMAR1

SLC7A11

TRPM2

Risk type

(f)

Figure 5: Continued.

22 Oxidative Medicine and Cellular Longevity



0

0.00

High_score

0.25
p < 0.0001

0.50
Su

rv
iv

al
 p

ro
ba

bi
lit

y

0.75

1.00

1000 2000
Time (day)

Number at risk

3000 4000 5000

0 1000 2000
Time (day)

3000 4000 5000

Group
High_score
Low_score

Low_scoreG
ro

up

182

182

108

82

43

15

21

1

4

0

1

0

(g)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 − specificity

Se
ns

iti
vi

ty

AUC at 3 year: 0.71
AUC at 5 year: 0.76
AUC at 7 year: 0.85

(h)

Figure 5: Establishment of a prognostic signature incorporating 14 OSRGs for OC patients. (a, b) LASSO algorithm for shrinking the
number of OSRGs and selecting the most valuable genes from all those identified prognostic OSRGs. (c) Forest map showing more
details of 14 prognostic factors selected after multivariate Cox regression analysis. (d) Scatter diagram revealing the survival-death status
of all patients ranked by risk scores. (e) Risk scores of patients in two risk groups. (f) Heatmap displaying the expression levels of all the
signature genes. (g) The Kaplan-Meier analysis on OC patients significantly separated into high- and low-risk groups. (h) Time-
dependent ROC curves showing the OSRG-based prognostic signature of OC.
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Figure 6: Verification of the prognostic signature in external datasets. (a–d) Verification of the as-constructed prognostic signature in
GSE14764 dataset by the survival-death status diagram, Kaplan-Meier analysis, and ROC analysis. (e–h) Verification of the as-
constructed prognostic signature in GSE23554 dataset by the survival-death status diagram, Kaplan-Meier analysis, and ROC analysis.
(i–l) Verification of the as-constructed prognostic signature in GSE63885 dataset by the survival-death status diagram, Kaplan-Meier
analysis, and ROC analysis.

29Oxidative Medicine and Cellular Longevity



−4

−2

0

2

4

Type

Low_risk
Type

High_risk

(a)

−1.0

0

2

4

−
lo

g 1
0 (

p 
ad

j)

6

8

−0.5 0.0
log2 (fold change)

0.5 1.0

Down
Stable
Up

(b)

Figure 7: Continued.

30 Oxidative Medicine and Cellular Longevity



Ra
nk

ed
 li

st 
m

et
ric

Ru
nn

in
g 

en
ric

hm
en

t s
co

re

−1.0

5000 10000
Rank in ordered dataset

15000 20000

−0.5
0.0
0.5
1.0

0.0

0.2

0.4

0.6

0.8

Graft-versus-host disease
Intestinal immune network for IgA production

Asthma
Autoimmune thyroid disease

Allograft rejection
Antigen processing and presentation

Oxidative phosphorylation
Primary immunodeficiency
Proteasome
Type I diabetes mellitus

(c)

Ra
nk

ed
 li

st 
m

et
ric

Ru
nn

in
g 

en
ric

hm
en

t s
co

re

−1.0

5000 10000
Rank in ordered dataset

15000 20000

−0.5
0.0
0.5
1.0

−0.50

−0.25

0.00

Hedgehog signaling pathway
Mannose type O-glycan biosynthesis

Glycosaminoglycan biosynthesis - chondroitin sulfate/dermatan sulfate
Glycosaminoglycan biosynthesis - heparan sulfate/heparin

Basal cell carcinoma
ECM-receptor interaction

Notch signaling pathway
Other types of O-glycan biosynthesis
Protein digestion and absorption
Regulation of lipolysis in adipocytes

(d)

Figure 7: Continued.

31Oxidative Medicine and Cellular Longevity



0

5

10

TM
B 

sc
or

e

15 Wilcoxon, p = 0.05

High risk Low risk

⁎

High risk

Group

Low risk

(e)

0

−4 −3 −2
Risk score

−1

5

10

TM
B 

sc
or

e

15 R = −0.14, p = 0.025

(f)

0

0.00

0.25
p = 0.3

0.50

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.75

1.00

1000 2000 3000
Time (day)

4000 5000

TMB score
High
Low

(g)

Figure 7: Continued.

