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Oxidative damage and epithelial-mesenchymal transition (EMT) are main pathological processes leading to the development of
PM2.5-induced lung fibrosis. Epigallocatechin gallate (EG), a natural polyphenol extracted from green tea, possesses the ability
to combat oxidative stress and inflammation. However, the potential roles of EG in PM2.5-induced lung fibrosis have not been
reported yet. In the present study, we investigated whether EG could relieve PM2.5-induced lung injury and fibrosis in vivo
and in vitro. To mimic PM2.5-induced lung fibrosis, C57/BL6 mice were intranasally instilled with PM2.5 suspension, and
MLE-12 lung epithelial cells were stimulated with PM2.5 (100 μg/mL) in vitro. The results showed that intragastric
administration of EG (20mg/kg/d or 80mg/kg/d for 8 weeks) significantly prevented lung injury, inflammation, and oxidative
stress in PM2.5-induced mice, apart from inhibiting collagen deposition. Additionally, EG treatment also suppressed the
activation of AKT/mTOR signaling pathway in lung tissues challenged with PM2.5. In vitro experiments further demonstrated
that EG treatment could enhance cell viability in a concentration-dependent manner in PM2.5-treated MLE-12 lung epithelial
cells. Also, the overexpression of constitutively active AKT could offset the inhibitory effects of EG on EMT and oxidative
stress in PM2.5-treated MLE-12 lung epithelial cells. Finally, AKT overexpression also blocked the inhibitory effect of EG on
the phosphorylation of mTOR in PM2.5-treated MLE-12 lung epithelial cells. In conclusion, EG could improve PM2.5-induced
lung fibrosis by decreasing oxidative damage and EMT through AKT/mTOR pathway, which might be a potential candidate
for the treatment of PM2.5-induced lung fibrosis.

1. Introduction

Air pollution has posed huge threat to human health, espe-
cially the cardiovascular system and respiratory system [1].
PM2.5 is defined as ambient air particulate matter with aero-
dynamic diameters less than 2.5μm, which is one of the
important pollutant compositions in air [2]. Increased
PM2.5 is implicated with a variety of chronic diseases
including bronchitis, chronic obstructive pulmonary disease
(COPD) [3], asthma [4], coronary artery disease [5], and
atherosclerosis [6]. PM2.5 can be easily inhaled into the air-

way and subsequently deposited in lung alveolar space due
to its small size, the long-term deposition of which further
gives rise to lung pathological injury and fibrosis by increas-
ing oxidative stress and epithelial-mesenchymal transition
(EMT) [7]. Thereby, candidates with antioxidative and anti-
fibrotic effects possess the potential to attenuate PM2.5-
induced lung injury and fibrosis.

At present, the pathogenesis of lung fibrosis has not been
well clarified. Lung fibrosis originates from aberrant repair
of the lung epithelial cells and repeated injury [8]. Some
studies hold the view that the progressive pulmonary
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dysfunction declining resulted from the lung epithelial
injury as well as aberrant fibroblast proliferation participated
in the development of inflammation and lung fibrosis
[9, 10]. Additionally, EMT and excessive extracellular matrix
(ECM) production also result in pulmonary structural
remodeling [11, 12]. In recent years, a great many researchers
have been immersed in the roles of lung epithelial cells and
EMT in fibrosis. Lung epithelial cells could differentiate into
a mesenchymal phenotype through EMT, which further
secrete a series of fibrogenic cytokines to activate fibroblasts
[13]. Protein kinase B (PKB, also known as AKT)/mechanis-
tic target of rapamycin (mTOR) pathway serves as one of the
most important pathways contributing to the activation of
EMT, playing an essential role in the progression of lung
fibrosis [14]. Hence, blocking AKT/mTOR pathway has been
proposed to be a promising strategy to suppress EMT and
combat lung fibrosis.

