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The basic technology of stem cells has been developed and created organoids, which have established a strong interest in
regenerative medicine. Different cell types have been used to generate cerebral organoids, which include interneurons and
oligodendrocytes (OLs). OLs are fundamental for brain development. Abundant studies have displayed that brain organoids
can recapitulate fundamental and vital features of the human brain, such as cellular regulation and distribution, neuronal
networks, electrical activities, and physiological structure. The organoids contain essential ventral brain domains and functional
cortical interneurons, which are similar to the developing cortex and medial ganglionic eminence (MGE). So, brain organoids
have provided a singular model to study and investigate neurological disorder mechanisms and therapeutics. Furthermore, the
blood brain barrier (BBB) organoids modeling contributes to accelerate therapeutic discovery for the treatment of several
neuropathologies. In this review, we summarized the advances of the brain organoids applications to investigate neurological
disorder mechanisms such as neurodevelopmental and neurodegenerative disorders, mental disorders, brain cancer, and
cerebral viral infections. We discussed brain organoids’ therapeutic application as a potential therapeutic unique method and
highlighted in detail the challenges and hurdles of organoid models.

1. Introduction

The human induced pluripotent stem cells (hiPSCs) and
human embryonic stem cells (hESCs) have rapid and
advanced progress, which provided new insights for research
of neurological diseases and human brain development [1].
The three-dimensional (3D) organoids have been created
through the development of the stem cells’ basic technology,
which established a strong interest in regenerative medicine.
Cerebral organoids are used to simulate different human
brain regions, which reproduce specific brain structures,
including the cerebellum [2], midbrain [3, 4], hypothalamus
[5], hippocampus [6], and pituitary gland [7]. The 3D
models live for long periods, may more than 25 months,
[8] which makes it a great and premium model to investigate

brain development and cerebral disease mechanisms [9-13].
Recently, cutting-edge technologies including single-cell
sequencing and gene-editing advances have been applied in
3D models, which has generated unmatched possibilities
for neurological disease modeling. In this review, we high-
light recent advances in the brain organoids and their appli-
cations as promising models for studying brain development
and cerebral disease mechanisms. We then discuss the brain
organoids’ therapeutic application as a potential therapeutic
unique method. Despite the enormous promise of applica-
tions of brain organoid models, we explain the current major
challenges, hurdles, and limitations of organoid models
used. Moreover, we display feasible and constructive sugges-
tions for the future that would contribute to developing
medical research.
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2. Specialized Brain Organoids

Different types of cells with the development of technolo-
gies have been used to generate organoids, which include
interneurons and oligodendrocytes (OLs) [14]. OLs are
fundamental for brain development, including electrically
sequestered neuronal axons and myelinating for impulse
transmission, as well as metabolic support to neurons and
provide nutrition. However, findings of single-cell sequenc-
ing reference that cortical organoids have a deficiency in
the cells of the oligodendrocyte progenitor [8, 15]. Some
studies have exposed advanced organoids to beat these issues
by oligodendrocyte growth factors in cortical spheroids that
were through inducing myelinating OLs and oligodendrocyte
progenitors [16]. There is a protocol for the observation and
acceleration maturation of OLs, nine weeks after organoid
formation. Promote and improve myelination, oligodendro-
cyte production, and phenotypes of myelination defect
diseases using promyelinating drugs have monitored produc-
tion of OLs via OLIG2-green fluorescent protein (GFP)
signal and create forebrain organoids by applying the GFP
stem cell reporter line [17]. There is another protocol for
organoid culture development, which produces neurons,
astrocytes, and OLs. That protocol uses to study the myelina-
tion, development of OLs, and main cell types interaction in
the central nervous system, which applies a set of growth
factors and small molecules [18]. Interneurons play a central
role in regulating the cortical network processes. Some
studies have established organoids to recapitulate the human
medial ganglionic eminence (MGE) development. These
organoids contain essential ventral brain domains, neuronal
networks, and functional cortical interneurons, which are
similar to the developing cortex and MGE [19]. The enrich-
ment of cerebellar disease genes has been investigated in
distinct cell populations in the cerebellar organoids. That
demonstrated xeno-free human cerebellar organoids as a
unique valuable model to gain insight into cerebellar devel-
opment and its associated disorders [20].

