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Xijiao Dihuang Tang (XDT), a classic TCM prescription, has been used to clinically treat blood-heat and blood-stasis syndrome-
(BHSS-) related diseases, including hemorrhagic stroke and sepsis. However, the active constituents and mechanism of XDT in the
treatment of BHSS-related diseases have not been elucidated due to the lack of appropriate methodologies. In this study, serum
pharmacochemistry and network pharmacology were used to explore the active constituents and the mechanism of XDT in the
treatment of BHSS-related diseases. The effects of XDT were evaluated using dry yeast-induced rats as rat models with BHSS,
which demonstrated the antipyretic and anticoagulant properties of XDT. The HPLC-QTOF/MS/MS assay was used to identify
60 serum constituents of XDT (SCXDT). Then, 338 targets of 60 SCXDT were predicted by integrating multiple databases and
the MACCS fingerprint similarity prediction method. The degree of topological properties with targets of 19 key active
constituents in SCXDT was identified and evaluated in glutamate-induced PC12 cells. Subsequently, 338 targets of 60 SCXDT
were mainly involved in biological processes such as inflammation, coagulation, cell proliferation, and apoptosis, as well as
oxidative contingencies via compound-target-disease network analysis. The core targets including IL-1β, IL-6, TNF, NOS3, and
MAPK1 were identified using protein-protein interaction network analysis, whereas dozens of signaling pathways such as the
p38MAPK signaling pathway were identified using functional pathway enrichment analysis. The results indicated that XDT
has broad therapeutic and neuroprotective effects on inflammation, coagulation, oxidative stress, cell proliferation, and
apoptosis in dry yeast-induced rats with BHSS and glutamate-induced PC12 cells by regulating the p38MAPK signaling
pathway. This study not only discovered the active constituents of XDT but also elaborated its mechanisms in the treatment of
BHSS-related diseases by intervening in a series of targets, signaling pathways, and biological processes such as inflammation,
coagulation, oxidative stress, neuroprotection. The findings in this study provide a novel strategy for exploring the therapeutic
efficacy of TCM prescriptions.

1. Introduction

Traditional Chinese medicine (TCM) has been clinically
practiced for thousands of years with definite therapeutic
effects and has multicomponent, multitarget, and multipath
integrated treatment qualities. Because of the complexity of
the chemical composition in TCM prescription and human
body system, network pharmacology fits the multiconstitu-

ents, multitarget, and integrative treatment of diseases with
TCM. Consequently, network pharmacology has become a
common method to study the material basis and mechanism
of TCM in recent years and has achieved promising prelim-
inary results. However, TCM constituents are complex, and
after metabolism, they are absorbed into the blood, where
they must reach a certain blood concentration before
they can be truly effective [1]. Serum pharmacochemistry
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strategies and methods greatly narrowed down the selection
of active constituents of TCM. Therefore, in this paper, we
adopted the serum pharmacochemistry combined with
network pharmacology to analyze and identify the serum
constituents of TCM, predict their acted targets and interac-
tions, and systematically evaluate and validate the mecha-
nisms of TCM extracts and serum containing in vivo and
in vitro experiments. The purpose of this study was to pro-
vide new ideas and strategies for determining the pharmaco-
logical basis and mechanism of TCM.

Traditional Chinese Medicine syndrome is the basic
concept of the TCM theory, which is a profile of symptoms
and signs as a series of clinical phenotypes [2]. The blood-
heat and blood-stasis syndrome (BHSS) is one of the basic
TCM syndromes associated with a variety of various dis-
eases, including hemorrhagic stroke and sepsis, with patients
exhibiting elevated body temperature and abnormal blood
rheological indexes [3]. Xijiao Dihuang Tang (XDT), which
originated from Valuable Prescriptions for Emergency (Bei
Ji Qian Jin Yao Fang) in China, is composed of four kinds
of crude herbs including Bubalus bubalis Linnaeus (BB),
Rehmannia glutinosa Libosch. (RG), Paeonia lactiflora Pall.
(PL), and Paeonia suffruticosa Andr. (PS), and it can reduce
C-reactive protein expression and improve coagulation
status for the clinical treatment of sepsis with BHSS [4, 5].
Furthermore, network pharmacological prediction and
experimental verification indicated that XDT improves sep-
sis survival by regulating the NF-κB and HIF-1α signaling
pathways [6, 7] and that it alleviates ischemic brain injury
in MCAO rats by regulating inflammation, neurogenesis,
and angiogenesis [8]. In addition, 71 compounds were iden-
tified through literature data mining and 237 XDT targets
were predicted using a network pharmacology method,
which involved signal transduction, transcriptional translo-
cation, metabolic phase, apoptosis and proliferation, and
immune process [9], but this has not been confirmed in
experiments. There is a lack of systematic research on the
active constituents and comprehensive therapeutic mecha-
nism of XDT for the treatment of BHSS-related diseases.

The purpose of this study was to identify the active constit-
uents and reveal the mechanism of XDT for the treatment of
BHSS-related diseases based on serum pharmacochemistry
and network pharmacology. First, serum constituents of
XDT (SCXDT) were identified using HPLC-QTOF/MS/MS
methods, and network pharmacology was used to predict
SCXDT targets, the disease network, the interaction of key tar-
gets, and signal pathways. Finally, the glutamate-induced
PC12 cell model and yeast-induced fever rats with BHSS were
used to verify the activity of the predicted main constituents,
therapeutic effects, and mechanism of XDT. The overall pro-
cedure is illustrated in Figure 1.

2. Materials and Methods

2.1. Materials and Reagents

2.1.1. Plant Material. Bubalus bubalis Linnaeus (20180820),
Rehmannia glutinosa Libosch. (20181117), Paeonia lactiflora
Pall. (20180201), and Paeonia suffruticosa Andr. (20190108)

were purchased from Tong Ling Hetian Chinese Medicine
Company (Tongling, China).

2.1.2. Reference Samples. All drugs (purity assay by HPLC
≥ 98%, power) including constituents of geniposide, aucu-
bin, salidroside, guanosine, adenosine, paeoniflorin, paeonol,
catapol, and oxypaeoniflorin were supplied by the Chengdu
Must Bio-Technology Co., Ltd. (Chengdu, China).