32 Oxidative Medicine and Cellular Longevity



was correlated with the infiltration degrees of most immune
cells in the same trend (positive or negative), but for one kind
of immune cell, its correlation with the expression levels of dif-
ferent OSRGs did not satisfy this pattern. These findings
revealed that the differences in immune cell infiltration levels
of OC patients might be caused by key OSRGs. Finally, survival
analysis indicated that patients with higher infiltration levels of
some antitumor immune cells (such as natural kill cells, acti-
vated CD4 T cells, and activated B cells) had better prognosis
than those with lower infiltration levels of these immune cells.
Specifically, there were significant differences in the survival
ability of patients separately divided by the infiltration levels
of activated B cells, activated CD4 T cells, activated CD8 T cells,
and natural kill T cells (Figures 4(d)–4(k)).

3.4. Establishment and Verification of the OSRG-Based
Prognostic Signature. By adopting TCGA dataset as the training
dataset, the LASSO regression was carried out to shrink the
number of genes from those 34 identified prognostic OSRGs.
On account of the coefficient of each gene, the prognostic signa-
ture incorporating OSRGs was constructed by retaining the 14
most valuable OSRGs (Figures 5(a) and 5(b)). Thereafter, the

risk score of each OC patient was calculated by multivariate
Cox regression analysis (Figure 5(c)) by the following equation:

Risk score = −0:22528ð Þ × ARL6IP5
+ −0:31889ð Þ × CD38 + 0:20716 × DUOX1
+ 0:19167 × FOXO1 + −0:27031ð Þ × GPR37
+ 0:32934 × HGF + −0:32978ð Þ
× IL18BP + −0:21529ð Þ ×MAPK13
+ 0:33075 × OGG1 + 0:40601 × PLA2R1
+ −0:14751ð Þ × SCGB1A1 + −0:20199ð Þ
× SIGMAR1 + −0:20294ð Þ × SLC7A11
+ 0:50517 × TRPM2:

ð2Þ

There were eight favorable prognostic genes and six poor
prognostic genes incorporated in this signature, and a variety
of OSRGs such as CD38, FOXO1, HGF, IL18BP, and TRPM2
were closely involved in the previous studies regarding cancer
subtypes and immune landscape.
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Figure 7: Details of gene set enrichment and somatic mutation analyses between the high- and low-risk groups. (a, b) Visualization of DEGs
between the two risk groups by heatmap and volcano plot. (c) The top 10 KEGG signaling pathways enriched in the low-risk group sorted by the
enrichment score. (d) The top 10KEGG signaling pathways enriched in the high-risk group sorted by the enrichment score. (e) Significant difference
in TMB level between the two risk groups. (f) Negative correlation between TMB value andOS-related risk score. (g) Prognostic value of TMB score.
(h) Oncoprint showing the mutation types of the top 25 driver genes and their distributions in different risk groups. ∗: P ≤ 0:05.
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Figure 8: The prognostic value of OSRG signature in immunotherapy. (a) The heatmap showing the expression levels of 16 immune
checkpoint genes (ICGs). (b) The significant test regarding the expression levels of 16 ICGs between the two risk groups by the
Wilcoxon test. (c) The Spearman correlation analysis between the OS-related risk score and ICGs. (d) Difference in the TIDE score
between the high- and low-risk groups. (e) The positive correlation between the OS-related risk score and TIDE score. (f–i) In
IMvigor210 cohort, patients receiving anti-PD-L1 immunotherapy had different response rates between the high- and low-risk
groups, and their immune phenotypes were also significantly different in term of the OS-related risk score. (j–m) In GSE78220
cohort, patients receiving anti-PD-1 immunotherapy also had different response rates between the high- and low-risk groups. ns: not
significant; ∗: P ≤ 0:05; ∗∗: P ≤ 0:01; ∗∗∗: P ≤ 0:001.
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Afterwards, depending on the median risk score, OC
patients were divided into high- and low-risk groups. As
observed from the risk score chart and the survival-death
status chart, this signature clearly divided patients into two
risk groups, and the expression levels of 14 signature genes
were visualized by heatmap (Figures 5(d)–5(f)). In particular,
upon KM curve analysis, low-risk patients had remarkably
greater survival ability than high-risk patients (P < 0:0001)
(Figure 5(g)). Moreover, the area under the curve (AUC)

values were equal to 0.71, 0.76, and 0.85 in 3, 5, and 7 years,
respectively, indicating that the OSRG-based prognostic sig-
nature exhibited good accuracy (Figure 5(h)).

