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Ischemic stroke, the most common type of stroke, can lead to a long-term disability with the limitation of effective therapeutic
approaches. Ginsenoside-Rd (G-Rd) has been found as a neuroprotective agent. In order to investigate and discuss the
neuroprotective function and underlying mechanism of G-Rd in experimental animal models following cerebral ischemic/
reperfusion (I/R) injury, PubMed, Embase, SinoMed, and China National Knowledge Infrastructure were searched from their
inception dates to May 2022, with no language restriction. Studies that G-Rd was used to treat cerebral I/R damage in vivo
were selected. A total of 18 articles were included in this paper, and it was showed that after cerebral I/R damage, G-Rd
administration could significantly attenuate infarct volume (19 studies, SMD = −1:75 ½−2:21 to − 1:30�, P < 0:00001). Subgroup
analysis concluded that G-Rd at the moderate doses of >10-<50mg/kg reduced the infarct volume to the greatest extent, and
increasing the dose beyond 50mg/kg did not produce better results. The neuroprotective effect of G-Rd was not affected by
other factors, such as the animal species, the order of administration, and the ischemia time. In comparison with the control
group, G-Rd administration could improve neurological recovery (lower score means better recovery: 14 studies, SMD = −1:50 ½
−2:00 to − 1:00�, P < 0:00001; higher score means better recovery: 8 studies, SMD = 1:57 ½0:93 to 2:21�, P < 0:00001). In addition,
this review suggested that G-Rd in vivo can antagonize the reduced oxidative stress, regulate Ca2+, and inhibit inflammatory,
resistance to apoptosis, and antipyroptosis on cerebral I/R damage. Collectively, G-Rd is a promising natural neuroprotective
agent on cerebral I/R injury with unique advantages and a clear mechanism of action. More clinical randomized, blind-
controlled trials are also needed to confirm the neuroprotective effect of G-Rd on cerebral I/R injury.

1. Introduction

Ischemic stroke is the leading cause of hospitalization for cere-
brovascular disease, accounting for 85% of all stroke incidences
[1]. It is associated with a variety of complications, including
insomnia, depression, or poststroke dementia, which can lead
to adverse outcomes [2–4]. As a leading cause of high morbid-

ity, mortality, and disability rate, stroke imposes a severe
financial and psychological burden on patients and families
worldwide [5]. Making an urgent therapy is the most
important and effective hotspot. Yet now, to achieve neuropro-
tection, majority of the therapeutic approaches for acute ische-
mic stroke are to recanalized the occluded arteries [5].
Currently, thrombolysis with recombined tissue plasminogen
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activator and thrombectomy are effective treatments [6, 7].
However, limited by a narrow therapeutic window and the risk
of hemorrhagic complications, these methods only can be used
in the minority [8, 9]. Just as importantly, cerebral reperfusion
caused secondary damage to the brain can also lead to severe
adverse reaction [10].

When acute ischemic stroke happened, blood flow
sharply decreased which gives rise to a rapid increasing in
the production of reactive oxygen species (ROS) [11, 12].
Early restoration of blood supply can salvage ischemic and
hypoxic tissue, but reperfusion itself also can cause cerebral
ischemia/reperfusion (I/R) damage [13, 14]. Most impor-
tantly, ROS are produced and bursts after reperfusion [15].
Excess ROS is the main cause of oxidative stress and one
of the major hazards leading to the direct neuron damage
[11, 16–18]. Oxidative stress triggered nuclear factor
kappa-light-chain-enhancer of the activated B cell (NF-κb)
signaling pathway, leading to nucleotide-binding oligomeri-
zation domain-like receptor 3 (NLRP3) activation, those
which contribute to the blood-brain barrier (BBB) damage,
inflammatory environment formation, neuron apoptosis,
and pyroptosis [17, 19–22]. Meanwhile, the occurrence of
oxidative stress further attacks carbohydrates, lipids, pro-
teins, nucleic acid, and release of Ca2+ from intracellular
stores [23]. In addition, this microenvironment in turn fur-
ther exacerbates oxidative stress [24, 25]. Thus, establishing
a balance of ROS generation and consumption to attenuate
I/R injury may be an effective therapeutic strategy.