3. Applications of Brain Organoids

Numerous studies have displayed that brain organoids can
recapitulate fundamental and vital features of the human
brain, such as cellular regulation and distribution, neuro-
nal networks, electrical activities, and physiological struc-
ture. So, brain organoids have provided a singular model
to study and investigate neurological disorder mechanisms
(Table 1).

4. Neurodegenerative Disorders

4.1. Alzheimer’s Disease. The progressive worsening of phys-
ical functions, behavioral impairment, and cognitive decline
are clear manifestations of Alzheimer’s Disease (AD), which
is the most common neurodegenerative disease. Some
reports demonstrated that have created a 3D culture system
by amyloid-f precursor protein (APP) and presenilin 1
(PSEN1) upregulated human neural stem cells; that observed
clearly the pathological aggregation of amyloid-f and Tau,

Oxidative Medicine and Cellular Longevity

suggesting the 3D culture advantage. [47, 48]. There has
been observed spontaneous and persistent aggregation of
Ab in the neural organoids derived from patients with famil-
ial Down syndrome (fAD). A significantly high pTau immu-
noreactivity has been displayed in fAD organoids at the later
stage of culture compared to the control group. The patho-
logic changes induced by Tau phosphorylation and amyloid
b in fAD organoids have been reduced by inhibitors of beta
and gamma-secretase [49]. For neurodegenerative diseases
therapeutic compounds screening, the cerebral organoids
have many characteristics and can be useful. A recent find-
ing shows that can directly establish a new model of AD
by infecting the herpes virus into 3D brain-like tissues,
which can simulate the formation of deteriorated functional-
ity in the AD pathological process, neuroinflammation,
gliosis, and amyloid plaques [50].

4.2. Parkinson’s Disease. Parkinson’s disease (PD) is the
most second common neurodegenerative disease. Dopami-
nergic neuron impairment in the substantia nigra is the
main characteristic of the PD; that typical motor symptoms
include gait and postural disorders, resting tremors, muscle
stiffness, and bradykinesia. Presently, the animal and cellular
models of PD have some restrictions to mimic the PD phe-
notypes, such as animals with genetic mutations like muta-
tions of LRRK2 cannot display clear progressive evidence
of the Lewy body formation or loss of midbrain dopamine
neurons [51, 52]. Organoids of midbrain specific derived
from patients’ sporadic PD with LRRK2-G2019S mutation
consist of midbrain dopaminergic neurons (mDAN), but
LRRK2 organoids have less in the mDAN complexity and
number compared with the control group, which is harmo-
nious with the PD patients’ phenotype [53]. The heterozy-
gous LRRK2-G2019S point mutation has been inserted
into hiPSC leading to the isogenic midbrain organoids
(MOs) created, using the technology of CRISPR-Cas9 [51].
The findings were that the corresponding markers including
DAT, VMAT2, AADC, and TH expression were inhibited
and shortened the dopaminergic neurons’ neurite length in
the mutant MO [51]. Besides, there are some pathological
signs PD-related found in MOs also such as abnormal clear-
ance of a-synuclein and increased aggregation. The gene
expression profiling findings demonstrated there are many
similarities between a PD patient’s brain tissue and the
mutant MOs. In mutant, MOs, specifically, were TXNIP
overexpression, and the TXNIP suppression can inhibit the
MOs phenotype induced by LRRK2, so maybe LRRK2-
related sporadic PD has a correlation with TXNIP [51]. All
these results exposed valuable pathophysiology insights for
the progression and treatment of PD. Moreover, there is an
early alteration in LIM homeobox transcription factor-
alpha expression and late alteration in tyrosine hydroxylase
markers in the MOs derived from idiopathic PD patients.
In the forms of PD idiopathic, many related key genes have
been determined such as FOXA2, LMX1A, PTX3, and neu-
ronal marker genes TH [54]. Lately, it was reported that
midbrain-like organoids, new type, have been developed,
which can produce mDANs and have homogeneous and sta-
ble structures, glial cells, and other neuronal subtypes [55].
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These findings indicate that MOs could be unique models
for familiar and sporadic PD.