To testify the stability of the as-constructed signature,
GSE14764, GSE23554, and GSE63885 datasets were selected
as the external datasets. In each external dataset, the OS-
related risk scores clearly divided OC patients into high-
and low-risk groups. To be specific, KM survival curves indi-
cated significant difference in patient prognosis between the

(c)

Figure 9: The prognostic value of OSRG signature in chemotherapy. (a) The Spearman correlation analysis between expression levels of
signature genes and GI50 values of drugs in the CellMiner database. (b) The boxplots showing the difference in platinum sensitivity
between the two groups divided by the expression levels of corresponding signature genes. (c) Pan-drug sensitivity analysis between the
patients in the high- and low-risk groups based on the GDSC database. ns: not significant; ∗: P ≤ 0:05; ∗∗: P ≤ 0:01; ∗∗∗: P ≤ 0:001.
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two risk groups (P < 0:05), and the AUC values were 0.79,
0.84, and 0.73 in GSE14764, GSE23554, and GSE63885 data-
sets, respectively (Figures 6(a)–6(l)). On the whole, the
OSRG-based prognostic signature displayed good accuracy
and robustness in evaluating the survival ability of OC patients.

3.5. Differences in Gene Set Enrichment and Somatic
Mutation between the High- and Low-Risk Groups. To
explore the biological differences between the two risk
groups, GSEA was first utilized to study the biological signal-
ing pathways involved in different groups. DEGs between
the two groups were identified by R package “limma”
(Figures 7(a) and 7(b)), then genes were sorted out in a
descending order by log2 FC value, and GSEA was later per-
formed with R package “clusterProfiler.” According to the
research results, a total of 22 signaling pathways were enriched
in the low-risk group while 97 in the high-risk group. Specifi-
cally, the enriched KEGG pathways in the low-risk group
mainly included allograft rejection, viral protein interaction
with cytokine and cytokine receptor, intestinal immune net-
work for IgA production, autoimmune thyroid disease, primary
immunodeficiency, antigen processing and presentation, natu-
ral killer cell mediated cytotoxicity, graft-versus-host disease,
and systemic lupus erythematosus. Meanwhile, the enriched
KEGG pathways in the high-risk groups mainly included gly-
cosaminoglycan biosynthesis, protein digestion and absorption,
hedgehog signaling pathway, EGFR tyrosine kinase inhibitor
resistance, ECM-receptor interaction, Notch signaling pathway,
TGF-beta signaling pathway, PI3K-Akt signaling pathway,
mTOR signaling pathway, andWnt signaling pathway (Supple-
mental Table 2 and Figures 7(c) and 7(d)). Consequently, many
immune-related signaling pathways and immune-related
diseases were enriched in the low-risk group, while a variety
of cancers and carcinogenic pathways were enriched in the
high-risk group. In addition, the signaling pathways based on
each signature gene were investigated in order to know if
these genes can be considered as potential biomarkers for
clinical application. The results revealed that there were
various significant signaling pathways related to each
signature gene, and the shared signaling pathways mainly
included allograft rejection, antigen processing and
presentation, apoptosis, cell adhesion molecules, B cell
receptor signaling pathway, chemokine signaling pathway,
and PD-L1 expression and PD-1 checkpoint pathway in
cancer (Supplemental Table 3-16).