Epigallocatechin gallate (EG) is considered as the most
abundant polyphenol with bioactivity in green tea isolated
from Camellia sinensis [15]. As a bioactive dietary compo-
nent, EG owns a great many pharmacological actions
including antioxidation, anti-inflammation, antifibrosis,
and inhibiting endoplasmic reticulum stress [16–18]. In
acute lung injury induced by sepsis, acute pancreatitis,
paraquat, and hip fracture, EG treatment could exert vital
protective roles by different mechanisms [19–22]. In
transverse aortic constriction-induced cardiac fibrosis, EG
treatment significantly decreased collagen deposition and
cardiomyocyte hypertrophy by blocking AKT/mTOR path-
way [18]. These facts raised the possibility that EG may
own the potential of pulmonary protection. Yet whether
the EG could protect against chronic lung injury is still
unknown.

In the current study, we aimed to explore whether EG
can attenuate lung injury and fibrosis induced by PM2.5in
mice and to clarify the underlying mechanisms.

2. Materials and Methods

2.1. Regents and Chemicals. Epigallocatechin gallate with a
purity of 99.87% was purchased from MedChemExpress
Co., Ltd. (#: HY-13653, Shanghai, China). Primary anti-
bodies against phosphorylated (P)-AKT, total (T)-AKT,
P-mTOR, T-mTOR, and GAPDH were provided by Abcam
(Cambridge, UK), while secondary antibody was obtained
from LI-COR Biosciences (Lincoln, USA). Trypsin-EDTA
(0.25%) phenol red and Dulbecco’s modified Eagle’s medium
nutrient mixture F-12 (DMEM/F-12), fetal bovine serum
(FBS), and trypsin-ethylenediaminetetraacetic acid (0.25%)
phenol were provided by Invitrogen-Gibco (Grand Island,
NY, USA).

2.2. The Extraction of PM2.5 Sampling. PM2.5 samples
were obtained with a high flow PM2.5 sampler (Ecotech,
Australia) in the Wuhan Environment Surveillance Centre.
The extraction and analysis of PM2.5 sampling were carried
out based on our previous study [23]. The PM2.5 particles
were stored at −20°C and detached from filters by sonication,
which were next desiccated by lyophilization. At last, these

PM2.5 solid particles were suspended in phosphate buffer
saline (PBS) evenly by vortex concussion for intranasal instil-
lation and cell experiments.

2.3. Mice and Models. C57/BL6J male mice weighing 24:3 ±
1:7 g (8~10 weeks) were provided by the Chinese Academy
of Medical Sciences (Beijing). Mice were housed in a specific
pathogen-free rooms with constant temperature (22–25°C)
and humidity (50–60%) under a 12h light/dark cycle. Mice
had ad libitum access to food and water. All animal experi-
mental procedures were in accordance with the Guidelines
for the Care and Use of Laboratory Animals published by
the National Institutes of Health and were approved by the
Committee on the Laboratory Animal Welfare & Ethics of
Renmin Hospital of Wuhan University.

According to previous study, mice were intranasally
instilled with PM2.5 particulates (100mg/kg bodyweight)
suspended in 50μL of sterile water or isovolumetric sterile
saline once a week for four weeks to induce PM2.5-induced
lung injury and fibrosis [24]. Meanwhile, EG (20mg/kg/d or
80mg/kg/d) or equal volume of sterile saline was adminis-
tered orally to mice for continuous 8 weeks. 56 days after
EG administration, mice were sacrificed by cervical disloca-
tion after they were anaesthetized deeply by isoflurane inha-
lation. And the lungs were excised for molecular biological
and histological detections. To keep the lungs in an extended
status, 4% paraformaldehyde was instilled in the trachea.

2.4. Histopathological Analysis. The left lung tissues were
embedded in paraffin, which were then sliced into 3μm-
thick sections to expose the cross section of lung tissue. Sub-
sequently, the sections were stained using hematoxylin for a
few minutes and rinsed by tap water, followed by the differ-
entiation with 1% hydrochloric acid alcohol for 3-5 seconds.
After that, the sections were stained with eosin for 2-3
minutes. The lung injury was then observed and scored
under a microscope. As described previously, a semiquanti-
tative scoring system was applied to access lung injury based
on the degree of neutrophil infiltration and pulmonary
edema. Each index was scored by a pathologist according
to the following criteria: 0, no injury; 1, injury up to 25%
of the field; 2, injury up to 50% of the field; 3, injury up to
75% of the field; and 4, diffuse injury. A total lung injury
score was calculated by summing up the two components
(neutrophil infiltration and pulmonary edema) [25].