4.3. Ataxia-Telangiectasia. Ataxia-telangiectasia (A-T) is a
genetic disorder caused by the lack of functional ATM
kinase, which is characterized by neurodegeneration, neuro-
nal defects, premature aging features, and chronic inflam-
mation [56]. The association relationship between the
neurological deficiencies of A-T and the detrimental inflam-
matory signature remains unclear [57]. Mechanistically,
the cGAS-STING pathway is required for induction of a
senescence-associated secretory phenotype (SASP) and the
recognition of micronuclei in brain organoids. Furthermore,
there was demonstrating that cGAS and STING suppression
effectively inhibits astrocyte senescence and neurodegenera-
tion, inhibits self-DNA-triggered SASP expression in A-T
brain organoids, and ameliorates A-T neuropathology in
the brain organoids [58].

4.4. Brain Cancer. Medulloblastoma (MB) is one of the most
aggressive malignant brain tumors in children, which pre-
dominantly occurs in the cerebellum and has a high mortal-
ity rate [59]. The most aggressive subgroup of MB is group 3,
which has ¢-MYC overexpression. The reports demon-
strated that OTX2/c-MYC is a new driving gene wanted
for 3 MB tumorigenesis in the cerebellar organoid of 3 MB.
OTX2/c-MYC tumorigenesis in the organoids has been
inhibited by treatment using EZH2 inhibitor tazemetostat
[60]. Therefore, organoids of the human brain can be effec-
tive models applied to investigate the genetic mechanisms
roles and treatment in glioma patients. Glioblastoma
(GBM) accounts for 54% of all gliomas and is considered
the most malignant type of brain cancer [61]. There were
cerebral organoids used in vitro study primary human
GBM model. The glioma cerebral organoids (GLICO) model
has been obtained after the coculture of glioma stem cells
(GSC:s) with organoids. GSCs cocultured with organoids dis-
play deeply infiltrated and metastasized to the organoids
inner zones and proliferated in host tissues that generated
tumors closely related to GBM patients’ tissue [62], suggest-
ing that the GLICO model represents well the malignant
GBM characteristics.

5. Neurodevelopmental Disorders

5.1. Autism Spectrum Disorders. One of the neurodevelop-
mental disorders that affect behavior and communication
is Autism spectrum disorder (ASD) which is caused by
various pathogenic factors, such as environmental factors,
epigenetic modifications, and genetic mutation. The prefer-
ence differentiation toward GABAergic neurons has been
demonstrated in the cortical organoids derived from patients
with ASD; however, glutamatergic neurons have not been
the alterations, resulting in the imbalance of GABA-
Glutamate neurons, which resulting from the FOXGI1
expression alteration [63]. A multiomics investigation on
the iPSC-derived cortical organoids has demonstrated an
epigenomic and transcriptomic pattern similar to isogeneic
tissue of the fetal brain, particularly during 5 to 16 weeks
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of gestation [64]. Moreover, cell types of the forebrain orga-
noids were similar to embryonic prefrontal cortical; RNA
sequencing of the organoids at the transcriptional profiles
has the highest correlations with multiple forebrain struc-
tures of fetal brain tissue from the BrainSpan transcriptome
database [65]. Additionally, been exposed 49,640 active tran-
scription factors essential for the specification of cortical
neurons [64], and genes expressed differentially are strongly
correlated with the Wnt/b-catenin signaling pathway [66].
The volume of cerebral organoids with RAB39B mutation
was large compared with control and has shown excessive
proliferation and impaired differentiation of NPCs. AKT-
mTOR-PI3K signaling pathway activation has been induced
by RAB39B downregulation, and the phenotypes rescue can
be by AKT-mTOR-PI3K signaling inhibition [67]. That was
consistent with the report results of Jong et al., which
showed an excess in volume and thickening of the cortical
organoids with CNTNAP2 mutation that was related to
increases in total cell number due to increased neurogenesis
and neural progenitor cells (NPCs) proliferation [65]. CHD8
is a gene related to ASD; it has been shown that CHD8 reg-
ulates other genes related to ASD, such as AUTS2 and TCF4.
In the CHD8 mutant brain organoids derived from iPSCs,
ASD includes macrocephaly-autism disorder, and the func-
tion lack of RAB39B mutation leads to epilepsy, ASD, and
macrocephaly [67]. Some interesting facts are beginning to
unfold using the organoids model, as a recent study revealed
that expression of ASD genes, especially speech and lan-
guage difficulty-related gene FOXP2 overexpressed in an
autistic savant [68].