2.1.3. Reagents. HPLC-grade ethanol was purchased from
Merck Company (Darmstadt, Germany). Analytical grade
acetic acid and ultrapure water (Watsons, Guangzhou,
China) were used throughout the experiment. Instant dry
yeast was obtained from Angel Yeast Co., Ltd. (Yichang,
China). Aspirin enteric-coated tablets were supplied by
Bayer S.p.A. (Viale Certosa, Milano, Italy). The cell counting
kit 8 (CCK-8) was purchased from Nanjing Sunshine Bio-
technology Co., Ltd. (Nanjing, China). The Annexin V-
FITC/propidium iodide (PI) kit was supplied by Invitrogen
(California, USA). Enzyme-linked Immunosorbent Assay
(ELISA) Kits, Rat TNF-α, and Rat IL-1β were supplied by
R&D Systems (Minnesota, USA). ELISA Kits for rat
endothelin-1 (ET-1), rat intercellular adhesion molecule-1
(ICAM-1), rat matrix metallopeptidase 9 (MMP-9), rat
NF-κB, rat nitric oxide (NO), rat thromboxane B2 (TXB2),
and rat superoxide dismutase (SOD) were procured from
Nanjing Senbeijia Biological Technology Co., Ltd. (Nanjing,
China).

2.2. Sample Preparation. XDT is composed of four kinds of
crude drugs including Bubalus bubalis Linnaeus (BB),
Rehmannia glutinosa Libosch. (RG), Paeonia lactiflora Pall.
(PL), and Paeonia suffruticosa Andr. (PS). All XDT herbs
were dried and smashed. The four drugs were mixed in the
prescribed proportion to a total of 600 g. Initially, BB was
boiled for two hours, and the solution was mixed with RG,
PL, and PS before being boiled for 30 minutes. Next, water
was added to the solution (1 : 8, w/v) before being boiled
for 20 minutes. The double extraction solution was then
concentrated under vacuum and dried, yielding 108 g XDT
extracts from 600 g of the raw material. For animal experi-
ments, 105.7 g of dried extract was dissolved in water to pro-
duce solutions with a concentration of 0.27 g/mL, 0.14 g/mL,
and 0.07 g/mL. The solutions were stored at -20°C.

To produce solutions with a concentration of 0.18 g/g,
2.25 g of dried XDT extract was dissolved in 70% methanol.
After centrifugation at 13, 000 × g for 10 minutes, 1mL of
the supernatant was filtered through a 0.45μm membrane
filter, and 15μL filtrates were injected into the HPLC-
QTOF/MS/MS.

Dry yeast and aspirin were dissolved in water at
concentrations of 0.2 g/mL and 0.004 g/mL, respectively.
Furthermore, geniposide, aucubin, salidroside, guanosine,
adenosine, paeoniflorin, paeonol, catapol, and oxypaeoni-
florin were dissolved in water at concentrations of 1mmol/L.

2.3. Animals and Prescription Administration. Adult male
Sprague-Dawley rats weighing 200–220 g were purchased
from Shanghai JieSiJie Laboratory Animal Co., Ltd. (No.
SCXK (Hu)2018-0004). All the animals were maintained
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under specific pathogen-free (SPF) conditions (22 ± 2°C,
relative humidity of 50% ± 10%) under a 12-hour light, 12-
hour dark cycle (lights turned on at 00:00 a.m.). All animal
experiments were conducted in accordance with the guide-
lines of the Animal Experiments Committee and were
approved by both the Science and Technology Department
of Jiangsu Province as well as the Animal Care and Use
Committee of the Nanjing University of Chinese Medicine.

Rats were randomly divided into six groups: the control,
model, aspirin, and three XDT groups with varying concen-
trations (0.68 g/kg, 1.35 g/kg, and 2.70 g/kg). The 1.35 g/kg
concentration was equivalent to the clinical dosage in adults.
The treatment was administered orally once a day for seven
days. Baseline rectal temperatures of the rats were taken
using a digital thermometer before inducing fever. The
depth of rectal measurement was 3 cm, and rats with rectal
temperatures below 39°C (±5°C) were approved for use
in the experiment. On the seventh day, fever was induced
by subcutaneous injections of baker’s yeast suspension
(2 g/kg), followed by an 18-hour fast. Rectal temperatures
of the rats were then taken at the 19th hour, followed by
administration of aspirin, XDT (0.68 g/kg, 1.35 g/kg, and
2.70 g/kg), and normal saline. The rectal temperatures of
all rats were measured every hour after administration.
Blood samples were collected from the rats five hours after
administration.

Blood rheology indicators, including blood viscosity and
plasma viscosity, were detected using an automatic blood

rheology analyzer. Blood samples were placed in a water
bath for 10 minutes at 37°C and centrifuged at 3500 rpm
for 10 minutes to obtain the serum (supernatant), which
was tested for the expression of ET-1, ICAM-1, TNF-α, IL-
1β, MMP-9, NF-κB, NO, SOD, and TXB2 using ELISA.

2.4. Analysis of Constituents

2.4.1. Preparation of Serum Samples. Rats were randomly
divided into two groups: model and XDT (1.35 g/kg). Treat-
ments were administered orally twice daily for seven days
and fasted with water for 12 hours before modeling. On
the sixth day, rats in the XDT group were subcutaneously
injected with a 20% yeast suspension (10mL/kg) one hour
after administration. On the seventh day, blood was col-
lected one hour after administration. A solution of methanol
(150μL) and serum (50μL) was formed and vortexed for
approximately two minutes. The suspension was centrifuged
at 1000 rpm for 10 minutes and dried using nitrogen gas at
35°C to obtain the supernatant. The residues were redis-
solved in 100μL methanol and centrifuged at 1000 rpm for
10 minutes. A 1mL supernatant was subjected to HPLC-
QTOF/MS/MS analysis. All samples were frozen at −80°C
until the assay.

2.4.2. HPLC-QTOF/MS/MS Analysis. For HPLC-QTOF/MS/
MS analysis, an LC-20a Shimadzu HPLC system (Maryland,
USA) was coupled to an orthogonal AB SCIEX Triple
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Figure 1: The overall production of XDT.
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TOFTM 5600 mass spectrometry equipped with an elec-
tronic spray ionization (ESI) source. The chromatographic
separation was performed on an ELITE C18 ODS HYPERSIL
column (4:6mm × 250mm, 5μm) at 25°C. A mixture of
solvent A (ethanol) and solvent C (0.1% acetic acid, v/v)
was used as the mobile phase at a flow rate of 0.5mL/min.
The gradient elution program was as follows: 0–5 minutes,
4–30% A; 5–10 minutes, 30-35% A; 10–15 minutes, 35–
45% A; 15–25 minutes, 45–45% A; 25–30 minutes, 45–50%
A; 30–40 minutes, 50-60% A; and 40–50 minutes, 60–
100% A. This was followed by a 15-minute equilibrium
period before injecting the next sample at an injection vol-
ume of 15μL. For the full-scan MS analysis, ESI-MS spectra
were acquired in both positive and negative ion modes, with
negative ion mode performing better, and the spectra were
recorded in the range of m/z 50–1500. The conditions of
MS analysis were designed as follows: capillary voltage,
2800V; the source temperature, 100°C; the cone voltage,
20V; data collected mode, dynamic background deduction
and information-dependent acquisition; MCR detection
voltage, 2100V; collision energy, 10V; spray voltage, 20V;
nebulizer, 55 psi; aux gas pressure, 60 psi; curtain gas,
40 psi; IS, 20V, gas flow, 450 (L/HR); desolvation temp,
250°C; injection volume, 15μL; detector, time of flight mass
spectrometer; and delisting potential, −70V.