As for Masson staining, the lung sections were stained
with iron hematoxylin for the nucleus after dewaxed in
water. After that, the sections were stained with ponceau
red, followed by phosphomolybdic acid aqueous solution.
Next, the sections were stained with aniline blue and sealed
with neutral resin. At last, the sections were observed and
pictured under a light microscope.

2.5. Cell Culture and Treatment. The MLE-12 lung epithelial
cells were provided by Kunming Cell Bank of Typical Cul-
tures Preservation Committee, Chinese Academy of Sciences
(Kunming, China). The cells were cultured in DMEM/F-12
supplemented with FBS (10%) at 37°C in an incubator with
5% CO2. To establish an in vitro model of PM2.5-induced
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lung injury, the MLE-12 lung epithelial cells were stimulated
with PM2.5 (100μg/mL) with or without EG (20μM) for
24 hours as described [23]. To activate AKT in MLE-12
lung epithelial cells constitutively, the adenoviral (Ad) vec-
tors generated by Hanbio Biotechnology Co. (Shanghai,
China) were used in the present study [26].

2.6. Western Blot and Quantitative Real-Time RT-PCR. The
Western blot was carried out to access the levels of protein
expression. The total proteins in lung tissues and lung
epithelial cells were extracted using RIPA lysis buffer con-
taining a protease inhibitor cocktail. A bicinchoninic acid
(BCA) protein assay kit was used to detect and normalize
the protein concentration. 10 μL of markers or quantitative
protein samples (50μg) was added into a 10% SDS-PAGE
and separated before being transferred to the polyvinylidene
fluoride (PVDF) membranes. Subsequently, 5% skim milk
was used to block the nonspecific protein binding sites in
the PVDF membranes. Then, the membranes were incu-
bated with antibodies against GAPDH (1: 1000), P-mTOR
(1 : 500), T-mTOR (1 : 1000), P-AKT (1 : 5000), and T-AKT
(1 : 1000) diluted in Tris-buffered saline+Tween (TBST)
overnight at 4°C overnight, respectively. The next day, the
PVDF membranes were incubated with the secondary anti-
bodies after washed with TBST for 3 times. ECL detection
kits were applied to access chemiluminescence using a LI-
COR Odyssey image system. The protein expression levels
were normalized to GAPDH as an internal reference. The
expression was quantified using the Image Lab software
from Bio-Rad (Hercules, CA, USA).

Total RNA was extracted from murine lung tissues and
cultured lung epithelial cells using the TRIzol reagent. Next,
total RNA was reversely transcribed to complementary DNA
by oligo primers using the Maxima First Strand cDNA
Synthesis Kit. The transcriptional levels of target genes
including TNF-α, IL-1β, MCP-1, collagen I, collagen III,
connective tissue growth factor (CTGF), E-Cadherin, α-
SMA, Snail, thioredoxin-interacting protein (TXNIP), thio-
redoxin reductase 1(TXNRD1), and thioredoxin 1 (TXN1)
were detected with SYBR green. GAPDH was used as an
internal reference gene to calculate the relative expression
of target genes.

2.7. The Determination of Oxidative Stress. The fresh murine
lung tissues (100mg) were homogenized and then centri-
fuged for 10 min (X4230 g) to obtain the supernatant frac-
tions. Then, the NADH oxidase (NOX) and superoxide
dismutase (SOD) activities and malondialdehyde (MDA)
level were detected using the commercially available kits
according to the instructions [27].

2.8. CCK8 Assay. Cell Counting Kit-8 (CCK8) assay was
performed to detect cell viability using aCCK8 assay kit. In
detail, the lung epithelial cells were seeded into 96-well
plates. Subsequently, 10μL of CCK8 working solution was
added into each well in a dark environment. Then, the plates
were kept in an incubator (5% CO2) at 37°C for 1 hour.
Finally, the absorbance was measured at 450nm to evaluate
the cell viability of lung epithelial cells.

2.9. Data Analysis. All data in this study are presented as the
mean± standard deviation (SD). One-way ANOVA followed
by a post hoc Tukey’s test was performed to analyze the
differences among multiple groups, while an unpaired,
two-sided Student t test was carried out to analyze the differ-
ences between 2 groups. P < 0:05 was defined as statistical
significance.