After thousands of years of practice, traditional herbal
extracts and its effective components are used worldwide
as drug to prevent and treat ischemic stroke which has been
collected both in vivo/vitro and in clinical application.
Ginsenoside-Rd (G-Rd) (the chemical structure is shown
in Figure 1), as a main bioactive saponin, belongs to the pro-
topanaxadiol group [26]. G-Rd is an important metabolite in
the transformation pathway of protopanaxadiol-type ginse-
nosides in human intestine [27]. To date, G-Rd can be
obtained from structurally similar ginsenoside-Rb1 and
ginsenoside-Rc by microbial-based biotransformation and
enzymatic transformation [28, 29]. G-Rd has outstanding
advantages in multisite and multitarget global regulations.
Extensive studies showed G-Rd with multiplied pharmaco-
logical properties possesses a broad spectrum of therapeutic
effects on the central nervous system [30, 31]. G-Rd directly
makes contribution to the nuclear factor erythroid-2-related
factor 2 (Nrf2) antioxidant pathway to promote the ability of
eliminating ROS to inhibit lipid peroxidation [22, 32, 33].
Besides, G-Rd plays an anti-inflammatory role in Alzhei-
mer’s disease [34]. Furthermore, G-Rd with highly lipo-
philic ability can spread through biological membranes
and BBB easily [31, 35]. Currently, preclinical studies have
confirmed the effectiveness of G-Rd in the treatment of
cerebral I/R, and then, G-Rd treatment of cerebral I/R
has entered the second phase of clinical trials [31, 36,
37]. Its neuroprotective function has attracted an increas-
ing attention. In order to review the beneficial effects of
G-Rd on I/R damaged animal models and summarize the
underlying molecular mechanisms, a comprehensive sys-
tematic review was performed.

2. Methods and Materials

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (the PRISMA) statement was selected to
report for this systematic evaluation and meta-analysis [38].

2.1. Search Strategy. The following electronic databases were
retrieved from their inception to May 2022 to identify relevant
in vivo studies without language limitations: PubMed, Embase,
China National Knowledge Infrastructure, and SinoMed. The
lists of references included in this study are screened to identify
if there are any other relevant studies. MeSH terms such as
“brain anoxia ischemia”, “brain hypoxia ischemia”, “brain
ischaemia”, “brain ischaemics”, “brain ischemia”, “brain ische-
mias”, “cerebral anoxia ischemia”, “cerebral ischaemia”, “cere-
bral ischaemia hypoxia”, “cerebral ischemia”, “cerebral
ischemias”, “ischemic stroke”, “ischemized reperfusate”, “ische-
mized reperfusion injury”, “reperfusion injury”, “stroke”, “gin-
senoside”, “ginsenosides”, and “ginsenoside Rd” were used.
These search terms were translated into Chinese to be searched
in Chinese databases. Supplementary material contains the
PubMed database search strategy.

2.2. Inclusion Criteria. All controlled studies evaluating the
neuroprotection effect and discussing the possible mecha-
nisms of G-Rd on brain I/R damage in animal models were
included. Specify the following inclusion criteria in advance
to prevent bias (1) based on an animal experiment, no
restriction on animal species, gender, age, weight, and sam-
ple size; (2) involve a focal cerebral I/R damage model,
caused by transient or permanent middle cerebral artery
occlusion (MCAO); (3) the experimental group was treated
with G-Rd monotherapy in no restriction on dosage, mode,
and time of initial treatment; (4) the control group was
administered by saline, vehicle, or positive control drug or
no treatment; (5) have one of the following outcomes avail-
able: infarct volume, neurological function score (NFS), and
biochemical examinations.

2.3. Exclusion Criteria. The following exclusion criteria were
also prespecified: (1) reviews, comments, case reports, edito-
rials, clinical articles, and in vitro studies; (2) nonfocal brain
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Figure 1: Chemical structures of G-Rd. G-Rd: ginsenoside-Rd.
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I/R model, adopting global models (e.g., bilateral common
carotid occlusion), traumatic models, or only hypoxic ische-
mic models; (3) the experimental group was intervened of
G-Rd combined with some other drugs; (4) absence of con-
trol group; (5) outcome measures are not included in the lit-
erature; and (6) duplicated publications.

