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Oral squamous cell carcinoma (OSCC) is a common malignant tumor of the oral cavity. Shelterin complex gene (SG) has an
important role in regulating telomere structure and length. SG is considered promising as a novel prognostic marker for cancer
and a potential target for tumor therapy. However, SGs have not been systematically studied in OSCC. We analyzed SGs based
on public data from OSCC patients and showed that SGs are closely associated with the prognosis of OSCC patients. Two
different subtypes of SGs were identified in the TCGA and GEO cohorts, and LASSO regression analysis was used to further
construct an SGs-related prognostic model. Randomized cohorts and different clinical subgroups validated the model’s
accuracy. The assessment of clinical characteristics, tumor mutational burden (TMB), and tumor microenvironment (TME)
between high- and low-risk scores groups showed lower TMB, more abundant immune cell infiltration, and better prognosis in
the low-risk group. According to the IPS analysis, patients in the low-risk group were more responsive to immunotherapy.
This study establishes a foundation for research on SG and confirms that risk scores can predict prognosis and guide clinical
treatment in OSCC patients.

1. Introduction

Telomeres are specialized nucleotide arrays located at the
ends of linear chromosomes. As a result of shelterin being
able to lengthen telomeres and protect the ends, malignant
cells have bypassed senescence, which results in genomic
instability [1–3]. The DNA damage signaling pathways
inhibited by shelterin include classical NHEJ, ATM and
ATR signaling, alternate NHEJ, resection, and homologous
recombination. There are six proteins in the shelterin com-
plex, including TERF2-interacting protein 1 (TERF2IP),
TERF1 and TERF2 (telomeric repeat-binding proteins),
adrenocortical dysplasia protein homolog (ACD), POT1

(patent for telomere protection), and TIF2 (TERF1-interact-
ing protein 2) [4–6].

One of the most common oral cancers is OSCC (oral
squamous cell carcinoma), with more than 350,000 diagno-
ses each year, corresponding to roughly 2% of all tumor
diagnoses [7, 8]. OSCC patients have a low 5-year survival
rate (less than 60%), and there are no optimal clinical treat-
ment options [9, 10]. Therefore, novel treatment targets are
urgently needed to improve. A more reliable prognostic
model is also needed to make treatment more feasible.

Shelterin complex genes (SGs) have been implicated in
cancer development in previous studies [11, 12]. Li et al. found
that telomere dysfunction and cellular senescence could be

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2022, Article ID 6849304, 35 pages
https://doi.org/10.1155/2022/6849304

https://orcid.org/0000-0002-1848-3990
https://orcid.org/0000-0002-2378-8377
https://orcid.org/0000-0001-5996-4814
https://orcid.org/0000-0001-6391-4289
https://orcid.org/0000-0002-9124-2181
https://orcid.org/0000-0003-0767-2435
https://orcid.org/0000-0001-5001-8709
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6849304


TIN 2 TPP 1

POT 1

RAP 1

TRF 2TRF 1

(a)

2

4

6

8

G
en

e e
xp

re
ss

io
n

TERF 1

TERF 2

TERF 2 I
P

ACD
POT 1

TIN
F 2 

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

Normal
Tumor

Type

(b)

Shelterin
Risk factors
Favorable factors

Postive correlation with P < 0.001
Negative correlation with P < 0.001

Cox test, pvalue

1e-04

0.001

0.01

0.05
1

(c)

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Years)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Years)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Years)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Years)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Years)

p = 0.021

p = 0.004 p = 0.012

p = 0.002 p = 0.034

TINF2

+
+

ACD

High

Low

POT1

TERF2 TERF1

(d)

Figure 1: Continued.