3. Results

3.1. EG Treatment Decreased Pathological Injury and
Inflammatory Response in Lung Tissues Treated with
PM2.5. To begin with, lung pathological injury in each group
was assessed by H&E staining. The results showed that EG
(both 20mg/kg/d and 80mg/kg/d) could significantly allevi-
ate interstitial thickening and inflammatory cell infiltration
caused by PM2.5, which was reflected by decreased lung
injury score (Figures 1(a) and 1(b)). The results from RT-
PCR also indicated that EG treatment significantly decreased
inflammatory response in PM2.5-induced lung tissues, which
was evidenced by decreased mRNA levels of TNF-α, IL-1β,
and MCP-1(Figures 1(c)–1(e)).

3.2. EG Treatment Inhibited Oxidative Stress in Lung Tissues
Treated with PM2.5. Next, the levels of oxidative stress were
evaluated using different methods. As shown in Figure 2(a),
the level of lipid peroxidative product MDA in lung tissues
from mice challenged PM2.5 was suppressed after EG (both
20mg/kg/d and 80mg/kg/d) treatment. Also, the activity of
SOD and NOX was determined in each group. The results
demonstrated that EG treatment could increase SOD activity
and decreased NOX activity in PM2.5-induced lung tissues,
indicating that EG exerted antioxidant effects (Figures 2(b)
and 2(c)). Meanwhile, we observed the effects of EG on the
mRNA levels of pro-oxidant gene TXNIP and antioxidant
genes including TXN1 and TXNRD1. The results showed
that EG treatment upregulated the mRNA levels of TXN1
and TXNRD1 and downregulated the mRNA level of
TXNIP (Figures 2(d)–2(f)).

3.3. EG Alleviated Fibrosis and EMT in PM2.5-Induced Lung
Tissues. Fibrosis is one of the most important features of
PM2.5-induced lung injury [28]. Hence, we also observed
the effects of EG on lung fibrosis of mice challenged with
PM2.5. As shown in Figures 3(a) and 3(b), EG (both
20mg/kg/d and 80mg/kg/d) treatment significantly decreases
the fibrotic area in lung tissues from mice treated with PM2.5.
Furthermore, the mRNA levels of collagen I, collagen III, and
CTGF in PM2.5-induced lung tissues were also inhibited by
EG (Figures 3(c)–3(e)). Considering that EMT serves as one
vital mechanism contributing to lung fibrosis, we also detected
the markers of EMT in lung tissues. The results (Figures 3(f)–
3(h)) showed that EG treatment significantly increased the
level of E-Cadherin and decreased the levels of α-SMA and
Snail, suggesting that EG shifted the phenotype from mesen-
chymal cells to epithelial cells.

3.4. AKT/mTOR Pathway Was Inhibited by EG in Lung
Tissues Treated with PM2.5. Previous studies have illustrated
that the abnormal activation of AKT/mTOR pathway was
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implicated with oxidative stress and EMT [29, 30]. Here, our
data disclosed that PM2.5 stimulation significantly pro-
moted the phosphorylation of AKT and mTOR in lung tis-
sues (Figures 4(a)–4(c)). As expected, EG (both 20mg/kg/d
and 80mg/kg/d) treatment obviously blocked the activation
of AKT/mTOR pathway, hinting that the pulmonary protec-
tion from EG may be associated with the inhibition of AKT/
mTOR pathway.

3.5. EG Relieved EMT and Oxidative Stress in PM2.5-Induced
Lung Epithelial Cells in an AKT-Dependent Manner. Next,
we investigated the roles of EG in PM2.5-induced lung epi-
thelial cells. First, cell viability was detected in lung epithelial
cells treated with different concentrations of EG. As shown