2.4. Selection and Data Extraction. Two reviewers (ZAF and
ZK) screened the abstracts and full texts of the included lit-
erature and excerpted the following details independently:
(1) the first author’s name, the publication year, methods
of establishing ischemia model, and ischemia duration; (2)
the characteristics of animals, such as the number, the spe-
cies, the gender, and the weight of animals; (3) treatment
information including dosage, timing, and the route of G-
Rd delivery; and (4) outcome assessment. Disregarding the
outcomes presented at different time points of each animal
in the experiment, only extracted the data at the last time
point. If the research results were incomplete or only showed
in the form of graphs, the authors were e-mailed for these
data, and if a response was not received, the data was got
from the graphs using Engauge Digitizer 11.1 commercial
software. If several independent experiments are carried
out in a paper, it was broken down into several complete sec-
tions. These two reviewers extracted relevant data from the
papers independently to avoid errors. Take the average data
of two when the error was within the acceptable range
(error ≤ 1%average data). If not, the third one (YM) shall
reextract the data and then use the average of two data which
were more closely related.

2.5. Quality Assessment. Study quality was evaluated by the
Collaborative Approach to Meta-Analysis and Review of
Animal Data in Experimental Studies (CAMARADES), a
ten-item modified scale [39]. Two investigators (ZYY and
LZY) independently evaluated the methodological quality
of the included literature according to the following list:
(1) published in a peer-reviewed journal; (2) temperature
control statement; (3) randomization to treat or control
group; (4) allocation concealment; (5) outcome assessed
blinding; (6) no obvious intrinsic neuroprotective effect of
anesthetic; (7) appropriate animal model such as aged, dia-
betic, or hypertensive; (8) sample size estimation; (9) com-
pliance with animal welfare regulations; and (10) declared
any potential conflict of interest. A ten-item (1 point for
each item) was included in the modified scale, and an aggre-
gate quality score was obtained for each study. If the
weighted kappa (Kw) value was >0.75, the quality assess-
ment was accepted, consulting with the corresponding
author to solve any disagreements.

2.6. Statistical Analysis. Different scales were used in a differ-
ent study to assess the same outcome index, so the standard-
ized mean difference (SMD) with 95% CI was used in this
analysis. The I2 test was used to assess the statistical hetero-
geneity of the included studies. I2 > 50% means significant
heterogeneity exists, and then, the random-effect model test
was conducted. Or then, the fixed-effect model test was
selected. The factors modifying on the infarct volume were

explored through the source of heterogeneity of subgroup
analysis. P ≤ 0:05 was considered statistically significant.
Review Manager version 5.4 software was used for data
analyses.

2.7. Publishing Bias. Publishing bias means that the published
research literature does not systematically or comprehensively
represent the completed research in the field. Therefore, in
order to further test for the publishing bias, funnel plot and
Egger’s test were used in this meta-analysis stage.

3. Results

3.1. Selection of Studies. The process of screening is summa-
rized in Figure 2. In total, 374 unique references were iden-
tified by searching electronic databases and removing the
duplicates. 351 papers were excluded after going through
the titles and abstracts. For the reason: the studies of solely
in vitro, 4 articles were deleted from the remaining articles
by reading the full text [40–43]. Wan et al. used a model of
bilateral common carotid occlusion which was a nonfocal
brain I/R model so that it was excluded [44]. Eventually,
18 articles were obtained and assessed these for eligibility
[22, 33, 35, 45–59].