5.2. Lissencephaly. The most serious form of lissencephaly
type 1 is Miller Dieker’s syndrome (MDS) which is character-
ized by seizures, decreased brain size, mental retardation, and
craniofacial deformities [36]. Cerebral organoids derived
from patients with MDS show decreased vertical divisions
and increased apoptosis [69]. Furthermore, observed the
delaying of the outer radial glial cells- (0RGCs-) specific
cytokinesis, cell autonomy, and defects of neurons radial
migration. These results display the involvement of oRGCs
defects mitotic in the human lissencephaly pathogenesis.
The ventricular radial glial cells (VRGCs) in the organoids
of the forebrain derived from patients with MDS also show
a shift from symmetrical to asymmetrical cell division [36].
Furthermore, in MDS organoids, there were many changes
that have been detected in the ventricular niche organization,
including the irregular situation of retracted cells from the
apical membrane and the vRGC tissues having low compact-
ness [36]. Regulating the -catenin/N-cadherin pathway can
treat these phenotypes, suggesting that Wnt signaling plays a
vital function in MDS.

5.3. Down Syndrome. Down syndrome (DS) is a genetic
disorder that is the most common dementia form in people
<50 years old and is the most common reason for learning
difficulties [70]. Dividing the DS dementia-causing factors
into two categories, neurodegenerative and neurodevelop-
mental disorder, an imbalance in inhibitory and excitatory
neurotransmission contributes mainly to DS cognitive
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deficits. DS organoids produce a variety of SSTC GABAergic
and CRC neurons and numerous OLIG2C NPCs [71]. There
are some conflicts between the culture of 2D and 3D that
were noted; different subtypes of neurons can be generated
from OLIG2C NPCs in 3D culture, while 2D culture can
only obtain CRC neurons [71]. These results indicate that
OLIG2 could be a potential target for DS therapy. Some phe-
notypes of AD were observed in patients with DS. Reports
have detected that organoids derived from familial AD
(fAD) patients and DS patients spontaneously demonstrate
Tau hyperphosphorylation and deposition of amyloid pla-
que, which were more significant in AD than in fAD [72].
Moreover, delayed onset of dementia was in around 30%
of patients with DS, which underlying mechanism may be
due to the BACE2 triplication [73]. Likewise, T21-hiPSC
organoids have been protected from early AD-like amyloid
plaque pathology by BACE2 trisomic level [74]. These find-
ings suggest that BACE2 has a physiological role in inhibit-
ing AD and can be a therapeutic target for AD.

5.4. Neonatal Hypoxic Injury. The most common cause of
neonatal disability and death is neonatal hypoxic injury
(NHI), in which survivors usually suffer from cognitive
impairment, epilepsy, and cerebral palsy [75]. There was a
study on the effects of oxygen with different concentrations
on the NHI brain organoids which were established for the
investigation. These results display that expressions of the
genetic markers CLIP2, DCX1, and FOXGI for migrated
cortical neurons, glial cells, OLs, and forebrain were inhib-
ited by hypoxia, which could be suppressed using minocy-
cline. Furthermore, using minocycline has decreased
apoptosis in brain organoids induced by hypoxia [76].

5.5. Periventricular Heterotopia. The neocortex evolution
process in mammals is highly consistent that depends on
the neuron’s maturation, migration, and precise generation.
Periventricular heterotopia is one of the most common mal-
formations of cortical evolution and is closely related to
FAT4 and DCHSI [77]. The iPSCs construct, and cerebral
organoids have been established using somatic cells with
FAT4 or DCHS1 mutations in patients. The morphology
of the NPCs processes in organoids derived from iPSCs of
a healthy person manifests carefully, straight and arranged.
However, processes neuronal often display a distorted and
destroyed morphological in the organoids with FAT4 knock-
out or mutation [78].