2 Oxidative Medicine and Cellular Longevity



0 5 10 15 20 25

–Log10 (P)

CORUM:1197: Telomere-associated protein complex
CORUM:1206: TRF-Rap1 complex I, 2MD
GO:0070198: Protein localization to chromosome, telomeric region
CORUM:1201:TRF1-TIN2 complex

GO:0031848: Protection from non-homologous end joining at telomere
GO:0006278:RNA-dependent DNA biosythetic process

GO:0061820: Telomeric D-loop disassembly

(e)

Telomere-associated protein complex
TRF-Rap1 complex I, 2MD
Protein localization to chromosome, telemeric region
TRF1-TIN2 complex
RNA-dependent DNA biosynthetic process
Protection from non-homologous end joining at telom
Telomeric D-loop disassembly

(f)

Figure 1: SGs in OSCC have distinct characteristics and differences. (a) Schematic illustration of shelterin complex. The shelterin complex is
composed of six core proteins, including TERF2-interacting protein 1 (TERF2IP), telomeric repeat-binding factors 1 and 2 (TERF1 and
TERF2), adrenocortical dysplasia protein homolog (ACD), protection of telomeres 1 (POT1), and TERF1-interacting protein 2 (TINF2).
(b) The mRNA expression levels of SGs were compared between normal and tumor samples. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗ P < 0:001.
(c) A network of correlations including SGs. The lines connecting SGs represented their interaction with each other. The size of each
circle represented the prognosis effect of each regulator and scaled by P value. Favorable factors for patients’ survival were indicated by a
green dot in the right half of the circle and risk factors indicated by the purple dot in the right half of the circle. (d) The results of
survival analysis showed the relationship between the expression level of SGs and the prognosis of OSCC patients. (e) The image showed
the histogram of the enriched pathways associated with the SGs. The abscissa was the value of -Log10P and longitudinal which were
different enrichment pathways, sorted by the value of -Log10P. (f) The image showed the network of enriched terms. Each node
represented an enriched term and was colored by its cluster ID.

Table 1: The functional enrichment analysis of SGs.

GO Description Count Log10(P) Log10(q)

CORUM:1197 Telomere-associated protein complex 6 -24.02 -19.99

CORUM:1206 TRF-Rap1 complex I, 2MD 5 -18.77 -15.38

GO:0070198 Protein localization to chromosome, telomeric region 5 -15.90 -12.94

CORUM:1201 TRF1-TIN2 complex 4 -15.36 -12.53

GO:0006278 RNA-dependent DNA biosynthetic process 5 -14.47 -11.72

GO:0031848 Protection from non-homologous end joining at telomere 3 -9.82 -7.26

GO:0061820 Telomeric D-loop disassembly 3 -9.44 -6.90

“Count” is the number of genes in the given ontology term. “Log10(P)” is the P value in log base 10. “Log10(q)” is the multitest adjusted P value in log base 10.
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Figure 2: Continued.
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induced by targeting POT1 with MiR-185 [13]. During gall-
bladder cancer development, the telomere length of the SG is
also significantly altered [14]. SG is considered promising as
a novel prognostic marker for cancer and a potential target
for tumor therapy. In OSCC, its role is not yet fully under-
stood. We must comprehensively evaluate immunocellular
infiltration characteristics in the SG-regulated tumor microen-
vironment (TME) in order to better understand the microen-
vironment of OSCC and to develop personalized treatments.

In order to predict prognosis and guide treatment, it was
of primary importance to comprehensively evaluate the
expression patterns of SGs in OSCC and develop a prognos-
tic risk scoring model for SGs. Risk scores were used to
assess tumor mutational burden, tumor microenvironment,
immunotherapy response, drug sensitivity, and clinical
prognosis in OSCC patients. Findings from these studies
may provide new perspectives on how to better understand
and treat SGs in OSCC.
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Figure 2: Analysis of the expression distribution of SGs based on single-cell data. The overview tab of the GSE103322 dataset. Two UMAP
plots with cells colored by cluster ID (a) and cell type (b) are displayed. (c) The pie plot shows the cell number distribution of each cell type.
(d) The expression of SGs is visualized at single-cell and cell-type resolution. (e) Violin plots visualize the distribution of SGs across different
cell types.
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Figure 3: Continued.
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2. Methods

2.1. OSCC Data Preparation. OSCC patient-related data
were retrieved from TCGA (https://portal.gdc.cancer.gov/)
and GEO databases (https://www.ncbi.nlm.nih.gov/geo/).
TCGA-OSCC data (workflow type, HTSeq-FPKM) were
obtained from the TCGA-HNSCC project. In the subse-
quent analysis, FPKM values were transformed using log2
(FPKM +1) [15, 16]. Gene Expression Omnibus data for
GSE41613 was obtained from (GEO, https://www.ncbi.nlm
.nih.gov/geo/query/acc.cgi?acc=GSE41613) database, Plat-
form: GPL570. An RMA normalization was carried out on
the GSE41613 datasets. From GSE103322, we derived the
data on single cells RNA-seq from oral cancer (http://www
.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103322). Cells
from 18 patients with oral tumors made up 5902 single cells
[17]. Public databases listed above are freely accessible, and
the study followed their publication guidelines and data
access policies.