in Figure 5(a), the concentrations ranging from 0.1 to
50μM display no effects on cell viability of lung epithelial
cells. In PM2.5-induced lung epithelial cells, the concentra-
tions ranging from 10 to 50μM improved cell viability
(Figure 5(b)). Based on these data, 20μM was selected for
the subsequent in vitro experiments. The results showed that
EG (20μM) could improve cell viability of PM2.5-induced
lung epithelial cells, whereas constitutively active AKT over-
expression by adenoviral infection blocked the effects of EG
on cell viability (Figure 5(c)). Similarly, AKT activation also
offset the inhibitory effects of EG on EMT in PM2.5-induced
lung epithelial cells, evidenced by decreased mRNA level
of E-Cadherin and increased mRNA level of α-SMA
(Figures 5(d) and 5(e)). Additionally, the antioxidant effect
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Figure 1: EG treatment decreased pathological injury and inflammatory response in lung tissues treated with PM2.5. (a–b) H&E staining of
lung tissues in the indicated groups and lung injury scores (n = 5). Original magnification ×200. (c–e) Comparison of mRNA levels of
TNF-α, IL-1β, and MCP-1 in lung tissues (n = 5).∗P < 0:05 vs. Ctrl group, #P < 0:05 vs. PM2.5 group.
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of EG on PM2.5-induced lung epithelial cells could also be
counteracted after AKT activation (Figures 5(f) and 5(g)).
Taken together, these results disclosed the fact that EG
could inhibit EMT and oxidative stress in PM2.5-induced
lung epithelial cells in an AKT-dependent manner.

3.6. AKT/mTOR Pathway Was Involved in Pulmonary
Protection from EG in PM2.5-Induced Lung Epithelial Cells.
Finally, we detected the protein levels of P-mTOR and T-
mTOR in the indicated groups. As shown in Figures 6(a)
and 6(b), EG could not inhibit mTOR at baseline, whereas
it significantly decreased the protein level of P-mTOR
inPM2.5-induced lung epithelial cells. As expected, AKT
activation offset the inhibitory effects of EG on mTOR,
which further solid the hypothesis that EG exerted its pro-
tective effects by blocking the activation of AKT/mTOR
pathway in PM2.5-induced lung injury and fibrosis.

4. Discussion

Here, we disclosed that EG treatment prevents oxidative
damage, inflammation, and lung fibrosis induced by PM2.5
for the first time. EG blocked the EMT of lung epithelial cells
induced by PM2.5 in vitro. The pulmonary protection from

EG was associated with the inactivation of the AKT/mTOR
pathway. Constitutive activation of AKT by adenovirus
infection in lung epithelial cells could offset EG-elicited pro-
tection (Figure 7).

In many epidemiological studies, the relationship
between respiratory diseases and ambient airborne fine par-
ticulate matter exposure has been well illustrated [31, 32]. To
our knowledge, PM2.5 is comprised of a series of particles
involving nitrate, black carbon, sulfate, polycyclic aromatic
hydrocarbons, metals, and automobile exhaust particles,
which could invade distal small airways and alveoli [33].
Excessive accumulation of PM2.5 in lung parenchyma could
lead to irreversible lung fibrosis, apart from inducing inflam-
mation and oxidative stress [34]. In the young and the
elderly, long-term PM2.5 exposure gives rise to poorer lung
function indices, evidenced by reduced forced vital capacity
(FVC), and forced expiratory volume in 1 s (FEV1), as well
as peak expiratory flow (PEF) [35]. At present, oxidative
stress and EMT are regarded as two main factors contribut-
ing to lung fibrosis. Some animal experiments also showed
that long-term PM2.5 exposure aggravates lung fibrosis by
mediating oxidative stress and AKT activation [36]. PM2.5
displays s a potent redox potential by elevating reactive oxy-
gen species (ROS). In preexisting COPD rats stimulated with
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Figure 2: EG treatment inhibited oxidative stress in lung tissues treated with PM2.5. (a) MDA level in lung tissues (n = 5). (b–c) SOD
activity and NOX activity in lung tissues (n = 5). (d–f) Comparison of mRNA levels of Txn1, Txnip, and Txnrd1 in lung tissues (n = 5).
∗P < 0:05 vs. Ctrl group, #P < 0:05 vs. PM2.5 group.
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Figure 3: EG alleviated fibrosis and EMT in PM2.5-induced lung tissues. (a–b) Masson staining of lung tissues in the indicated groups and
the quantification of fibrosis (n = 5). Original magnification ×200. (c–e) Comparison of mRNA levels of fibrosis markers including collagen
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Figure 5: EG relieved EMT and oxidative stress in PM2.5-induced lung epithelial cells in an AKT-dependent manner. (a) Cell viability of
lung epithelial cells treated with different concentrations of EG (n = 5). (b) Cell viability of PM2.5-induced lung epithelial cells treated with
different concentrations of EG (n = 5). (c). Cell viability of PM2.5-induced lung epithelial cells treated with EG (20 μM) after AKT was
overexpressed by adenovirus infection (n = 5). (d–e) Comparison of mRNA levels of EMT markers including E-Cadherin and α-SMA in
the indicated groups (n = 5). ∗P < 0:05 vs. the indicated groups; ns: no significance.
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PM2.5, a significant reduction of some antioxidant factors
including nuclear factor erythroid 2-related factor 2 (Nrf2),
total superoxide dismutase, and heme oxygenase-1 was
observed [37]. These studies hinted that oxidative stress
serves as one critical mechanism contributing to PM2.5-
induced lung fibrosis and injury. On the other one hand,