3.2. The Characteristics of the Included Studies. All of these
studies were conducted in China and reported in English
except for three studies which were published in Chinese.
The animal species included Wistar rats [48], C57BL/6 mice
[22, 58], and Sprague-Dawley rats [33, 35, 45–47, 49–53, 57,
59]. In order to keep the baseline status of experimental ani-
mals consistent and to be studied independently, Ye et al.’s
study was split into five complete parts: dose-response study,
therapeutic window study, permanent ischemia study, older
study, and female study [45]. Ye et al. were separated into
three parts, including dose-response study, therapeutic win-
dow study, and sustained neuroprotection study [58], while
in Ye et al.’s article, the authors introduced the protection
conferred by G-Rd in two parts, including its sustained
effects [35]. All the animals included were male except in
the Ye et al.’s female study. Most of the studies were tran-
sient MCAO models, with cerebral artery occlusion varied
from 1 to 2 hours. While Ye et al. reported a study in perma-
nent MCAO. All studied animals conditioned with G-Rd by
intraperitoneal injection. The dosing of G-Rd treatment var-
ied substantially, five of the included studies performed a
dose gradient study of G-Rd [33, 45, 47, 55, 58]. And
single-dose administration was conducted in the remaining.
Moreover, the duration of G-Rd intervention ranged from 3
days before ischemia to 1 day after the ischemia stroke hap-
pened [48, 55]. For comparison, in some studies, G-Rd also
was tested and compared/combined with edaravone and
PBN, LY294002, and MG132 [45, 50, 55] (Table 1).

3.3. Risk of Bias within Studies. The quality score of the
included studies ranged from 3 to 7 out of 10 points
(Table 2). Consensus was built on 100% with Kw = 0:89.
Of whom, six studies received more than 5 points. All the
included studies were published in peer review, 16 studies
illustrate the control of temperature. Randomization and
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blinded assessment were reported in 11 and 8 studies,
respectively, but none of them described the sample-size cal-
culation and allocation concealment. 13 studies reported
without significant neuroprotective activity from anesthetics,
while others did not describe which anesthetic agent they
were used. 8 studies declared without potential conflicts of
interest. Moreover, only 3 studies stated they were in com-
pliance with animal welfare laws. In terms of compliance
with appropriate model animals, 2 studies pointed out they
researched on older or/and female animals. As proposed
by Bederson et al. [60], 5 studies pointed out a completed
stroke model was identified with forelimb flexion, whereas
Du’s study described with score of 2-3 according to Longa
scale is considered as a successful stroke model.

3.4. The Effective of G-Rd for Cerebral Infarct Volume in
Cerebral I/R Injury and Meta-Analysis. There were 12 stud-
ies with 18 comparisons included in this study. Based on the
TTC staining, G-Rd was found to have significant effects on
diminishing the infarct size in the comparison with the con-
trol group which received normal saline or with no treat-
ment. After excluding one study, which calculated the
actual infarct volume only through deducting the area of
brain edema [56], while others used the adjusted infarct vol-
ume and use the percentage of the contralateral structure to
expression (19 studies, SMD = −1:75 ½−2:21 to − 1:30�, P <
0:00001) (Figure 3).

Subgroup analysis showed that the pooled estimates of
infarct size improvement did not depend on the species,
ischemic time, timing regimen, and so on, but was associ-
ated with the dose (Table 3). Subgroup analysis was con-

ducted to identify G-Rd lower the cerebral infarct volume
on experimental cerebral I/R. The results illustrated a
dose-response relationship in a dose no more than
50mg/kg, in the studies using doses of >10-<50mg/kg (4
studies, SMD = −5:08 ½−7:58 to − 2:58�, P < 0:0001) is more
preferable than less than 10mg/kg (6 studies, SMD = −
1:48 ½−2:52 to − 0:45�, P = 0:005), 10mg/kg (6 studies,
SMD = −2:25 ½−3:00 to − 1:50�, P < 0:00001), or 50mg/kg
(11 studies, SMD = −1:53 ½−1:86 to − 1:21�, P < 0:00001).
But when the dose was greater than 50mg/kg, the protection
of G-Rd on reducing the cerebral infarct volume was ineffec-
tive (3 studies, SMD = −1:18 ½−3:10 to 0:73�, P = 0:22).