2.2. Identification of Differentially Expressed SGs. By analyz-
ing TCGA-OSCC and GSE41613 samples, we aimed to
determine which SGs differed in expression between normal
and tumor tissues. The SVA package was used to normalize
RNA expression profiles and eliminate batch effects on

TCGA and GEO data [18]. Researchers have used the R
package “limma” to identify SGs that show a significant dif-
ference (P > 0:05) between normal tissue and tumor tissue
[19]. The Metascape database (https://metascape.org/gp/
index.html#/main/step1) contains gene annotations and
analyses [20]; this study used Metascape to perform enrich-
ment analyses on SGs.

2.3. SGs-Based Classifications of OSCC Patients in the TCGA-
OSCC and GSE41613 Cohorts.We identified the distinct pat-
terns of SG expression in OSCC patients by using consensus
clustering based on their expression levels to classify them
further. The above steps were performed through the R
package “ConsensusClusterPlus” and repeated 1000 times
to ensure clustering stability [21, 22]. The CDF curve for
the consensus heat map is determined by the area’s relative
change and the consensus heat map’s consensus score. To
determine the prognosis of patients with different OSCC, a
Kaplan-Meier survival analysis was performed.

2.4. Gene Set Variation Analysis (GSVA). Functional enrich-
ment analysis of SGs clusters was conducted using the
“GSVA” R package [23]. ClusterProfiler was used for func-
tional annotation, and the MSigDB gene set file obtained
from the GSEA-MSigDB database (https://www.gsea-
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Figure 3: Subgroups of OSCC defined by genes involved in pyroptosis. (a) CDF curves of the consensus score (k = 2 – 9) in the two cohorts.
(b) Relative change in the area under the CDF curve (k = 2 – 9) in the two cohorts. (c) Patients in two cohorts were grouped into two clusters
according to the consensus clustering matrix (k = 2). (d) Kaplan–Meier survival analyses of the patients with SGCluster A and SGCluster B.
(e) The two cluster heat maps based on SGs with clinical characteristics. Unknown: data not available. (f) PCA plot for OSCC patients based
on the SGCluster.

8 Oxidative Medicine and Cellular Longevity

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41613
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41613
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103322
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103322
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://www.gsea-msigdb.org/


SGcluster
Project
KEGG_BASAL_TRANSCRIPTION_FACTORS

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS

KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS

KEGG_SPLICEOSOME

KEGG_NUCLEOTIDE_EXCISION_REPAIR

KEGG_CELL_CYCLE

KEGG_HOMOLOGOUS_RECOMBINATION

KEGG_MISMATCH_REPAIR

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS

KEGG_RNA_DEGRADATION

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES

KEGG_AUTOIMMUNE_THYROID_DISEASE

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION

KEGG_HEMATOPOIETIC_CELL_LINEAGE

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION

KEGG_OLFACTORY_TRANSDUCTION

KEGG_PPAR_SIGNALING_PATHWAY

KEGG_ARACHIDONIC_ACID_METABOLISM

KEGG_LINOLEIC_ACID_METABOLISM

KEGG_RETINOL_METABOLISM

2

1

0

–1

–2

SGcluster

A

B

Project

GSE41613

TCGA

(a)