5.6. Primary Microcephaly. The most cause of primary
microcephaly is genetic, which is regulating the cilium
caused by autosomal recessive mutations such as CENP],
CPAP, MCPHI1, ASPM, CDK5RAP2, and WDRé62 that
genes also regulate centrosomes assembly [79]. Recently,
specific brain organoids for congenital microcephaly have
been generated, which have WDR62, ASPM, CDK5RAP2,
and CPAP mutations [15, 79, 80]. The primary microceph-
aly cerebral organoid model has been established. Trunca-
tion mutations of somatic cells with heterozygous have
been reprogrammed from CDK5RAP2 to iPSCs. From
iPSCs of patients created neuroepithelial tissue which was

small compared with the control group, after being trans-
ferred to neural induction. The brain organoids which were
established contain many neurons and few radial glial stem
cells (RGs), signifying that the decrease of CDK5RAP2 leads
to premature neural differentiation with progenitor cells
losing [81]. CPAP mutation can cause microcephaly and
Seckel’s syndrome. From the Seckel syndrome patient with
CPAP mutation, brain organoids have been derived that
display premature neuronal differentiation and smaller size
[82]. Moreover, there was a demonstrated increase in the
length and number of cilium of the Seckel organoids in com-
parison with control, suggesting that cilium breakdown is
delayed [82]. These results confirmed that CPAP has a neg-
ative regulation in the cilium length and indicate that cilium
plays a vital role in the NPCs maintenance. The organoids
which have been iPSCs-generated with WDR62 mutation
exhibit premature NPCs differentiation, slowed the cilia
lengthening and decomposition, and reduced proliferation
and cell cycle progression. The study of the mechanism has
demonstrated that WDR62 is correlated with CEP170 and
enhances CEP170 to locate in the primary cilia matrix,
where CEP170 decomposes cilium through the microtubule
depolymerization factor KIF2A activation [79]. These results
display novel insights into primary microcephaly pathogen-
esis. Microcephaly organoids with ASPM mutation display
poor lamination and few vRGCs, neuroepithelial tissues,
and outer RGCs. Have been noticed in the ASPM mutant,
organoids decreased electrical activity and maturation,
which confirms the correlation and role of ASPM mutations
in congenital mental retardation in patients [80]. A recent
study has been concerned with the investigation of exposed
microcephaly-related NARS1 mutations and whole-exome
sequencing in >5,000 neurodevelopmental disorder patients.
The cortical brain organoids, patient derived with NARS1
mutation, have been created, whereas the results have dis-
played inhibiting cell cycle and proliferation of RGCs and
smaller size [38].

5.7. Progressive Microcephaly. Another microcephaly is
called secondary microcephaly, which causes by infection,
external environment, and other factors. Zika virus (ZIKV)
infection is one of the causes of secondary microcephaly that
has been widely studied. The binding of ZIKV particles to
cell membranes and localizing them in cellular vesicles and
mitochondria lead to inhibition of the neurosphere forma-
tion and cell death [83]. Some studies have developed an
organoid of the forebrain and infected it with ZIKV at vari-
ous pregnancy stages. There was significantly increase in the
lumen size of the ventricular structure after the exposure of
ZIKV at organoids in the early stages (day 14), while signif-
icantly reduced VZ zone size and thickness [5]. That was
very similar to the central ventricular dilatation of the fetus
brain infected with ZIKV and its clinical phenotypes [84].

6. CNS Infectious Diseases

6.1. Cerebral Malaria. Cerebral malaria is one of the severe
clinical manifestations, which is associated with serious neu-
rological complications [85]. Hemolysis is one of the most



malaria complications that lead produces a by-product
called heme, which enhances iPSCs spontaneous differentia-
tion and apoptosis and induces brain injury-related bio-
markers changes in organoids, such that BDNF, CXCR3,
and CXCL-10 expression increased, while ERBB4 expression
decreased. Furthermore, neuroprotective impacts on heme-
treated organoids have been shown by neuregulin-1 [86].
Hence, the model of brain organoids can be used to investi-
gate the effects of hemolysis on fetal brain evolution.