TMB is increasingly suggested to have important clinical
significance. The higher nonsynonymous mutation burden is
linked to the prolonged progressive free survival [55], and
patients with higher TMB level have better response to immu-
notherapy [56]. Therefore, the internal relation between TMB
and OS-related risk score was further analyzed in the present
work. First of all, the TMB level of OC patients from TCGA
somatic mutation data was assessed by R package “maftools.”
As shown in Figures 7(e) and 7(f), TMB level of patients in the
high-risk group was remarkably lower than that in the low-
risk group (Wilcoxon, P = 0:05). Besides, correlation analysis
demonstrated the negative correlation between TMB and
OS-related risk score (Spearman, P < 0:05). The KM survival
analysis verified that the higher TMB level predicted better

prognosis to a certain extent, although it did not reach statis-
tical significance (Figure 7(g)). Thereafter, somatic mutation
between the two groups was further assessed in details. It
was more likely that patients underwent single nucleotide
polymorphism (SNP) that transferred from cytosine to thy-
mine, but the frequency of each mutation and genes with
higher mutation frequency were significantly different
between the high-and low-risk groups (Supplemental
Figure 2a-b). Additionally, the driver genes in OC were
evaluated, and later mutation types of the top 25 driver
genes and their distributions in OC patients were visualized
by Oncoprint (Supplemental Figure 2c and Figure 7(h)).
Upon Fisher’s exact test, differences in mutation frequencies
of HMCN1, TRANK1, KAT6B, JAG1, and TCOF1 were
significant between the two groups (P < 0:05) (Supplemental
Table 17). In conclusion, these results provide novel insights
for further study on OS and gene mutations in OC.

3.6. Prediction of Immunotherapy Response between the
High- and Low-Risk Groups. As suggested in the previous
studies, patients with higher TMB status have better clinical
responses to anti-PD-1/L1 immunotherapy [56, 57]. More-
over, OS can not only affect the expression of ICGs in cancer
cells but also act as a key mediator for ICI resistance [58, 59].
In our study, differences in signaling pathways and TMB
level between patients in the high- and low-risk groups
revealed the potential association between OS-related risk
score and immunotherapy, which inspired us to explore fur-
ther studies on immunotherapy. First of all, the study on key
ICGs unveiled that, apart from PD-1, the expression levels of
most ICGs (including CD27, CD58, CTLA4, ICOS, IDO1,
LAG3, PD-L1, PD-L2, and TIGIT) in the high-risk group
were remarkably lower than those in the low-risk group
(Wilcoxon, P < 0:05) (Figures 8(a) and 8(b)). The corre-
sponding results are reflected in Figure 8(c), showing that
the expression of most ICGs (except for PD-1 and B7-H3)
was negatively correlated with OS-related risk score. In addi-
tion, relations between the expression levels of ICGs and
prognosis were also analyzed; as a result, the higher expres-
sion levels of CD27, IDO1, PD-L2, TIGIT, ICOS, and LAG3
predicted the relatively favorable prognosis (Supplemental
Figure 3a-p). In particular, there was significant difference
in the effects of these 6 ICGs on prognosis between the
two risk groups (Supplemental Figure 4a-f), demonstrating
that the impacts of some ICGs on prognosis might be
affected by the OSRGs model. Furthermore, according to
the previous studies, the higher expression of some ICGs
may act as one of biomarkers for the enhanced ICI
sensitivity [60, 61]. Therefore, the TIDE algorithm was
adopted in the present work to predict the ICI responses in
patients. As discovered, the TIDE score of patients in the
high-risk group was significantly higher than that in the
low-risk group (Figure 8(d)), and the TIDE score was
positively correlated with the OS-related risk score
(Figure 8(e)). Collectively, it is more possible for patients
in the high-risk group to undergo immune escape, while
those in the low-risk group are more likely to benefit from
immunotherapy.
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Based on the above analyses, this work hoped to further
evaluate the clinical immunotherapeutic response rates
between patients in the high- and low-risk groups. Due to
the lack of public clinical information on anti-PD-1/L1
immunotherapy in OC, another two published datasets,
namely, IMvigor210 and GSE78220, which recorded gene
expression profiles and clinical information of patients in
metastatic urothelial cancer and metastatic melanoma after
anti-PD-L1 checkpoint inhibition therapy and anti-PD-1
checkpoint inhibition therapy, respectively [62, 63], were
selected. Patients receiving anti-PD-L1 checkpoint inhibi-
tion therapy in IMvigor210 cohort were divided into high-
and low-risk groups according to the OSRG-based prognos-
tic signature. The results revealed that patients responding to
immunotherapy had a remarkably lower OS-related risk
score than the nonresponders (Figure 8(f)) and that patients
in the low-risk group had better prognosis (Figure 8(g)).
More importantly, there were remarkably more patients
responding to immunotherapy in the low-risk group than
in the high-risk group, accounting for 30.9% and 14.8%,
respectively (Figure 8(h)). Moreover, upon the Kruskal-
Wallis test, there was significant difference in the OS-
related risk score of patients with three different immune
phenotypes (desert, excluded, and inflamed) (Figure 8(i)).
Similarly, in GSE78220 cohort, the OS-related risk score of
patients responding to immunotherapy was significantly
lower than that of the nonresponders, and there were mark-
edly more patients in the low-risk group than in the high-
risk group, occupying 69.2% and 35.7%, separately, although
there was no significant correlation between disease status
and OS-related risk score (Figures 8(j)–8(m)). In general,
these results illustrated the latent value of the OSRG-based
prognostic signature in immunotherapy and demonstrated
the role of OSRG-based prognostic signature as a potent pre-
dictor for immunotherapeutic response to a certain extent.