1.00

1.75

1.50

1.25

0.00

Im
m

un
e i

nfi
ltr

at
io

n

Acti
vat

ed.B.ce
lln

a

Acti
vat

ed.CD4.T
.ce

lln
a

Acti
vat

ed.CD8.T
.ce

lln
a

Acti
vat

ed.den
driti

c.c
elln

a

CD56
brig

ht.n
atu

ral
.kille

r.c
elln

a

CD56
dim

.natu
ral

.kille
r.c

elln
a

Eosin
ophiln

a

Gam
ma.d

elt
a.T

.ce
lln

a

Im
matu

re.
.B.ce

lln
a

Im
matu

re.
den

driti
c.c

elln
a

MDSC
na

Macr
ophage

na

Mast
.ce

lln
a

Monocyt
en

a

Natu
ral

.kille
r.T

.ce
lln

a

Natu
ral

.kille
r.c

elln
a

Neutro
philn

a

Plas
macy

toid.den
driti

c.c
elln

a

Regu
lat

ory.
T.ce

lln
a

T.fo
llic

ular
.help

er.
cel

lna

Typ
e.1

.T.help
er.

cel
lna

Typ
e.1

7.T
.help

er.
cel

lna

Typ
e.2

.T.help
er.

cel
lna

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎

SGcluster
A

B

(b)

Figure 4: Continued.
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msigdb.org/) was used to obtain the gene set
(c2.cp.kegg.v7.2.symbols.gmt).

2.5. Construction of an SG-Related Risk Scores Model. SG-
related patterns are differentiated by differently expressed
genes (DEGs). Subsequently, DEGs with P < 0:05 were also
included in the univariate Cox regression test utilizing the
selection operator (LASSO) algorithm for dimensionality
reduction and least absolute shrinkage [24–26]. Based on
standardized expression levels and coefficients, each patient
was assigned a risk score (RS). A median risk score was used
to group patients into high- and low-risk groups. Using the
R package “survminer,” survival analysis was conducted
between groups of high- and low-risk individuals. Analyses
of multivariate and univariate Cox regression were also per-
formed to determine the prognostic value of risk scores.

2.6. Tumor Mutation Burdens (TMB). In order to summarize
OSCC patients’ mutations, we used the COSMIC (Catalogue
of Somatic Mutations in Cancer, https://cancer.sanger.ac.uk/
cosmic) and then gathered genomic mutation data of
TCGA-OSCC for further analysis [27, 28].

2.7. Evaluation of the Chemotherapy and Immunotherapy
Response Based on RS. For predicting the IC50 of chemo-
therapy drugs for OSCC patients from TCGA, the “pRRo-
phetic” package was used to explore their sensitivity to
different treatments. We compared the high-risk and low-
risk groups. The “ESTIMATE” package was used to calculate
the stromal scores, ESTIMATE scores, immune scores, and
tumor purity. Additionally, we assessed immune cell infiltra-
tion levels in the TME by using the ssGSEA algorithm in the
R “GSVA” package. From The Cancer Immunome Atlas
(TCIA), we downloaded immunophenotype scores (IPS)
from the TCGA-OSCC project. The higher the IPS, the bet-
ter the accuracy of the more accurate result [29, 30].

2.8. Statistical Analysis. Statistical analyses were carried out
using R version 4.1.0, GraphPad Prism 8, and SPSS 23.0.
We used the cluster profile package to examine GO, KEGG,
and functional annotation enrichment. The ROC curve anal-
ysis was conducted using the “timeROC,” “survminer,” and
“survival” R packages. The volcano and heat map were
developed by R software’s “ggplots” package. P values for
all statistical analyses were two-sided, and a significance level
of P < 0:05 was considered.