6.2. Virus Infections. The brain organoids development has
extremely contributed to neurotropic viruses” study promo-
tion and provided alternative ZIKV infection models for
2D cell culture and animal models [87]. A recent report
demonstrated that exposure of the brain organoids to
enoxacin can avoid the microcephalic phenotype by pre-
venting ZIKV infection. These findings revealed the RNAi-
mediated antiviral immunity physiological significance in
human brain development especially in the early stages, dis-
covering new strategies to promote RNAi’s resistance to
decrease congenital viral infection in humans [34]. Besides,
has been investigated ZIKV neurotoxicity to study its
mechanism and possible efficacy in GBM as an oncolytic
virus, the findings of GBM cortical organoids have shown
that ZIKV preferentially targets GSCs, showing effective
oncolytic impacts. The GBM organoids application in pre-
clinical studies augments selective tumor targeting and
may provide oncolytic virus therapeutic positive implica-
tions [88]. Recent reports indicated expression of the
ACE2 that is functionally required for SARS-CoV-2 infec-
tion has been demonstrated in brain organoids. Further-
more, the SARS-CoV-2 infections in the brain organoids
showed the relationship between neuroinvasion and ische-
mic infarcts, which displayed that the more susceptible
regions to the viral invasion were ischemic infarct regions
[89]. An organoid model to study the choroid plexus
(ChP) has developed recently, which recapitulates the
epithelial polarization of ChP cells to investigate the viral
tropism of SARS-CoV-2 in various cells of the CNS. The
organoids showed susceptibility to SARS-CoV-2 and rather
efficient ChP infection, leading to transcriptional deregula-
tion and cell death susceptibility of lipoprotein-producing
cells [90]. Japanese encephalitis (JE) infection is still a chal-
lenging issue across the world which causes irreversible
brain damage [91]. JEV infection impaired the development
of organoids by targeting oRGCs and astrocytes and NPCs
and induces cell death [92].

7. Mental Disorders

Schizophrenia is one of the most serious mental disorders
with neurodevelopmental origins, molecular neuropathol-
ogy, and complex environmental/genetic reasons. There is
a challenge in observing the mental illness phenotypes in
rodents due to the structural and functional differences of
brain regions in comparison with a human being [93]. Orga-
noids of the forebrain derived from schizophrenia DISC1
mutant patients display modification of RGCs proliferation.
The NDEL1 and DISC1 correlation plays a vital role in neu-
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ral stem cell maintenance during human forebrain develop-
ment [94]. The WNT signaling pathway overactivation has
been detected in the isogenic DISC1 mutant brain organoids.
DISC1 organoids morphological examination shows an
impaired proliferation and mixed structural morphology,
which can be treated by WNT antagonism [95]. Brain
organoids derived from schizophrenia iPSCs show reduced
neuronal proliferation and development and decreased
FGFR1 expression in cortical cells, conjugated with loss sig-
naling of nFGFR. Cortical growth arrest similar to schizo-
phrenia can be generated by antagonist PD173074 with
FGFR1 knockdown in control organoids. Besides, this can
decrease the developmental abnormalities in cortical neu-
rons through FGFR1 activation [96]. A recent study suggests
that the found multiple mechanisms of schizophrenia in
brain organoids and these different mechanisms link up
upon primordial brain developmental pathways such as
growth factor support, survival, and neuronal differentia-
tion, which may integrate to promote the intrinsic risk of
schizophrenia [97].