the interaction between epithelial cells and basal lamina
could be altered by PM2.5, reflected by cytoskeletal and
extracellular matrix with mesenchymal features [38]. In the
present study, PM2.5 exposure promoted the development
of EMT and oxidative damage in vivo and in vitro, which
was significantly blocked by EG treatment.
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Figure 6: AKT/mTOR pathway was involved in pulmonary protection from EG in PM2.5-induced lung epithelial cells. (a–b) Western blot
analysis and statistical results for P-mTOR and T-mTOR (n = 5). ∗P < 0:05 vs. the indicated groups; ns: no significance.
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Both AKT and mTOR (known as the mechanistic target
of rapamycin) are serine-threonine protein kinases, partici-
pating in protein synthesis, metabolism pathways, autoph-
agy, cell proliferation, and cell growth [39]. Activated AKT
could phosphorylate mTOR, promoting the conversion of
lung epithelial cells to fibroblasts, inducing lung fibrosis
[40]. Additionally, the activation of AKT/mTOR pathway
also gives rise to oxidative stress, which further aggravated
the development of fibrosis [29, 41]. Here, our study
unveiled that EG treatment not only decreased oxidative
stress but also inhibited EMT during PM2.5-induced lung
fibrosis by blocking the activation of AKT/mTOR pathway.
In fact, Nrf2 also serves as a critical transcription factor in
the development of fibrosis and antioxidant response. To
be more specific, Nrf2 could dissociate from Keap1 and
translocate to the nucleus. Subsequently, the transcriptional
activity of Nrf2 is enhanced to activate the expression of
some antioxidative genes [42, 43]. Previous study has
unveiled that the activation of Nrf2 was also regulated by
AKT, which was also involved in inflammatory and oxida-
tive damage. Therefore, one of the limitations in the present
study in that the status of Keap1/Nrf2 pathway was not
investigated [44].

Natural therapeutic approaches have been recorded over
3,000 years. The secondary metabolites from natural prod-
ucts act as an endless frontier to develop compounds with
medical and pharmaceutical purpose [45]. Green tea, a very
popular beverage globally, is rich in flavonoids and phenolic
acids, exhibiting important nutraceutical and medical prop-
erties [46]. EG is one of the most important polyphenolic
compounds, owing seven hydroxyl radicals among three
aromatic rings [47]. Previous studies reported that EG
exerted antifibrotic effects by reducing collagen synthesis
and blocking the major fibrosis-related pathways in keloids
[48]. Also, in nonalcoholic fatty liver disease and cardiac
remodeling, EG could decrease fibrogenic reaction and oxi-
dative damage [18, 49]. Meanwhile, EG displays significant
inhibitory effects on AKT/mTOR pathway in some diseases
[50, 51]. In keeping with these studies, our results also dis-
closed that EG significantly decreased oxidative stress, apart
from inhibiting the inflammatory factors including TNF-α,
IL-1β, and MCP-1 in mice exposed to PM2.5. And the pro-
tective effects of EG on mice exposed to PM2.5 were medi-
ated by AKT/mTOR pathway.

In conclusion, we found that EG improved PM2.5-
induced lung fibrosis by decreasing oxidative damage and
EMT in an AKT-dependent manner. The present study pro-
vides proofs for the application of EG in the treatment of
PM2.5-induced lung fibrosis.
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