3. Results

3.1. Identification of SGs between Normal and Tumor Tissues
in OSCC. The shelterin complex consists of six proteins
(Figure 1(a)), termed TRF1, TRF2, RAP1, TPP1, POT1,
and TIN2, and abnormal expression of shelterin has been
observed in various types of cancers. However, the study of
shelterin genes in OSCC is unclear. Compared with normal
tissues, we found that all 6 SGs were significantly highly
expressed in the tumor group (Figure 1(b)). The compre-
hensive landscape of the interactions between 6 SGs in
OSCC patients is illustrated in the network. A positive corre-
lation was found between the 6 SGs, many of which were
risk factors for OSCC (Figure 1(c)). The occurrence and
development of OSCC may be influenced by crosstalk.
According to the survival analysis, high expression levels of
TERF1, TERF2, ACD, and POT1 contributed to poor prog-
nosis, while high expression level of TINF2 had a better sur-
vival advantage (Figure 1(d)). The functional enrichment
analysis of SGs was performed through the Metascape web-
site, and the results showed that SGs were mainly enriched
in telomere-related pathways, such as telomere-associated
protein complex, protection from nonhomologous end join-
ing at telomere, RNA-dependent DNA biosynthetic process,
and telomeric D-loop disassembly (Figure 1(e); Table 1).
Enriched terms were selected and rendered as a network plot
(Figure 1(f)).
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Figure 5: Construction of SGs-related risk signature. (a) Validation was performed for tuning parameter selection through the least absolute
shrinkage and selection operator (LASSO) regression model for overall survival (OS). (b) Cross-validation for tuning parameter selection in
the lasso regression. (c) SGs-related prognostic model constructed in total OSCC patients. (d) Plots of the AUC for time-dependent ROC
performance. (e) SGCluster B has a higher risk score. (f) Expression levels of SGs genes in high- and low-risk groups.
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Figure 6: Continued.
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3.2. Analysis of the Expression Distribution of SGs Based on
Single-Cell Data. We obtained 5902 single-cell data from
18 oral tumor patients from GSE103322 to determine the
expression distribution of SGs in different cell types. Using
TISCH (Tumor Immune Single-cell Hub) database, we visu-
alized them. Findings revealed that these cells were divided
into 20 clusters (Figure 2(a)). Primary cell types include
CD4Tconv, CD8T, CD8Tex, endothelial, fibroblasts, malig-
nant, Mast, mono/macro, myocyte, myofibroblasts, and
plasma (Figure 2(b)). Among them, malignant enrichment
was the most, and fibroblasts in the second (Figure 2(c)).
Then we further visualized the expression levels of SGs at
single-cell resolution (Figure 2(d)), and we found that
TERF2I1 and TINF2 gene expression distribution were the
most enriched, mainly distributed on CD8Tex, endothelial,
fibroblasts, Mast, mono/macro, and myocyte (Figure 2(e)).

3.3. Classification of Tumors Based on SGs. Based on the
expression levels of SGs, we conducted a consensus cluster-
ing analysis on OSCC patients to better understand the role
of SGs in OSCC. When we increased the clustering variable
(k) from 2 to 9, we found the highest correlation between
OSCC patients and other groups when k = 2 (Figures 3(a)–
3(c)). Kaplan-Meier analysis revealed that SGCluster A had
a significantly greater overall survival time (OS) than
SGCluster B (P = 0:009, Figure 3(d)). Our heat map com-
pares the SGs expression and clinical characteristics between
the two clusters. Based on the heat map, we found that
except for TINF2, the rest of the SGs were significantly
enriched in SGCluster B (Figure 3(e)). The PCA analysis
demonstrated that the SGs-based classification pattern could
classify OSCC patients into two distinct subgroups
(Figure 3(f)). The GSVA enrichment analysis explored the
biological differences between these two clusters
(Figure 4(a)). SGCluster A is significantly enriched for can-

cer and immune-related pathways, such as complement
and coagulation cascades, autoimmune thyroid disease, ppar
signaling pathway, olfactory transduction, cytokine receptor
interaction, hematopoietic cell lineage, neuroactive ligand-
receptor interaction, arachidonic acid metabolism, linoleic
acid metabolism, and retinol metabolism. SGCluster B is
enriched in nucleotide excision repair, cell cycle, glycosyl-
phosphatidylinositol GPI anchor biosynthesis spliceosome,
basal transcription factors, mismatch repair, aminoacyl-
tRNA biosynthesis, homologous recombination, ubiquitin-
mediated proteolysis, and RNA degradation. We also ana-
lyzed the level of immune infiltrating cells between the two
subgroups (Figure 4(b)). We found that SGCluster A exhib-
ited a greater enrichment of immune cells, such as activated
B cells, CD8 T cells, eosinophilia, macrophage, Mast cell,
and neutrophil, which may also be the one reason why
SGCluster A has a better prognosis.