3.7. The Role of OSRG Model in Chemotherapy. Compared
with immunotherapy, platinum-based cytotoxic chemother-
apy is applied in the treatment of most advanced OC
patients, but platinum-based drug resistance and the associ-
ated numerous adverse reactions are the common causes of
death in patients [2, 64]. Therefore, this work is aimed at
investigating the role of OSRGs model in chemotherapy
and providing some novel strategies for OC patients. Three
platinum-based drugs (cisplatin, carboplatin, and oxali-
platin) were selected based on the CellMiner database, and
the relations between GI50 values of these drugs and the
expression levels of 14 prognostic signature genes were ana-
lyzed. As a result, the expression levels of MAPK13, CD38,
HGF, and PLA2R1 were correlated with the GI50 values of
the three platinum-based drugs (Spearman, P < 0:05)
(Figure 9(a)). Besides, boxplots were drawn to show the dif-
ferences in GI50 values of the three platinum-based drugs at
different expression levels of signature genes (Figure 9(b)).
Moreover, the corresponding data of OC cell lines in GDSC
(version 2) were selected as training datasets, and the IC50
values of 181 drugs in patients were predicted by R package
“oncoPredict.” According to the research results, there were
19 drugs with significant differences in IC50 values between

the two groups (Wilcoxon, P < 0:01), and the IC50 values
of most of these drugs of the low-risk group were noticeably
higher than those of the high-risk group, suggesting that
patients in the high-risk group were more likely to benefit
from some specific agents (Figure 9(c)).

4. Discussion

OC is a common and fatal female malignancy, and numer-
ous studies have been conducted to explore its molecular
mechanisms and therapeutic strategies. An increasing num-
ber of studies have indicated that OS is an essential factor
that affects the occurrence and progression of OC. Com-
pared with normal samples, OS level significantly increases
in OC, which also shows the protumor and prometastasis
effects [65]. Besides, OS has been extensively verified to
affect the chemoresistance and immunotherapy in cancer
patients [66, 67]. Consequently, it is necessary to investigate
the effect of OSRGs on the prognosis of OC patients. With
the advancement of high-throughput technologies and the
development of multiomics databases, an increasing number
of studies have utilized bioinformatics methods to establish
prognostic models based on gene expression profiles, which
can better predict the survival of cancer patients and identify
more powerful therapeutic targets [68]. However, to our
knowledge, no existing study has been conducted to predict
the prognosis of OC patients by constructing the OSRG-
based gene signature. Therefore, to fully understand the role
of OS in OC, 423 OSRGs in OC were analyzed in this study.
After identifying 34 prognostic OSRGs, TCGA and GEO data-
bases were chosen to establish and verify the OSRG-based
prognostic signature. Moreover, the biological functions of
these prognostic OSRGs and their effects on OC subtypes were
also examined. Afterwards, based on the prognosis of OC
patients at the individual level assessed by the OS-related risk
score, the signaling pathways, TMB, and ICGs between differ-
ent risk groups were systemically analyzed, which laid the
foundation for researchers to further understand the role of
OS in tumors and develop more effective immunotherapy
and chemotherapy treatments for OC patients.