2.5. Cellular Experiments

2.5.1. Preparation for Containing Serum of XDT (XDT-cs).
Five rats were given 1.35 g/kg XDT extracts orally at once a
day for five days. Blood samples were obtained from the rats
one hour after the last administration. The blood samples
were placed in a water bath for 10 minutes at 37°C before
being centrifuged at 3500 rpm for 10 minutes to obtain the
serum (supernatant).

2.5.2. Cell Culture and Treatment. PC12 cells were purchased
from American Tissue Culture Collection (ATCC, Manassas,
VA, USA) and cultured at 37°C in Dulbecco’s modified Eagle
medium (DMEM) containing 10% (v/v) heat-inactivated
fetal bovine serum (FBS, Hyclone), 100U/mL penicillin,
and 100μg/mL streptomycin (Sigma-Aldrich, MO). When
cells were ~90% confluent, a conditioned medium was
collected and centrifuged at 1000 rpm for five minutes to
remove supernatant cells. The cells were added to the culture
medium and resuscitated, and the remaining adherent cells
were washed twice with 2mL of phosphate-buffered saline
(PBS). After discarding the PBS, 2mL 0.25% (w/v) Trypsin-
0.53mM ethylenediaminetetraacetic acid (EDTA) mixed
digest was added and observed under a microscope for about
one minute. After the cells had been rounded, 2mL of com-
plete medium was quickly added to stop digestion and gently
pipetted to collect the cells. The supernatant was discarded
after centrifugation at 1000 rpm for five minutes, and the
cells were resuspended in complete medium and mixed with
the suspension cells (changed every other day), cultured in
divided bottles.

2.5.3. Cell Seeding Plate and Induction. Cells were dissociated
with 0.25% trypsin and 0.5mM EDTA (Gibco BRL) at 37°C

for one minute and collected by centrifugation at 1000 rpm
for five minutes. After the supernatant was discarded, a fresh
medium was added and the cells were evenly blown. Cell
suspension (20μL) was mixed with 4% trypan blue solution
(20μL). When the cells were more than ~90% confluent,
they were counted to adjust the density to 1 × 105/mL. The
cell suspension was plated into six well plates at 2mL per
well and incubated in a cell incubator at 37°C with 5%
CO2 for 24 hours. For differentiation, the culture medium
was replaced with DMEM supplemented with 1% FBS, 1%
penicillin/streptomycin, and 50ng/mL nerve growth factor
(NGF) (Sigma-Aldrich, USA). The cells were collected after
48 hours of induction, and their concentration was adjusted
to 5000 cells/100μL. In each well of 96-well plates, 100μL
cell suspension was seeded and incubated overnight at
37°C and 5% CO2.

2.5.4. Cell Counting Kit-8 Assay. Cell viability was analyzed
using the cell counting kit-8 (CCK-8) assay. Cells were
seeded in 96-well plates at a density of 5000 cells/well. After
incubation with the germ-free serums (5%XDT-cs, 10%
XDT-cs, and 20% XDT-cs) or drug solution (geniposide,
aucubin, salidroside, guanosine, adenosine, paeoniflorin,
paeonol, catapol, and oxypaeoniflorin) cotreated with gluta-
mate for the indicated period, 10μL CCK-8 was added to
each well. The 96-well plates were maintained at 37°C for
four hours. The absorbance (OD value) was measured at a
wavelength of 450 nm with enzyme-linked immunity imple-
mented. Experiments in each group were performed in
triplicate.

2.5.5. Flow Cytometry (FCM) with PI Staining. The cells were
cotreated with glutamate for the indicated time after incuba-
tion with the germ-free serums (5% XDT-cs, 10% XDT-cs,
and 20% XDT-cs). Following the manufacturer’s instruc-
tions, 1 × 106 cells/1mL were harvested by centrifugation at
1000 rpm for five minutes, washed in cold PBS at 4°C, and
resuspended in 1μL FITC-labeled Annexin V. Next, 1μL
PI (100μg/mL) and 5μL Alexa Fluor 488 Annexin V were
added to each 100μL cell suspension. The flow cytometer
was used to analyze cell apoptosis after 15 minutes of incu-
bation at room temperature in the dark. Experiments in each
group were performed in triplicate.

2.5.6. Enzyme-Linked Immunosorbent Assay. After incuba-
tion with 5%XDT‐cs + glutamate, 10%XDT‐cs + glutamate,
20%XDT‐cs + glutamate, glutamate, and control groups,
PC12 cell supernatants were collected after centrifugation
at 800 rpm and tested for the presence of TNF-α and IL-1β
using ELISA.

2.5.7. Western Blot (WB) Analysis. Cells were lysed in
radioimmunoprecipitation assay (RIPA) buffer (Beyotime,
Shanghai, China) containing 1% phenylmethylsulfonyl fluo-
ride (PMSF), followed by centrifugation at 12,000 rpm for
five minutes at 4°C. The protein concentration was deter-
mined using BCA Protein Assay Kit. The supernatant was
mixed with a sample loading buffer containing 5 × sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE), and an equal amount of protein was separated by
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SDS-8%-4% PAGE and transferred to a polyvinylidene fluo-
ride (PVDF) membrane (Millipore, Schwalbach, Germany).
The membrane was then blocked with 5% nonfat milk in
TBS with Tween-20 (TBST) at room temperature for one
hour, before being incubated overnight at 4°C with anti-
bodies against phosphomitogen-activated protein kinase
kinase 3 (Phos-MKK-3) (1 : 1000, Abcam, Cambridge, UK,
catalogue number: ab131283), MKK-3 (1 : 1000, CST,
Boston, USA, catalogue number: 8535), Phos-MKK-6
(1 : 500, BIOTECHNOLOGY, CA, USA, catalogue number:
A7154), MKK-6 (1 : 1000, CST, catalogue number: 9264),
Phos-p38 (1 : 1000, CST, catalogue number: 4511), P38
(1 : 5000, CST, catalogue number: 8690), ICAM-1 (1 : 5000,
Abcam, catalogue number: ab206398), MMP-9 (1 : 20 000,
Abcam, ab76003), Phos-p65 (1 : 1000, CST, catalogue num-
ber: 3033), P65 (1 : 1000, CST, catalogue number: 8242),
COX-2 (1 : 1000, CST, catalogue number: 12282), and β-
actin (1 : 5000). The membrane was washed and then
incubated with 5% nonfat milk in TBST containing goat
anti-rabbit immunoglobulin G-horseradish peroxidase
(IgG-HRP) (Abcam, catalog number: ab205718) or goat
anti-mouse IgG- HRP (Abcam, catalog number: ab205719)
at room temperature for one hour. Protein bands were visu-
alized using a chemiluminescence (ECL) solution (Thermo
Fisher Scientific) and detected using a Tanon 6600 Lumines-
cence Imaging Workstation (Tanon, China).