In addition, we identified 1329 DEGs between SGCluster
A and SGCluster B (Supplementary file 1) and performed
functional enrichment analysis on them. The DEGs enriched
in GO pathways were mainly involved in DNA replication,
DNA helicase activity, condensed chromosome, nuclear
chromosome, kinetochore, and DNA replication
(Figure 4(c)). In the KEGG enrichment analysis, DEGs were
mostly enriched in pathways related to cell cycle, DNA rep-
lication, and cellular senescence, such as cell cycle, cellular
senescence, ECM-receptor interaction, base excision repair,
p53 signaling pathway, and PI3K-Akt signaling pathway
(Figure 4(d)).

3.4. Development and Validation of an SGs-Related Risk
Signature. Based on DEGs between SGCluster A and
SGCluster B, we developed a prognostic model to explore
further the application of SGs in OSCC patients’ prognosis
and treatment. To screen DEGs for genes associated with
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Figure 6: Verification of SGs-related risk signatures. Validation cohort 1 (a, c, e, and g), and the validation cohort 2 (b, d, f, and h). (a, b)
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Figure 7: Relationship between risk scores and clinical characteristics. Relationship between risk score and age (a), gender (b), stage (c),
grade (d), T (e), and N (f).
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prognosis, we performed a univariate Cox analysis (Supple-
mentary file 2). Based on the results of the LASSO algorithm,
the best prognostic genes were identified in OSCC patients
(Figures 5(a) and 5(b)). We constructed multivariate Cox
prediction signatures based on the prognostic genes identi-
fied with LASSO. The final analysis identified 14 genes asso-
ciated with risk. Patients with OSCC were classified into
low- and high-risk categories based on their median risk
score. According to Kaplan-Meier plots, low-risk patients
tend to have a better prognosis (Figure 5(c)). We con-
structed time-dependent ROC curves to evaluate the model’s
predictive ability, with AUCs reaching 0.733 after 1 year,
0.744 after 2 years, and 0.742 after 5 years (Figure 5(d)).

The results indicate that the model is a good predictor. In
addition, we evaluated the risk scores of SGCluster A and
SGCluster B. We found that SGCluster A has a lower risk
score (Figure 5(e)), supporting our previous findings that
SGCluster A has a better outcome (Figure 3(d)). Figure 5(f)
shows the expression levels of specific SGs in high-risk and
low-risk groups, in which TERF1, TERF2, ACD, and POT1
are all significantly highly expressed in the high-risk popula-
tion (Figure 5(f)).

To further test the model’s robustness, OSCC patients
were randomly assigned to validation cohort 1
(Figures 6(a)–6(c), and 6(e)) and validation cohort 2
(Figures 6(b)–6(d), and 6(f)). We calculated the risk score
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Figure 8: Nomogram to predict the 1-year, 2-year, and 3-year overall survival rates of OSCC patients. (a) A nomogram for predicting
survival. Nomogram calibration plots for predicting OS at 1 (b), 2 (c), and 3 (d) years.
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using the same algorithm, and we found that greater risk was
associated with a worse outcome (Figures 6(a) and 6(b)).
The AUC confirmed the reliability of the model results for
both the validation cohort 1 (Figure 6(g); AUC at one, three,
and five years were 0.799, 0.808, and 0.790, respectively) and
the validation cohort 2 (Figure 6(h); AUC at 1, 3, and 5 years
were 0.721, 0.706, and 0.765, respectively).

3.5. Relationship between Risk Scores and Clinical
Characteristics. We analyzed the relationship between
clinical characteristics (age, gender, stage, grade, T, and
N) and risk scores to validate the accuracy of risk scores
further and identify their role (Figures 7(a)–7(f)). A sig-
nificant association was found between risk scores and
stage (Figure 7(c)), T stage (Figure 7(e)), and N stage
(Figure 7(f)), and patients with poorer clinical characteris-
tics (stages III-IV, N1-3) tended to have higher risk scores.
In addition, we found that risk score remained an excel-
lent predictor (patients with age ≤65, age >65, MALE,
FEMALE, stages III-IV, G1-2, G3-4, T1-2, T3-4, N0, and
N1-3). We created risk scores as well as nomograms to
extend their clinical application. Each patient was assigned
a total score based on the scores of the item indicators,
and patients with higher total scores had poorer clinical
outcomes (Figure 8(a)). Calibrating the nomogram was
good predictive power (Figures 8(b)–8(d)).