After univariate Cox regression analysis, LASSO analy-
sis, and multivariate Cox regression analysis on 423 OSRGs,
the prognostic signature containing 14 genes (ARL6IP5,
CD38, DUOX1, FOXO1, GPR37, HGF, IL18BP, MAPK13,
OGG1, PLA2R1, SCGB1A1, SIGMAR1, SLC7A11, and
TRPM2) was constructed. Later, this as-constructed signa-
ture was comprehensively analyzed. As revealed by the KM
survival analysis, the OS-related risk score was noticeably
associated with the overall survival rate of OC patients,
and the AUC values of t-ROC curves were all higher than
0.7 after three years, indicating the high accuracy of this sig-
nature. Moreover, three independent external GEO datasets
also showed that this signature effectively predicted the clin-
ical outcomes of OC patients. More importantly, numerous
previous studies have confirmed that these signature genes
play crucial roles in multiple cancers, including OC. For
instance, the ADP ribosylation factors like GTPase 6 inter-
acting protein 5 (ARL6IP5), a kind of microtubule-
associated protein, can reduce the resistance to cisplatin in
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OC cells by suppressing DNA repair protein and promoting
apoptosis. In addition, ARL6IP5 also acts as a significant
prognostic factor and tumor suppressor in OC [69]. Forkhead
box protein O1 (FOXO1) is the downstream target of PI3K/Akt
signaling pathway, which is upregulated in EOC tissues, and its
overexpression predicts the poor prognosis. Besides, the prolif-
eration and migration abilities will significantly change in EOC
cells after FOXO1 knockdown [70]. FOXO1 has been con-
firmed to be significantly upregulated in paclitaxel-resistant
cells and tissues from chemoresistant OC patients [71]. Hepa-
tocyte growth factor (HGF), a significant component of HGF/
cMET pathway, is highly expressed in ascites and serum of
OC patients. Some studies have suggested that the increased
HGF level in serum usually predicts the shorter overall survival,
which lays a theoretical foundation for the study on drugs tar-
geting HGF/cMET pathway [72, 73]. 8-Oxoguanine DNA gly-
cosylase (OGG1) is one of the most important proteins
encoded in the base excision repair of DNA, which plays a sig-
nificant role in correcting the OS-induced DNA damage. SNP
in OGG1 has been previously suggested to contribute to more
serious nuclear DNA damage, and the rs2304277 variant in
OGG1 can increase the risk of OC in BRCA1mutation carriers
[74, 75]. Solute carrier family 7 member 11 (SLC7A11) is a
potential target for the chemosensitivity to various drugs in
cancer [76]. The expression of SLC7A11 is remarkably down-
regulated in paclitaxel-resistant OC cells, which is associated
with poor prognosis and may result from the interaction
between competing endogenous RNA (ceRNA) and cell
autophagy-related genes [77]. Therefore, the above results con-
firm that genes incorporated in this signature are not only the
most characteristic biomarkers for OC but also can provide
multiple latent biological targets to further explore the mecha-
nisms of OC and explore its therapeutic strategies.

Based on the prognostic signature of OSRGs, TCGA-
derived OC patients were divided into high- and low-risk
groups. Next, this work explored the biological differences
between the two risk groups, which provided certain insights
into the treatment of OC. GSEA results showed that some
immune-related signaling pathways such as allograft rejec-
tion, viral protein interaction with cytokine and cytokine
receptor, antigen processing and presentation, and intestinal
immune network for IgA production were enriched in the
low-risk group. Meanwhile, some pathways closely related
to cancers such as Notch signaling pathway, TGF-beta sig-
naling pathway, PI3K-Akt signaling pathway, mTOR signal-
ing pathway, and Wnt signaling pathway were enriched in
the high-risk group. In addition, TMB was negatively corre-
lated with the OS-related risk score. Upon the Wilcoxon test,
patients in the low-risk group had higher TMB levels, which
generally meant that low-risk patients had better responses
to immunotherapy [56].