3.5. The Effective of G-Rd for Cerebral NFS in Cerebral I/R
Damage and Meta-Analysis. The reduction of infarct volume
was associated with notable behavioral improvement. The
NFS was still significantly improved with G-Rd treatment
in the focal I/R injury setting. Twelve studies assessed neurolog-
ical scores using different scoring systems. The 3-18 grading
scale, which developed by Garcia et al. [61], was used in four
studies [35, 46, 47, 58]. The 0-12 grading scale [35, 58], Zea-
Longa score [22, 55, 57], modified neurological severity score
[33, 45], Bederson’s score [56], and other neurological scores
[59] together to assess motor and sensory recovery after I/R
injury. All of the included studies pointed the protective effect
of G-Rd in improvement of the neurological deficits. In the
scale category with a higher score indicating a better functional
recovery (8 studies, SMD = 1:57 ½0:93 to 2:21�, P < 0:00001)
(Figure 4). And in another scale category with a lower score
indicating a better functional recovery into (14 studies,
SMD = −1:50 ½−2:00 to − 1:00�, P < 0:00001) (Figure 5).
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Figure 2: Summary of the literature identification and selection process.
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3.6. Publishing Bias Test. The funnel plot test was used to
check the meta-analysis publication bias, there was asymmet-
ric for the effect of G-Rd on infarct volume (Figure 6(a)) and
the funnel plot of the NFS (the lower scoremeans better recov-
ery) was essentially symmetrical (Figure 6(c)). Then, Egger’s
tests were conducted, the P values for the Egger’s intercept
suggested a moderate likelihood of publication bias for the
effect of G-Rd on infarct volume analysis (P = 0:046 < 0:05)
(Figure 6(b)), while the NFS (the lower score means better
recovery) is with a low risk of publication bias for all analysis
(P = 0:279 > 0:05) (Figure 6(d)).

4. Discussion

4.1. Summary of the Main Results. Systematic review and
meta-analysis have already demonstrated the preclinical evi-
dence that G-Rg1 and G-Rb1 have potential neuroprotective
role in substantially reduced infarct volume and improved
NFS in animal models of cerebral I/R injury [62, 63]. Up
to now, this is the first meta-analysis to evaluate the promis-
ing therapeutic effect of G-Rd in focal brain I/R animal
models. The qualities of the included studies were generally
moderate. Evidence has showed that G-Rd treatment before

Table 2: Risk of bias of the included studies according to CAMARADES checklist.

Study 1 2 3 4 5 6 7 8 9 10 Score

Yao et al. [22] √ √ √ / √ √ / / √ √ 7

Ye et al. [33] √ √ / / √ √ / / / / 4

Ye et al. [35] √ √ / / √ √ / / / / 4

Ye et al. [45] √ √ √ / √ √ √ / / √ 7

Yuan et al. [46] √ √ √ / √ √ / / / / 5

Lu et al. [47] √ √ √ / √ √ / / / / 5

Du et al. [48] √ √ √ / / √ / / / / 4

Zhang et al. [49] √ √ √ / / / / / / √ 4

Zhang et al. [50] √ √ / / / √ / / / √ 4

Zhang et al. [51] √ √ / / / √ / / / √ 4

Zhang et al. [52] √ / / / / √ / / / √ 3

Zhang et al. [53] √ √ √ / / √ / / √ √ 6

Hu et al. [54] √ √ √ / / / / / / / 3

Liu et al. [55] √ / √ / √ / / / √ / 4

Xie et al. [56] √ √ √ / / / / / / / 3

Yang et al. [57] √ √ √ / / √ / / / √ 5

Ye et al. [58] √ √ / / √ / √ / / / 4

Zhang et al. [59] √ √ / / / √ / / / / 3

(1) Publication in a peer-reviewed journal; (2) statement of control of temperature; (3) randomization to treatment or control; (4) allocation concealment; (5)
blinded assessment of outcome; (6) no obvious intrinsic neuroprotective effect of anesthetic; (7) appropriate animal model such as aged, diabetic, or
hypertensive; (8) sample size estimation; (9) compliance with animal welfare regulations; (10) declared any potential conflict of interest.