2.6. Network Pharmacological Analysis of SCXDT

2.6.1. Target Prediction. The SCXDT identified using
HPLC-Q/TOF-MS/MS analysis were considered candidate
constituents. The potential molecular targets of prototype
constituents in XDT-cs were predicted using Swiss Target
Prediction (STP) [10] and the TCM for Systems Pharma-
cology Database and Analysis Platform (TCMSP) [11].
The Tanimoto coefficient was used to define the similarity
score (score ≥ 0:4), and the potential targets were obtained
based on the multiply-accumulate operations (MACCS)
key fingerprint of the parent nuclear structure of its meta-
bolic constituents in XDT-cs and the two-dimensional
(2D) molecular structure of related drugs collected from
drug database or inhibitors of related signaling pathways.

2.6.2. Compound-Target Network (C-T Network). The C-T
network was constructed and visualized using Cytoscape
version 3.7.1 [12] based on the compound-target interaction
obtained in the previous step.

2.6.3. Compound-Target-Disease Network (C-T-D Network).
A C-T-D network was built using network visualization soft-
ware Cytoscape 3.7.1 based on SCXDT, targets, and related
diseases.

2.6.4. Pathway Analysis. Pathway analysis with GlueGo [12]
was performed on 338 targets actuated by SCXDT to analyze
biological interpretation and interrelationships of functional
targets in biological networks.

2.6.5. Protein-Protein Interaction Networks (PPI). The
targets derived from inner circle 1 and inner circle 2 in the

C-T network diagram were the core target of SCXDT. The
STRING online database was used to obtain the PPI data
of the core targets of SCXDT [13], with the parameter
organism set to Homo sapiens and the other basic settings
left at the default value. Cytoscape software was used to
establish the PPI relationship network and perform topolog-
ical analysis.

2.7. Statistical Analysis. All results are expressed as the
mean ± standard deviation (SD). Data were analyzed using
SPSS 18.0 software (SPSS, Inc., Chicago, IL, USA) and
GraphPad Prism (version 8.0, GraphPad Software Inc., San
Diego, CA, USA). Differences between three or more groups
at one point were analyzed using one-way analysis of vari-
ance (ANOVA). P values < 0.05 were considered statistically
significant.

3. Results

3.1. XDT Has Antipyretic and Anticoagulant Effects on
Yeast-Induced Fever Rats. The antipyretic and anticoagulant
effects of XDT on yeast-induced fever rats were evaluated.
The rectal temperature of the rats in each group was
recorded within five hours after intragastric administration.
Rats in the model group had significantly higher rectal tem-
peratures (P < 0:001 vs. control group) (Figure 2). The rectal
temperature of rats in the aspirin (AS) and the XDT groups
was suppressed at 2.70 g/kg, 1.35 g/kg, and 0.68 g/kg (P <
0:001, P < 0:01, or P < 0:05 vs. the model group). It was
found that XDT had an antipyretic effect on yeast-induced
fever rats. Furthermore, XDT at 2.70 g/kg had a better
antipyretic effect than aspirin after five hours (P < 0:001 or
P < 0:05 vs. the model group).

The blood viscosity of rats in the model group increased
significantly (P < 0:001) compared to the control group
(Figure 3). When compared to the model group, the blood
viscosity of rats in the AS group and XDT at 0.68 g/kg,
1.35 g/kg, and 2.70 g/kg at high, medium, and low shear rate
was significantly reduced (P < 0:05 or P < 0:01).

The plasma viscosity of rats in the model group
increased significantly (P < 0:001 vs. model group) com-
pared to the control group (Figure 4). When compared to
the model group, the plasma viscosity of rats in AS and
XDT at 0.68 g/kg, 1.35 g/kg, and 2.70 g/kg was significantly
reduced (P < 0:05, P < 0:01, or P < 0:001), demonstrating
the anticoagulant activity of AS and XDT. Furthermore,
XDT inhibited plasma viscosity in a dose-dependent manner.

3.2. Serum Constituents of XDT Analysis. To accurately ana-
lyze SCXDT, the HPLC-QTOF/MS/MS method was used to
compare the total ion current chromatograms (TIC) of XDT
extracts and XDT-cs in the positive and negative ion modes
(Figure 5). A total of 67 peaks were detected in the TIC of
XDT extracts and 60 peaks in TIC of XDT-cs (Table S1).
Twelve standard available constituents (constituents 13,
16, 18, 22, 24, 25, 41, 42, 43, 45, 56, and 65) were,
respectively, identified as guanosine, catalpol, geniposidic
acid, catechin, salidroside, oxypaeoniflorin, geniposide,
genipin, albiflorin, paeoniflorin, adenosine, and paeonol
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by comparing sample retention times and accurate masses
with those of the standards. For the standard unavailable
constituents, a series of continuous procedures was used to
increase the credibility for structure identification by

calculating the molecular formulas based on high-precision
quasimolecular ions such as [M-H] – and [M+H] + with a
mass error of 5.0 ppm. Furthermore, the MSn information
was used to confirm the structure of the constituents by
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comparing the fragmentation paths to 12 standards or
related literature.

Overall, 23 prototype and 37 metabolic constituents
were initially identified in SCXDT, including 26 monoterpe-
noids, 11 iridoid glucosides, one flavonoid, nine phenols,
four amino acids, two nucleosides, and seven phenyletha-
noid glycosides. The report revealed that there are four main
amino acids in BB, one main monoterpenoid and 11 iridoid
glucosides in RG, 14 main monoterpenoids in PL, and 11
main monoterpenoids in PS in SCXDT.