Up to now, there are limited treatment strategies for OC.
Although various chemotherapeutic agents and platinum-
based adjuvant therapies have improved the prognosis of
patients to some degree, the high recurrence and chemore-
sistance rates are still the challenges encountered by OC
treatment [2]. In recent years, immunotherapy has drawn
more and more attention from the researchers and become
a new treatment strategy for OC [78]. Previous study has

suggested that OS is related to PD-1 blockade immunother-
apy [67]. Immune checkpoint blockade (ICB) is one of the
most influential immunotherapies; however, only a few
patients can benefit from this therapy [79]. Besides, immune
microenvironment characterized by T cell clonality is
reported to play important roles in clinical outcome, and
one study has suggested that the expression levels of
immune-related genes are related to the clonality of infil-
trated T cells by T cell receptor β sequencing in endometrial
cancer [80]. Based on the potential associations of signaling
pathways and TMB level with immunotherapy in the above
study, this study subsequently explored the immunothera-
peutic responses of patients between different risk groups.
First, it was found that most ICGs (except for PD-1) were
upregulated in the low-risk group, which indicated that
these patients were more likely to be sensitive to ICIs. When
predicting the immunotherapeutic response, immune dys-
function and exclusion for each patient were estimated
through TIDE module. As a result, patients in the high-risk
group were more susceptible to immune dysfunction and
escape, while those in the low-risk group were more likely to
benefit from immunotherapy. Finally, by adopting IMvigor210
and GSE78220 datasets, it was verified that the OS-related risk
score was able to predict the clinical response to anti-PD-1/L1
immunotherapy. Such result indicated that the OS-related risk
score of responders in both datasets was remarkably lower than
that of nonresponders, and patients in the high-risk group had
remarkably lower responses than the low-risk group, which
revealed that patients with lower OS-related risk score might
be more likely to benefit from anti-PD-1/L1 immunotherapy.

Additionally, this study analyzed the value of OSRG sig-
nature in OC chemotherapy. OC has been widely reported
to benefit from platinum-based drugs, and one previous
study has found that the levels of some biomarkers of OS
for instance 8-isoprostane were significantly increased in
ascites fluid of EOC patients among the platinum-sensitive
group, platinum-resistant group, and platinum-refractory
group [81]. Firstly, the relations between signature genes
and GI50 values of platinum-based drugs at the gene expres-
sion level in the CellMiner database were analyzed. For
example, mitogen-activated protein kinase 13 (MAPK13) is
an important part of MAP kinase signaling pathway, which
is previously reported to be overexpressed in gynecological
cancer stem cells including ovarian cancer [82] compared
with adjacent normal tissues. Further, it can be used as a signa-
ture gene to predict the chemotherapeutic response of cis-
platin [83]. In our study, the expression level of MAPK13
was negatively correlated with the GI50 values of carboplatin
and cisplatin, suggesting that the therapeutic effects of carbo-
platin and cisplatin might be improved with the increase in
MAPK13 expression level. On the other hand, cluster of differ-
entiation 38 (CD38) is an emerging therapeutic target [84];
when CD38 expression level is upregulated, cisplatin, carbo-
platin, and oxaliplatin all show an upward trend in their
GI50 values, which may lead to platinum resistance. After-
wards, this study investigated differences in sensitivity to che-
motherapeutic agents of patients at the individual level, which
revealed that the sensitivities of some drugs such as 5-fluoro-
uracil, temozolomide, venetoclax, telomerase inhibitor,
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luminespib, and dactinomycin were different between the
high- and low-risk groups. 5-Fluorouracil (5-FU), an exten-
sively used antitumor drug, can enhance the cytotoxicity
induced by cisplatin and radiotherapy through suppressing
DNA repair [85], but its overall response rate to cancers is
low when used alone [86]; in this regard, 5-FU is often used
in combination with other antitumor drugs. For instance,
study has confirmed that a three-drug combination strategy
(OBP-801/YM753, 5-FU, and paclitaxel) better inhibits OC
cell growth than each single-agent or the two-agent combina-
tion strategies [87]. Another study has reported that the com-
bination of intraperitoneal 5-FU and cisplatin is a potent
strategy for the treatment of relapsed or residual EOC [88].
Venetoclax is an effective agent for chronic lymphocytic leu-
kemia (CLL) and acute myeloid leukemia (AML) [89, 90],
and its minimal combination with paclitaxel has a great
effect on OC cells [91]. In conclusion, these analyses, com-
bined with previous immunotherapy strategies, can shed
new lights on the more accurate individualized treatment for
OC patients.