Study or subgroup
Du XH 2008
Liu XY 2015
Liu Y 2009
Xie Z 2016
Yao YQ 2022
Ye RD 2011a (dose-response study)
Ye RD 2011a (female)
Ye RD 2011a (older)
Ye RD 2011a (permanent ischemia study)
Ye RD 2011a (therapeutic window study)
Ye RD 2011b (dosa-response study)
Ye RD 2011b (sustained neuroprotection study)
Ye RD 2011b (therapeutic window study)
Ye RD 2011c
Ye RD 2011d (neuroprotection study)
Ye RD 2011d (sustained neuroprotection study)
Yuan LB 2010
Zhang C 2020
Zhang X 2014

Total (95% Cl)
Heterogeneity: Tau 2 = 0.64; ch2 = 65.37, df = 17 (P < 0.00001); I2 = 74%
Test for overall effect: Z = 7.62 (P < 0.00001)

G-Rd
Mean SD SDTotal TotalMean
12.17

24.1427
27.64

154.29
24.29

19.757
18.031
40.148

46.08
20.7185
40.3428

32.8225
23.291

37.6588
24.242
13.417

33.32
26.453
15.171 8.094

5.572589
2.33

8.6290771
14.466088

20.8517
11.7339

8.3844275
14.0867

7.961
9.7356

8.7194066
6.6465161

8.9866
9.97
3.64

7.3277
6.5599

1 3
18
50

7
24
24
11
11
32
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Figure 3: The pooled estimate of G-Rd on decrementing cerebral infarct volume after cerebral I/R damage. G-Rd: ginsenoside-Rd; I/R:
ischemia/reperfusion.
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and/or after I/R stroke can reduce infarct volume, enhance
neurological function. Subgroup analysis showed that G-Rd
in the range of >10-<50mg/kg dose substantially lower the
infarct size, while beyond this range the effect was abrogated.
Maybe G-Rd at 50mg/kg dose has reached the upper limit of
the blood concentration, and too high a dose may produce
drug toxicity. Among the G-Rd administration dose-
response studies, two studies revealed that in their test para-
digms treat with 40mg/kg performed better [22, 47]. Lu Y
et al. explained the protective effect decrease may be related

to the increased dosages lead to the animals cannot tolerate
the drug toxicity [47]. Some studies found that the reduction
in infarct volume was greatest in 50mg/kg, but their experi-
mental was limited by a wide range of doses, they did not
design a dose study between 10 and 50mg/kg, and the result
comes from the same teamwork [33, 45, 58]. Although >10-
<50mg/kg showed the best effect on reduce infarct volume,
we also found that most of the studies involving dose-
response relationship were not set the dose between >10-
<50mg/kg, which may affect the reliability of our

Table 3: Subgroup analysis of decrement in infarct volume with G-Rd.

Pooled estimates No. of studies Std. MD (95% CI) P value Subgroup (P value)

Species

<0.00001SD rats 13 -1.84 [-2.41, -1.28] <0.00001
Wistar rats 1 -5.98 [-11.96, 0.01] =0.05

C57BL/6 mice 4 -1.44 [-2.12, -0.75] <0.0001
Dosage

<0.00001

<10mg/kg 6 -1.48 [-2.52, -0.45] =0.005

10mg/kg 6 -2.25 [-3.00, -1.50] <0.00001
>10-<50mg/kg 4 -5.08 [-7.58, -2.58] <0.0001
50mg/kg 11 -1.53 [-1.86, -1.21] <0.00001
>50mg/kg 3 -1.18 [-3.10, 0.73] =0.22

Administration time

<0.00001Before I/R 7 -2.28 [-3.43, -1.13] =0.0001

After I/R 7 -1.49 [-1.84, -1,14] <0.00001
Before and after I/R 4 -1.64 [-2.38, -0.91] <0.0001

Occlusion time

<0.00001
60min 5 -1.51 [-2.24, -0.78] <0.0001
90min 1 -2.27 [-3.43, -1.11] =0.0001

120min 11 -1.77 [-2.35, -1.18] <0.00001
Permanent 1 -1.57 [-2.42, -0.71] =0.0003

Model animal

<0.00001Normal male 13 -1.77 [-2.04, -1.50] <0.00001
Female 1 -1.02 [-1.92, -0.12] =0.03

Older male 4 -1.18 [-1.58, -0.79] <0.00001
Risk of bias

<0.00001<5 7 -1.32 [-1.87, -0.77] <0.00001
≥5 4 -3.12 [-4.99, -1.24] =0.001

G-Rd: ginsenoside-Rd; SD: Sprague-Dawley; I/R: ischemia/reperfusion; MD: mean difference; CI: confidence interval.