3.3. Prediction and Verification of Active Constituents in
Serum Constituents of XDT

3.3.1. C-T Network in Serum Constituents of XDT. Because
TCM has the effect of a multicomponent comprehensive
treatment, the potential pharmacological mechanism of
XDT was studied using network pharmacology. Initially,
338 targets of 60 SCXDT were mined using the TCMSP,
STP database, and MACCS fingerprint similarity predic-
tion method (Table S2). Second, the C-T network was
constructed using Cytoscape based on SCXDT and
predicted targets (Figure 6). The network had a total of
398 nodes, 60 constituent nodes, and 338 target nodes, with
985 constituent-target linkages demonstrating that XDT
has a comprehensive effect on multiple constituents and
targets. The degree of topological properties was used to
filter 19 constituents with values greater than or equal to 17
connected between SCXDT and the targets (Table 1), which
were considered to be the core constituents of SCXDT.

3.3.2. Effects of Core Constituents in SCXDT on Glutamate-
Induced PC12 Cells. The activity of the predicted core con-
stituents of SCXDT was measured in glutamate-induced
PC12 cells using CCK-8 assay. The results demonstrated
that the viability of the model group was significantly lower

than that of the control group (P < 0:001), and the viability
of the geniposide, aucubin, salidroside, guanosine, adeno-
sine, paeoniflorin, paeonol, catapol, and oxypaeoniflorin
groups was significantly higher than that of the model group
(P < 0:05 or P < 0:001, Figure 7). It was hypothesized that
the core constituents of SCXDT can increase cell prolifera-
tion in glutamate-induced PC12 cells while also providing
neuroprotection.

3.4. Prediction and Verification of the Comprehensive
Effect of XDT

3.4.1. C-T-D Network in Serum Constituents of XDT. The
C-T-D network of SCXDT was constructed to predict
and interpret the polypharmacology action of multicom-
pound and multitarget to further reveal the multichannel
comprehensive treatment effect of XDT on the treatment of
BHSS-related disease. There were 60 SCXDT, 338 corre-
sponding targets, and eight main pathologies with the
connections totaling 1323 items, indicating their close rela-
tionships (Figure 8). Many of the targets were independently
associated with cell apoptosis (111/338), inflammation
(79/338), oxidative stress (46/338), cell proliferation and
differentiation (41/338), energy metabolism (27/338), neu-
rotransmitter (18/338), coagulation (9/338), and immunity
(7/338), implying that the SCXDT may intervene in many
biological processes in the treatment of BHSS-related dis-
eases. For example, TNF (TNF-α), IL-6, and IL-1β, which
are inflammatory factors, had a high degree of connectivity
and played an important role in the inflammatory response.
Furthermore, F2 and F10 are coagulation factors that affect
blood coagulation. If prostaglandin-endoperoxide synthase
2 (PTGS2) is deleted in mice, the expression of TF through
Annexin A2 (ANXA2) is increased. The exogenous coagula-
tion pathway, which also leads to a hypercoagulable state, is
initiated by TF [14].
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Figure 4: The plasma viscosity of XDT and AS on yeast-induced fever rats. The plasma viscosity of yeast-induced fever rats (Mod) and rats
treated with 0.9% saline (Con), aspirin (AS), 0.68 g/kg XDT (XDT0.68), 1.35 g/kg XDT (XDT1.35), and 2.70 g/kg XDT (XDT2.70) after
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3.4.2. Effect of XDT on Yeast-Induced Fever in Rats. The anti-
inflammatory, anticoagulant, and antioxidant activities of
XDT in the yeast-induced fever model were evaluated using

ELISA based on the prediction on pharmacology action by
C-T-D network analysis (Figure 8). The results demon-
strated that the levels of ET-1, ICAM-1, TNF-α, IL-1β,
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Figure 5: The total ion chromatograms (TIC) of XDT extract in negative mode (a) and positive mode (b), containing serum of XDT
(XDT-cs) in negative mode (c) and positive mode (d), and serum samples from rats in negative mode (e) and positive mode on yeast-
induced fever rats (f).

8 Oxidative Medicine and Cellular Longevity



MMP-9, NF-κB, NO, and TXB2 in yeast-induced fever in
the model group rats were significantly higher than in the
control group (P < 0:001). The indicators of the AS and
XDT groups (0.68, 1.35, and 2.70 g/kg) were significantly
lower in the yeast-induced fever model than those of the
model group (P < 0:05 or P < 0:01 or P < 0:001, Figure 9).
In the yeast-induced fever model, SOD levels were signifi-
cantly lower than in the control group (P < 0:001). The levels
of SOD in the AS and XDT groups (0.68 and 2.70 g/kg) were
significantly higher in the yeast-induced fever model than
those of the model group (P < 0:05 or P < 0:01, Figure 9).
These results suggested that XDT has anti-inflammatory
activity by inhibiting the expression of ICAM-1, TNF-α,
IL-1β, MMP-9, and NF-κB; anticoagulant activity by inhi-
biting the expression of ET-1 and TXB2; and antioxidant
activity by increasing the level of SOD and inhibiting the
expression of NO to lower blood pressure and improve
endothelial function.

3.4.3. Effect of XDT-cs on Glutamate-Induced PC12 Cells.
The effect of XDT-cs on cell viability, in response to

glutamate-induced PC12 cells, was measured using CCK-8
assay. The results demonstrated that glutamate treatment
reduced the viability of PC12 cells (P < 0:01), whereas 5%,
10%, and 20% XDT-cs treatment significantly suppressed
the decrease in a dose-dependent manner (P < 0:05 or P <
0:01, Figure 10). Therefore, it was suggested that XDT-cs
can effectively protect PC12 cells from glutamate-induced
damage.

The effect of XDT-cs on cell apoptosis in glutamate-
induced PC12 cells was estimated by FCM analysis after
staining with Annexin V and PI. The apoptosis rate was
detected by forward light scatter (FSC). The apoptosis rate
of PC12 cells was increased by glutamate treatment
(P < 0:01), whereas 5%, 10%, and 20% XDT-cs treatment
significantly suppressed the increase in a dose-dependent
manner (P < 0:01, Figure 11). These results suggested that
XDT-cs can suppress the rate of apoptosis in glutamate-
induced PC12 cells.

The anti-inflammatory effect of XDT was further veri-
fied using serum pharmacological experiments. Compared
to the control group, glutamate treatment increased the
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Table 1: The core constituent, degree value, and structure of SCXDT.

Number ID PubChem CID Molecule name Degree Structure

1 BB5 60961 Adenosine 75

N

N N

N

O

OH

OH

OH

2 RG6 107848 Geniposide 56
O

O

OH

O O

O

OH

HO

HO OH

3 PL3 21631108 Moudanpioside F 52 O

OH

O

O

OH
HO OH

HO

4 BB1 135398635 Guanosine 48

OH
HO

HO O
N

N
O

HN
H2N N

5 PS3 21631103 Mudanpioside D 45
O

OO
O

O

HO

O

OH
HO OH

HO

6 PS4 19844 Methyl vanillate 42
O

HO

O

O
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Table 1: Continued.