Furthermore, since the disease stage of OC is one of the
most important clinical characteristics, cancer subtypes were
also analyzed based on OSRGs in this study. According to
the results, TME and immune cell infiltration levels were dif-
ferent among these four OC subtypes, and the expression
levels of some key prognostic OSRGs were remarkably
linked to the infiltration levels of some immune cells, dem-
onstrating that OS might be concerned with the regulation
of TME. Interestingly, this analysis revealed that patients
with higher infiltration levels of immune cells had superior
prognosis, which seemed to be contradictory with the previ-
ous survival analysis of different subtypes suggesting that
patients of subtype3 showed poor prognosis while those of
subtype2 had better prognosis. Such observation further
proved the complexity of TME, which indicated that antitu-
mor immune cells were not the best predictor of patient
prognosis and that patient prognosis might also be affected
by the combination of protumor immune cells, stromal
components, and non-TME factors.

Generally, this study explores the prognosis of OC patients
based on OSRGs, which is beneficial to guide the individual
treatment for OC patients. However, some limitations should
be noted in this study. First, due to lack of more public
resources and the impact of batch effects, the number of OC
patients in our study was limited, so larger datasets are neces-
sary to validate our prognostic signature in the future. Besides,
due to the lack of normal samples in TCGA, data from OC
samples and normal samples were not compared. Further-
more, due to the scarcity of clinical information on immuno-
therapy in OC, it was impossible to accurately evaluate the
effect of immunotherapy of the OSRG-based prognostic signa-
ture in OC. Finally, the results of this study should be further
testified by biological experiments and clinical trials.

5. Conclusions

In this study, a novel and reliable prognostic signature inte-
grating 14 OSRGs is constructed, and the accuracy of this
signature is well validated in several external databases. After

comprehensively investigating the association of OS-related
risk score with multiple biological processes, these OSRGs
are confirmed to act as potential biomarkers of OC. Besides,
associations between the OS-related risk score and the
impact of immunotherapy are investigated thoroughly by
combining immune checkpoint analysis, TIDE algorithm,
and various databases containing immunotherapeutic
response information, which reveals that OC patients with
lower OS-related risk score are more likely to benefit from
anti-PD-1/L1 immunotherapy. In addition, the sensitivity
of chemotherapy is different in OC patients with low- and
high-risk stage. Generally, this study is beneficial to assist
researchers to understand the underlying pathogenesis of
OC and shed new lights on the clinical treatment of OC.
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Supplementary 1. Supplemental Figure 1: complementary
figures of cancer subtype analysis. (a–h) Consensus heatmap
showing various subtype numbers (k = 2 − 10, k = 4 is shown
in Figure 3). (i) The legend of consensus matrix, where the
color of consensus heatmap from white to blue represents
the value of matrix from 0 to 1. (j–k) The cumulative distri-
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mutation burden analysis. (a) Detailed information of
somatic mutation of high-risk patients. (b) Detailed infor-
mation of somatic mutation of low-risk patients. (c) Oncoprint
showing the mutation types of the top 25 driver genes and their
distributions in all TCGA-derived OC patients. Supplemental
Figure 3: assessment of the prognostic significance of 16
immune checkpoint genes (ICGs). (a–p) Prognostic signifi-
cance of each ICG, and 6 ICGs were selected as prognostic fac-
tors. The upregulated expression of these 6 ICGs predicted the
favorable prognosis. Supplemental Figure 4: further assessment
of the prognostic significance of 6 prognostic immune check-
point genes (ICGs). (a–f) The Kaplan-Meier survival analysis
indicating the noticeably disparate impacts of these 6 ICGs
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