3.6. SGs-Related Risk Scores Could Predict and Represent
Tumor Mutational Burden (TMB). According to an increas-
ing amount of evidence, TMB may be a catalyst for tumor
progression. Using the COSMIC database, we analyzed the
mutation status of OSCC. The most common mutation
types in OSCC were missense, G>A, and C>T mutations
(Figures 9(a) and 9(b)). According to the TCGA data,
TP53 is the gene with the highest mutation rate in OSCC,
so we looked into the relationship between TP53 mutations

and gene expression levels in this tumor (Figures 9(c)–9(h)),
determining that the TP53 mutation group has a higher level
of TERF2IP (Figure 9(f)) and TERF2 (Figure 9(h)) expres-
sion. In addition, high TMB scores are associated with a
worse prognosis (Figure 9(i)). This resulted in a higher
TMB score in the high-risk group (Figure 9(j)), indicating
the importance of the risk score in TMB.

3.7. The Role of Risk Scores in the Tumor Microenvironment
(TME). The application of the ssGSEA algorithm allowed us
to estimate immune cell infiltration in the high-risk and low-
risk groups. Results revealed that the low-risk group had more
immune cells present (Supplementary Figure 1); the resting
Mast cells, CD4 memory activated T cells, CD8 naive B cells,
T cell regulatory (Tregs) cells, plasma cells, and T cell
CD8 were all negatively correlated with risk. The risk
scores were positively correlated with macrophages M0,
CD4 memory resting T cells, NK cells resting, and Mast cells
activated (Figure 10(a)). Furthermore, we used ESTIMATE
(Figures 10(d)–10(g)). ssGSEA algorithms (Figure 10(c))
were used to analyze the TME of OSCC. The low-risk group
had a higher immune score, immune-infiltrating cells, and
immune pathways (Figure 10(d)).

3.8. Exploring the Application Value of Risk Score in Clinical
Treatment. Risk scores related to SGs have been found to
play an important role in TMB and TME. In order to further
explore the clinical utility of risk scores, we performed uni-
variate and multivariate Cox analyses to identify their prog-
nostic value. Based on the findings, OSCC patients’ risk
score was an independent prognostic factor (Figure 11(a)).
A wide variety of tumors have been treated with immuno-
therapy. Through the TCIA database, OSCC patients’ IPS
data were examined to determine the risk score’s role in
immunotherapy (Figures 11(b)–11(g)). In low-risk patients,
CTLA4 expression was significantly high (Figure 11(c)).
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Accordingly, the IPS score showed that low-risk patients
received immunotherapy more readily than high-risk
patients (Figures 11(d)–11(g)), which could help our clinical

treatment. GSEA enrichment analysis revealed the high-risk
groups tended to be enriched for the following: dilated car-
diomyopathy, ECM receptor interaction, metabolism of
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Figure 10: The relationship between risk score and TME. (a) Correlation analysis of immune infiltrating cells and risk score. (b) Heat map
of the relationship between microenvironment and risk score. (c) Enrichment analysis of immune cells and immune-related pathways in
high- and low-risk groups. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗ P < 0:001. Comparison of immune score (d), stromal score (e), tumor purity
(f), and ESTIMATE score (g) in high- and low-risk groups.
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xenobiotics by cytochrome p450, focal adhesion, adipocyto-
kine signaling pathway, starch, sucrose metabolism, and ste-
roid hormone biosynthesis (Figure 11(h)). Low-risk group
members were primarily enriched for allograft rejection, an
intestinal immune network for igan production, cell adhe-
sion molecules, primary immunodeficiency, and autoim-
mune thyroid disease (Figure 11(i)). Based on the GDSC
database, we also evaluated the response of chemotherapeu-
tic agents in high and low patients (Genomics of Drug Sen-
sitivity in Cancer, https://www.cancerrxgene.org/). Using
ridge regression, we estimated the half-maximal inhibitory
concentration (IC50) of samples. We calculated the prediction
accuracy using the R package “pRRophetic” (Figures 12(a)–
12(p)). In light of the above results, we believe that risk scores
based on SGs may be useful for guiding clinical treatment.