Number ID PubChem CID Molecule name Degree Structure

7 PL2 8814958 1-O-β-D-Glucopyranosyl-paeonisuffron 40
O

OH

OH

HO
HO

O

OH
O

O

8 PL1 71452333 8-Debenzoylpaeoniflorin 32
OHO

OH

O

HO OH

O

OHO
HO

9 BB2 5960 Aspartic acid 30
NH2O

HO
O

OH

10 RG7 21637711 Rehmapicroside 28

O

OH

OO

OH
HO OH

HO

11 PL5 442534 Paeoniflorin 28

O
HO

OH

O

HO OH

O

OO
HO

O

12 PS1 10592506 Mudanoside A 28

OH
O

OO
O OH

OH
HO OH
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Table 1: Continued.

Number ID PubChem CID Molecule name Degree Structure

13 PS2 11092 Paeonol 28
HO

O

O

14 BB3 145742 Proline 26 N
H

OH

O

15 RG1 91458 Aucubin 26

O

HO

HO

O

OH

OHHO

OHO

16 RG5 159278 Salidroside 23

O

OH

O

OH
HO

OH

OH

17 PL4 21631105 Oxypaeoniflora 23

O
HO

OH

O

HO OH

O

OO
HO

O

HO

18 RG3 91520 Catalpol 20 O

OH

O

HO OH

HO

O O

OH

OH
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Table 1: Continued.

Number ID PubChem CID Molecule name Degree Structure

19 RG2 158144 8-Epiloganic acid 17
O O

OH
HO OH

HO

O
OH

HO O

Core constituents in SCXDT with values greater than or equal to 17 are listed in the above table according to the degree of the constituents and targets, BB,
Bubalus bubalis Linnaeus, RG, Rehmannia glutinosa Libosch., PL, Paeonia lactiflora Pall., PS, Paeonia suffruticosa Andr., PubChem CID, the compound
identifier of PubChem, degree, connection value of constituents, and targets.
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Figure 7: Effect of core constituents in SCXDT on OD values by CCK-8 assay in response to glutamate-induced PC12 cells. (a) Geniposide,
aucubin, salidroside, guanosine, and adenosine groups; (b) paeoniflorin, paeonol, catapol, and oxypaeoniflorin groups. Data are expressed as
the mean ± SD. ∗∗∗P < 0:001 vs. the control group; #P < 0:05, ##P < 0:01, and###P < 0:001 vs. the model group; n = 3.
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levels of TNF-α, IL-1β, protein levels of ICAM-1, MMP-9,
and COX-2, and phosphorylation level of NF-κB (p65) in
PC12 cells (P < 0:01). However, XDT-cs groups (5%, 10%,
and 20%) exhibited a dose-dependent reduction on levels
of TNF-α and IL-1β, protein levels of ICAM-1, MMP-9,
and COX-2; and phosphorylation level of NF-κB (p65) in
glutamate-induced PC12 cells (P < 0:05 or P < 0:01,
Figures 12 and 13). These results suggested that XDT-cs
have anti-inflammatory activity by inhibiting the expression
of ICAM-1, TNF-α, IL-1β, MMP-9, and COX, as well as
downregulating the phosphorylation level of NF-κB (p65).

3.5. Analysis and Verification of Action Mechanism of XDT

3.5.1. Protein-Protein Interaction Network Analysis. The PPI
network was constructed based on the PPIs for 338 tar-
gets, which were derived from inner circle 1 and inner cir-
cle 2 in the C-T network diagram of SCXDT (Figure 6), to
further reveal the action mechanism of the core targets of
SCXDT. There were 91 nodes and 448 edges in the PPI net-
work, with an average node degree of 9.85 and a PPI enrich-
ment P value < 1:0e − 16 (Figure 14). The top 10 targets were
TNF, VEGFA, glyceraldehyde-3-phosphate dehydrogenase
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Figure 9: Continued.
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(GAPDH), IL6, signal transducers, and activators of
transcription3 (STAT3), nitric oxide synthase 3 (NOS3),
MAPK1, PTGS2, IL1β, and heat shock protein 90 alpha fam-
ily class A member 1 (HSP90AA1). TNF is a multipotent
cytokine that participates in the pathogenesis of a series of

physiological processes that control inflammation, the anti-
tumor response, and immune system homeostasis, such as
proinflammatory reactions including IL-1β and IL-6 [15].
MAPK1, which is also known as extracellular regulated pro-
tein kinases2 (ERK2), is a highly conserved serine/threonine-
protein kinase system that participates in cell proliferation,
differentiation, movement, stress response, and other
activities, as well as being essential in extracellular signal
transduction and cellular response [16]. VEGFA is a rich
and powerful angiogenic factor that participates in the regu-
lation of innate immunity [17]. The results suggested that the
core targets of SCXDT are critical in inflammation, oxidative
stress, coagulation, and apoptosis.

3.5.2. Pathway Enrichment. To explore the biological mech-
anisms on the targets of SCXDT, Gene Ontology (GO)
enrichment analysis of all SCXDT-related targets was per-
formed using ClueGO. The GO terms were classified, and
the majority of them involved regulation of stress-activated
MAPK cascade (10.71%), positive regulation of cytosolic
calciumion concentration (7.14%), inhibitory extracellular
ligand-gated ion channel activity (5.95%), positive regulation
of protein serine/threonine kinase activity (5.95%), and
MAP kinase activity (4.76%) among others (Figure 15).
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Figure 9: Effect of XDT on the level of TNF-α, IL-1β, NF-κb, ICAM-1, MMP-9, ET-1, NO, SOD, and TXB2 on yeast-induced fever in rats
by ELISA. Data are expressed as the mean ± SD. ∗∗∗P < 0:001 vs. the control group; #P < 0:05, ##P < 0:01, and###P < 0:001 vs. the model
group; &P < 0:05 vs. the XDT 2.70 group; ¥P < 0:05 vs. the XDT 0.68 group; n = 8.
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Figure 10: Effect of XDT-cs on the cell viability by CCK-8 assay in
response to glutamate-induced PC12 cells. Results were expressed
as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group; #P <
0:05 and##P < 0:01 vs. the model group.
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Figure 12: Effect of XDT-cs on the levels of TNF-α and IL-1β in glutamate-induced PC12 by ELISA. The levels of TNF-α (a) and IL-1β (b)
were normalized to control. Results were expressed as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group; #P < 0:05 and##P < 0:01 vs.
the model group.
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The MAPK signal pathways accounted for the highest
proportion, including stress-activated MAPK cascade
(10.71%), positive regulation of protein serine/threonine
kinase activity (5.95%), negative regulation of protein ser-
ine/threonine kinase activity (3.75%), positive regulation
of cyclin-dependent protein serine/threonine kinase activ-
ity (3.57%), and MAP kinase kinase activity (4.76%).
Stress-activated MAPK cascade involves a three-cascade
reaction: (Mitogen-activated protein kinase kinase kinase
(MAPKKK), Mitogen-activated protein kinase kinase
(MAPKK), and Mitogen-activated protein kinase (MAPK).
Positive regulation of protein serine/threonine kinase activ-
ity, negative regulation of protein serine/threonine kinase
activity, and positive regulation of cyclin-dependent protein
serine/threonine kinase activity belong to the serine/threo-
nine-protein kinase (serine/threonine kinase), which is also
known as MAPK. The MAPK signaling pathway regulates
inflammatory, neuroprotection, and oxidative stress, among
others. There are also certain pathways, including spring
angiogenesis, regulation of cysteine-type endopeptidase
activity involved in apoptotic process, and vascular wound
healing. The signal pathways regulated by SCXDT targets
are involved in inflammation, oxidative stress, coagulation,
cell proliferation and differentiation, apoptosis, energy
metabolism, and other processes, revealing the complexity
of the SCXDT pathological process in BHSS-related disease.