Study or subgroup
Lu Y 2009
Ye RD 2011b (dosa-response study)
Ye RD 2011b (sustained neuroprotection study)
Ye RD 2011b (therapeutic window study)
Ye RD 2011d (neuroprotection study)
Ye RD 2011d (sustained neuroprotection study)
Yuan LB 2010
Zhang C 2020

Total (95% CI)
Heterogeneity: tau2 = 0.61; ch2 = 29.25, df = 7 (P < 0.00001); I2 = 76%
Test for overall effect: Z = 4.82 (P < 0.00001)
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Figure 4: The pooled estimate of G-Rd in the improvement of neurological function score (higher score means better recovery). G-Rd:
ginsenoside-Rd.
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conclusion. Refer to the subgroup analysis, further research
about dose-response of G-Rd is needed at the concentrations
ranging from 10 to 50mg/kg to determine the optimal dose
in the management of brain I/R damage.

4.2. Neuroprotective Strategies of G-Rd in Experimental I/R
Injury Animal Model. G-Rd is the main bioactive saponins
in Panax notoginseng and ginseng extracts. G-Rd contrib-
utes to neuroprotective with extensive biological activity.
The possible mechanisms of G-Rd on focal cerebral ischemia
animal models were discussed in this study (Table 4).

4.3. G-Rd Ameliorates ROS Production to Antioxidation on
Cerebral I/R Damage to Impeded Injury. Oxidative stress
plays a crucial role in cerebral I/R damage [16]. ROS gener-
ation was start during ischemia and burst after reperfusion.
Importantly, the chemical structure of G-Rd (with sugar
moiety located at the 20th position of the triterpene dam-
marane) determines its direct antioxidant properties [64].
G-Rd directly impeded the inactivation of cerebral I/R-
induced Nrf2/heme oxygenase-1(HO-1)/NAD(P)H: quinine
oxidoreductase 1(NQO-1) antioxidant pathway inactivation
[22]. The activation of the signaling pathway can induce

Study or subgroup

Liu XY 2015
Xie Z 2016

Ye RD 2011a (dose-response study)
Ye RD 2011a (female)
Ye RD 2011a (older)
Ye RD 2011a (therapeutic window study)
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Yang LX 2016
Yao YQ 2022
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G-Rd
Mean SD SDTotal TotalMean

Control
Weight

Std. mean difference
IV, random, 95% Cl

Std. mean difference
IV, random, 95% Cl

−10 −5 0 5 10
G-Rd Control

0.8905
1.71
1.7

1.9667
4.2477
2.5081
3.2391
4.3178
9.3783
5.9113
8.845

3.8739
8.4556

61.106519

0.3754
0.76

0.1
9,016

1.1093
0.311

0.5606
0.9053
1.0932

1.596623
1.1445

0.964
1.277556

321

12
12
22
44
11

11
11

55
44

33
24
17

7
18 1.2022

3.57
2.4

4.3325
5.5181
3.3166
5.1909
5.5298
9.7648
7.9808
9.6935
5.4958

9.746
7 0.62185185

1.12466667
0.1

0.8397684
0.79831159

0.7628237
0.55487133

0.7475
0.2902

0.67426982
0.5574

0.2
0.53

0.1614 6
7

12
8

11
11
11
11
11
11
11
11
12
12

145

7.2%
5.0%
5.3%
7.8%
8.0%
6.3%
6.1%
8.1%
8.3%
7.1%
8.2%
7.5%
7.5%
7.5%

100.0%

−0.89 [−1.85, 0.08]
−2.66 [−4.22, −1.09]
−4.56 [−6.03, −3.10]
−0.00 [−0.80, 0.80]