8. Organoids Therapeutic Applications

The difference in species may indicate that the use of
animals for therapeutic development, drug investigation,
and disease modeling does not closely represent biological
responses in humans. In addition, the traditional cell culture
2D may not exactly represent modeling human diseases.
Thus, using organoid models to investigate pathological
and regulatory molecular mechanisms is a promising strate-
gic choice. Treatment of the organoids with standard
therapy, chemoradiotherapy, displays as seen in practice
through comparatively low response. Treatment of orga-
noids showed general therapeutic resistance with apoptotic
and antiproliferative effects differing biological mechanisms
from those of 2D cultures [98]. The model of brain orga-
noids can use to study some compounds for neurodeve-
lopmental disorders, such as ZIKV antiviral drugs. The
reported study investigates two potential drug compounds,
amodiaquine dihydrochloride dehydrate, and hippeastrine
hydrobromide, which could prevent ZIKV infection in
cortical NPCs and rescue the effects of ZIKV-induced dif-
ferentiation defects and growth in the human fetal-like
forebrain organoids [99]. A recent study suggests that have
been implanted cerebral organoids in lesion sites of trau-
matic brain injury, which differentiated into cortical neu-
rons, generated long projections and rescued deficits in
memory and learning; which will create a potential thera-
peutic unique method for brain injury treatment [100]. In
vitro models of the blood brain barrier (BBB) is an impor-
tant challenge for the study of drug development that can
reach the central nervous system and BBB transport [101].
The BBB organoids have been created which represents a
cost effective, versatile, and accurate, in vitro tool. BBB
organoids modeling could accelerate therapeutic discovery
for the treatment of several neuropathologies [102]. Cere-
bral organoid models probably in the soon future will be
able to simulate blood flow across organs that link
blood-brain barrier cultures with liver cultures, which will
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represent a qualitative shift in pharmacology and thera-
peutics in the neuroscience field. Furthermore, it would
enable us to have realistic therapeutic options and realize
efficacious stem cell interventions for restoration therapy
or cell replacements for neurodegenerative diseases.

9. Advantages of Using 3D Model Compared to
2D Model in the Cerebral Investigation

(a) There are some conflicts between the culture of 2D,
and 3D that were noted; different subtypes of neu-
rons can be generated from OLIG2C NPCs in 3D
culture, while 2D culture can only obtain CRC
neurons

(b) The brain 3D models development has extremely
contributed to neurotropic viruses’ study promotion
and provided alternative ZIKV infection models for
2D cell culture and animal models

(c) Cerebral 3D models possess important features com-
pared to 2D classical culture, whereas the 3D models
are very partially simulating the generation of path-
ological features for neurodegenerative diseases

(d) The 2D cell culture may not exactly represent
modeling human diseases. Thus, using 3D models
to investigate pathological and regulatory molecular
mechanisms is a promising strategic choice

(e) Treatment of 3D models showed general therapeutic
resistance with apoptotic and antiproliferative effects
differing biological mechanisms from those of 2D
models

10. Organoids Challenges

There is a high advance during the past decade in culture,
generation, and using the human brain, referred to as “cere-
bral organoids” or “brain organoids” in the lab for research
and investigation. Cerebral organoids provide a unique
model to understand the evolvement of the human brain
and aging progression. Up to now, cerebral organoids have
been applied in researching neurological disease mecha-
nisms, drug efficacy, etc. Researchers comprehend a few
issues in the domain even though cerebral organoids possess
important features compared to 2D classical culture. First,
the cerebral organoids are very partially simulating the
generation of pathological features for neurodegenerative
diseases. Second, it is still a great challenge to mimic well
the complexity of the human brain during brain develop-
ment and aging, in a spatiotemporal pattern, such as the
cross transmission between different cells, maturity, struc-
ture, dynamic cellular composition, etc. Third, until now,
the cerebral organoids do not mimic the human tissues in
typical environments like the body; particularly, the brain
tumor must be in a special microenvironment that is
immune suppressive. Fourth, due to the cultural methods
still do not meet the need, one chamber could have some
variations among organoids. This variation in the volume

and the size between the patient-derived organoids and
control absolutely will affect the results. Fifth, functional vas-
culature generation in organoids is an important challenge
which is not yet been achieved; thus, this organoid technol-
ogy application will require the possibility of functional
vasculature generation in the future. Sixth, to culture and
generate cerebral organoids, it required multiple reagents
and is technically challenging. Additionally, more challeng-
ing for healthy organoids to get if culture time increases.
Seventh, there will be a need in the future to rediscuss some
ethical issues concerning the use of reprogrammed human
cells iPSC derived and the complex brain organoid genera-
tion that will smooth the way for decreasing dramatically
animal use for experiments, especially in drug discovery
investigations. Hence, technical advances and more research
can decrease challenges and resolve these issues in the
future. Furthermore, spatial profiling, single-cell transcripto-
mics, and therapeutics will be major fields for research in the
soon future. Finally, the establishment of unified guidelines
as a catalog for human organoids that include an atlas and
cultural techniques for organoids could be a great and valu-
able help in improving and developing medical research.
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