There are three main classical MAPKs with different iso-
forms ERKs (with ERK1 and ERK2 isoforms), JNKs (c-Jun
N-terminal kinases, with JNK1, JNK2, and JNK3 isoforms),
and p38 MAPKs (with p38α, p38β, p38γ, and p38δ iso-
forms). Figure 16 shows that there are more SCXDT on
the p38MAPK signal pathways, based on the predicted
results of the SCXDT and targets (Table S2).

3.5.3. Effect of SCXDT on the p38MAPK Signaling Pathway.
To verify the effect of XDT-cs on the p38MAPK signaling
pathway, the protein expression levels of MKK3, MKK6,
and p38 via the p38MAPK signaling pathway were mea-
sured in glutamate-injured PC12 cells (Figure 17). Com-
pared to the control group, the phosphorylation level of
MKK3, MKK6, p38 of the model group increased signifi-
cantly (P < 0:01), but decreased significantly in a dose-
dependent manner (P < 0:05 or P < 0:01) in the XDT-cs
groups (5%, 10%, and 20%). It was proposed that XDT-cs
significantly downregulate protein expression of MKK3,
MKK6, and p38 in the p38MAPK signaling pathway.

4. Discussion

A TCM syndrome was a clear characteristic of all clinical
manifestations in one patient. According to TCM, BHSS is
caused by an inflammatory response (either infectious or

Figure 14: Protein-protein interactions identified in SCXDT by STRING software.
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noninfectious) in the tissues and blood stagnation. Clini-
cally, BHSS patients exhibit elevated body temperature and
abnormal blood rheological indexes, which primarily mani-
fest as abnormal inflammation and cytokine expression,
abnormal vascular endothelial cell function, platelet func-
tion, and blood rheological indexes, as well as imbalance of
coagulation and fibrinolysis [3]. Yeast-induced fever rat

models present an excellent platform for understanding
entry of exogenous pyrogens into the body, stimulation of
immune cells and endogenous pyrogens, such as IL-1β,
TNF-α, IL-6, and other thermogenic cytokines that regulate
the temperature regulation centers through neuronal media-
tors, causing fever, blood rheology, and abnormalities of
coagulation factors [4, 18]. Results of the present study
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Figure 17: Representative western blots showing effect of XDT-cs on expression levels of MKK3, MKK6, and p38 proteins in glutamate-
treated PC12 cells (a). Phosphorylation levels of MKK3 (b), MKK6 (c), and p38 (d). Data are presented as the mean ± SD (n = 3). ∗∗P <
0:01 vs. the control group; #P < 0:05 and##P < 0:01 vs. the model group.
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revealed that yeast-induced fever rats had pathology of and
characteristic profile on body temperature and abnormal
blood rheological indexes that were consistent with the clin-
ical manifestations observed in one BHSS patient. Therefore,
we adopted the yeast-induced fever rat model with BHSS to
evaluate the effect of XDT. Results showed that XDT caused
significantly better antipyretic and anticoagulant effects on
BHSS-related disease compared to AS.

Numerous BHSS-related clinical diseases, such as acute
cerebral hemorrhage, toad epilepsy, Alzheimer’s disease,
malignant glioma, Parkinson’s disease, and migraine, are
closely related to nerve damage involving excitatory amino
acid toxicity. Previous studies have shown that high levels
of glutamate, which is the main excitatory neurotransmitter
of the central nervous system, induce hyperexcitable gluta-
mate receptors, thereby causing glutamate excitotoxicity
which subsequently triggers a cascade of events that eventu-
ally lead to apoptosis or necrosis and elevated levels of
inflammatory mediators [19]. Therefore, glutamate-induced
PC12 cells represent an ideal cell-based system for investigat-
ing the effects and underlying mechanisms of XDT on neuro-
protection for treatment of BHSS-related diseases. Notably,
XDT-cs promotes cell viability, reduces cellular apoptosis
and downregulates levels of TNF-α, IL-1β, ICAM-1, and
MMP9 in glutamate-induced PC12, suggesting that XDT
exerts a neuroprotective effect on glutamate-induced PC12
cells by inhibiting inflammation.

In the present study, we first used HPLC-QTOF/MS/MS
to identify 60 SCXDT in yeast-induced fever rats, then
constructed a C-T network based on SCXDT and predicted
targets. We predicted a total of 19 core constituents in
SCXDT, based on a screening degree value greater than or
equal to 17, and experimentally verified the neuroprotective
effects of 9 of them using glutamate-induced PC12 cells.
Among them, paeoniflorin markedly inhibited inflammation
and suppressed production of inflammatory medium,
thereby protecting PC12 cells from glutamate-induced
damage by inhibiting apoptosis, alleviating thrombosis by
up-regulation of urokinase-type plasminogen activator via
the MAPK signaling pathway [20, 21]. Adenosine has been
shown to regulate inflammatory cells and vascular endo-
thelial growth factors via its receptors, to abrogate
glutamate-induced cytotoxicity in PC12 through A1AR
positive allosteric modulation [22, 23]. On the other hand,
geniposide protects cells against hypoxia/reperfusion-
induced blood-brain barrier impairment by mitigating the
release of inflammatory cytokines and increasing release
of brain-derived neurotrophic as well as glial cell-derived
neurotrophic factors. Moreover, it reportedly downregu-
lates expression of HIF-1α-independent VEGF and angio-
genesis thereby inhibiting the TLR4/MyD88 signaling
pathway [24, 25]. Aucubin has been shown to alleviate
inflammation and H2O2-induced neuron cell apoptosis
through Nrf2-mediated signaling activity, to exert proangio-
genic effects through the ERβ-mediated VEGF signaling
pathway [26, 27]. On the other hand, salidroside was found
to attenuate neuroinflammation and alleviate apoptosis in
PC12 cells, thereby suppressing complications of brain
ischemic injury [28]. Guanosine not only exerts neuropro-