4. Discussion

Tumor growth and metastasis are influenced by SGs that
regulate viability, apoptosis, proliferation, adhesion, migra-
tion, and metastasis [31–33]. It has also been proposed that
mutations in SGs may also be associated with the acquisition

of somatic aberrations that accelerate cancer development
[34–36]. More importantly, SGs promote or inhibit the
growth of tumors by influencing the tumor compartment
and its microenvironment. SGs have been extensively stud-
ied as therapeutic targets for cancer.

We examined the expression of SGs and their prognostic
characteristics in OSCC patients, concluding that three of
the six SGs were significantly elevated. Additionally, 4 were
identified as OSCC risk factors (TERF1, TERF2, ACD, and
POT1). As a result of the functional enrichment analysis,
they were largely enriched in pathways related to telomeres
(such as telomere-associated protein complex, protection
from nonhomologous end joining at telomere, RNA-
dependent DNA biosynthetic process, and telomeric D-
loop disassembly). Several cancer types require telomere-
associated proteins to maintain normal telomere function
[33, 37, 38]. To further explore the role of SGs in OSCC, a
consensus clustering analysis was conducted on OSCC
patients based on their SG expression levels. We found that
OSCC patients could be divided into two subgroups
(SGCluster A and SGCluster B). Furthermore, SGCluster A
has a higher enrichment of immune infiltrating cells, which
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Figure 11: Application of risk score in clinical treatment. (a) The risk score is an independent prognostic indicator in OSCC patients. (b)
Expression levels of PD1 in high- and low-risk groups. (c) Expression levels of CTLA4 in high- and low-risk groups. (d) CTLA4+PD1+. (e)
CTLA4+ PD1−. (f) CTLA4− PD1−. (g) CTLA4− PD1+. (h) GSEA enrichment results for the high-risk group. (i) GSEA enrichment results
for the high-risk group.
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may be one of the reasons for its better prognosis. Further-
more, we explored the differences between the two sub-
groups and identified 1329 DEGs. We identified DEGs
based on GO and KEGG enrichment analysis, which, as
expected, significantly correlated with pathways relating to
cell cycle, senescence, apoptosis, chromosomes, and tumori-
genesis development.

We developed prognostic models based on these DEGs.
In order to expand the use of SGs in prognosis and clinical
treatment for OSCC patients, we tested their stability and
accuracy among randomized cohorts and different clinical
subgroups. As a result, the model accurately predicted
patients’ prognoses. Notably, patients in the low-risk group
tended to have lower TMB and more abundant immune-
infiltrating cells, including Mast cells resting, T cells CD4
memory activated, T cells follicular helper, T cells regulatory
(Tregs), plasma cells, T cells CD8, and B cells naive. Previous
studies have suggested that highly abundant TME may be
more sensitive to immunotherapy. In order to identify high-
and low-risk immunotherapy groups, we calculated IPS
scores. We found that low-risk groups tended to have higher
IPS scores, representing the low-risk groups more sensitive

to immunotherapy. The drug sensitivity analysis revealed
that various chemotherapeutic drugs are more or less sensi-
tive to high- and low-risk groups of patients. The findings of
our study can help treat the OSCC patients and update the
study of SGs. We believe that the risk scores can be used
to predict OSCC prognosis and help predict patients’ clinical
response to immunotherapy.

However, there are several limitations to this study. The
majority of the data we used came from public databases, so
more experiments are required to verify the findings. In
addition, studies reporting on SGs’ role in OSCC are few,
and our study only provides theoretical foundations for
future experimental testing.

5. Conclusion

In summary, we systematically examined the expression
levels and prognostic relevance of SGs in OSCC. In addition,
a risk score model for SGs was constructed to evaluate the
prognosis and TME of OSCC. Using risk scores, it is possible
to predict OSCC prognosis and assess TME and
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immunotherapy responses. Risk scores allow for more indi-
vidualized clinical treatment and will assist in guiding med-
ical practice.
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