tective effects and reduces inflammatory response but also
exhibits antiplatelet and antithrombotic properties through
adenosine-related cAMP-PKA signaling [29, 30], while
paeonol reportedly attenuates inflammatory and coagula-
tion reactions thereby alleviating PC12 apoptosis by mod-
ulating downregulation of ERK activation [31, 32]. Catapol
was found to exert neuroprotective effects against acute
focal ischemic stroke by inhibiting apoptosis and suppress-
ing inflammatory reactions, thereby protecting vascular
structure, and promoting angiogenesis in focal cerebral
ischemic rats. Notably, it exerts these effects by regulating
the HIF-1α/VEGF pathway [33, 34]. Previous studies have
shown that oxypaeoniflorin attenuates inflammation with
lower levels of inflammatory cytokines, exerts anticoagu-
lant activity by upregulating HSP-70 and coronin-1B
expression, and reduces the ratio of adhesion platelets,
thereby generating neuroprotective effects by modulating
the cAMP/PKA/CREB signaling pathway [35, 36]. Among
the 20 SCXDT, rehmapicroside exerts neuroprotective
effects to inhibit mitophagy, attenuates apoptotic cell
death, reduces infarct sizes, and improves neurological
functions during cerebral ischemia-reperfusion injury
[37]. Taken together, these findings indicate that apart
from anticoagulant activity, the core constituents predicted
by network pharmacology in SCXDT exert both neuropro-
tective and anti-inflammatory effects.

Further analysis of the C-T network revealed that 60
SCXDT acted on 338 targets, indicating that XDT has excel-
lent properties that make it a multicomponent and multitar-
get against BHSS-related disease. Furthermore, the SCXDT
targets predicted by the C-T-D network were mainly involve
in biological processes related to inflammation, oxidative
stress, coagulation, and cell apoptosis, among others. Next,
we evaluated the effect of XDT and XDT-cs extracts on
yeast-induced fever rats with BHSS and glutamate-induced
PC12 cells and found that XDT not only significantly
downregulated expression of TNF-α, IL-1, NF-κb, COX-
2, ICAM-1, MMP-9, ET-1, NO, SOD, and TXB2 but also
downregulated phosphorylation of p65 and had a neuro-
protective effect. Previous studies have shown that during
inflammation, chronic stress antigens, such as NF-κB, IL-6,
TNF-α, IL-1, and IL-10, stimulate microglia (resident
immune cells) and astrocytes to activate the typical inflam-
matory pathways thereby causing neuronal injury [38].
Notably, MMP-9 has been closely associated with blood
stasis, by creating several interactions with the coagulation
cascade, while ET-1 and TXB2 reportedly regulate cardiovas-
cular and platelet function to induce stasis [39, 40]. Addi-
tional research evidences have shown that activation of NO,
including neuronal NOS, iNOS, and eNOS, is accompanied
by development of oxidative stress, which causes unflipping
of NOS to exacerbate oxidative/nitrogenated stress. SOD,
an enzymatic scavenger and the first line of defense against
ROS accumulation, plays a crucial role in limiting oxidative
damage, and its activity is associated with antioxidant
response [41]. On the other hand, transcription factor NF-
κB is a central mediator of inflammation with multiple links
to thrombotic processes [42]. Our experimental results con-
firmed that XDT exerts inhibitory effects on inflammation,
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oxidative stress, coagulation, cell apoptosis, and nerve injury,
suggesting its potential for the treatment of BHSS-related
diseases.

Previous studies have demonstrated that activation of
the p38MAPK signaling pathway is not only clinically
closely related to development of BHSS-related diseases,
but it also plays a crucial role in the inflammatory response,
platelet activation, and thrombosis [43]. Notably, inflamma-
tory cytokines, such as TNF-α and IL-1β, which are upregu-
lated following intracerebral and subarachnoid hemorrhage,
activate the p38MAPK signaling pathway in the arterial wall,
leading to vasospasm, brain edema, neurobehavioral dam-
age, and inflammation enhancement and inducing apoptosis
[44, 45]. More evidence has shown that the p38MAPK sig-
naling pathway also plays a significant role in hemostasis
and thrombosis [46]. Results from our PPI network and
GO enrichment analysis of all targets related to SCXDT
revealed that the p38MAPK signaling pathway occupied
the largest proportion. Moreover, our results indicated
that XDT significantly downregulated phosphorylation of
MKK3, MKK6, and p38 proteins in the p38MAPK signal-
ing pathway. Furthermore, it significantly downregulated
expression of TNF-α, ICAM-1, IL-1β, NF-κB, and MMP-9
activated by the p38MAPK signaling pathway. Collectively,
these results suggested that XDT exerts neuroprotective,
antioxidant, anticoagulant, and anti-inflammation effects by
regulating the p38MAPK signaling pathway for the treat-
ment of BHSS-related disease.

In the present study, we adopted serum medicinal
chemistry, in combination with network pharmacology, to
identify active components and therapeutic targets of XDT
that have potential for treatment of BHSS-related diseases.
However, the underlying mechanism of BHSS action is com-
plex involving inflammation, coagulation, cell proliferation
and apoptosis, oxidative contingencies, and neuroprotection
and dozens of signaling pathways. Further investigations are
also needed to comprehensively elucidate the complex
mechanisms underlying development and progression of
BHSSS-related diseases as well as the signaling pathways
involved in the processes.

5. Conclusions

In the present study, we used serum pharmacochemistry in
combination with network pharmacology to provide the first
report on the effect of XDT’s active constituents and the
underlying mechanism of action in treatment of BHSS-
related diseases. A total of 20 important active constituents
were identified in XDT and screened. Summarily, XDT
played an integrated role in BHSS-related disease by
modulating expression of a series of targets, such as IL-1β,
IL-6, TNF, NOS3, MAPK1, STAT3, and VEGFA, as well
as dozens of signaling pathways, key among them the
p38MAPK signaling pathway. Furthermore, it exerted sig-
nificant effects on various biological processes, such as
inflammation, coagulation, cell proliferation and apopto-
sis, oxidative contingencies, and neuroprotection. Taken
together, these findings provide invaluable insights to guide

future development of effective TCM-based therapies for
treatment of BHSS-related diseases.
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