−1.22 [−1.95, −0.49]
−2.59 [−3.77, −1.40]
−2.84 [−4.09, −1.59]
−1.41 [−2.12, −0.69]
−0.36 [−1.01, 0.29]

−1.58 [−2.56, −0.60]
−0.76 [−1.44, −0.09]
−1.99 [−2.88, −1.10]
−1.04 [−1.90, −0.17]
−1.08 [−1.94, −0.21]

−1.50 [−2.00, −1.00]

Figure 5: The pooled estimate of G-Rd in the improvement of neurological function score (lower score means better recovery). G-Rd:
ginsenoside-Rd.
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protective genes through transcription to eliminate the pro-
duction of reactive oxygen species, thereby resisting the oxida-
tive stress injury caused by ischemia/reperfusion [65]. G-Rd
inhibited the reduction of Nrf2, HO-1, and NQO-1, which
further increased the superoxide dismutase (SOD) activity,
and improve the level of glutathione peroxidase (GSH-Px)
and catalase (CAT). In the ischemic penumbra, G-Rd damp-
ened the accumulation of malondialdehyde (MDA) and 4-
hydroxynonenal (4-HNE) to inhibit lipid peroxidation, G-Rd
suppressed the expression of advanced glycosylation end
products (AGEs) to alleviate protein denaturation, as well as
it reduced 8-hydroxy-deoxyguanosine (8-OHdG+) to improve
nucleic acid and DNA damage against neuron injury [33, 58].
Overwhelming evidence implied that G-Rd acted as an antiox-
idant also through protecting mitochondrial metabolism. G-
Rd significantly attenuated the loss of aconitase to antioxida-
tive stress damage [33, 35]. It might diminish the mitochon-
drial dysfunction significantly associated with mitochondrial
membrane potential (MMP) hyperpolarization as well as the
elevation of mitochondrial electron transport complexes activ-
ities to ameliorate ROS production [35, 58]. In addition, G-Rd
lowers the accumulation of lactate and increase pyruvate,
respectively, hence improving energy status (Figure 7(a)) [35].

4.4. G-Rd Regulating Ca2+ to Impeded Excitatory Toxicity
after Cerebral I/R Damage. Many studies have shown that
excitatory toxicity is the trigger of all downstream events.
Glutamate-induced excitotoxicity is an important factor
[66]. In the early stage of cerebral ischemic, glutamate is
markedly elevated in the extracellular space [51]. Excessive
glutamate leads the N-methyl-d-aspartate (NMDA) receptor
overactivation, which results in cytosolic Ca2+ overload and
triggers a cascade of molecular events. To modulate gluta-
mate-/NMDA-induced Ca2+ influx, G-Rd significantly upre-
gulates glial glutamate transporter glutamate transporter-1
(GLT-1) via the phosphatidylinositol 3-kinase (PI3K)/extra-
cellular regulated protein kinases 1/2 (ERK1/2) pathways to
promote glutamate clearance [51]. Meanwhile, G-Rd inhibited
the phosphorylation of NMDA receptor 2B (NR2b) induced
by cerebral ischemia to interfere the NMDA receptor function,
whose overactivation-induced Ca2+ overload to causes ner-
vous excitatory [48, 56, 59]. Zhang et al. investigated G-Rd
attenuated death-associated protein kinase (DAPK1) by
reducing calcineurin (CaN) activity-mediated NR2b phos-
phorylation [59]. G-Rd antagonizes the accumulated Ca2+ also
via regulating the nonglutamate dependent calcium-
permeable cation channels. Such as acid sensing ion channels
(ASIC) and transient receptor potential (TRP). G-Rd
enhanced ASIC2a, inhibited ASIC1a expression, and down-
regulated transient receptor potential melastatin-7 (TRPM7)
to mediated neuroprotection (Figure 7(b)) [5, 49].

4.5. G-Rd Makes Effect on Anti-Inflammation to Impeded
Injury after Cerebral I/R Damage. Sequential inflammatory
response plays a critical role in the pathophysiology of acute
cerebral ischemic. G-Rd has also been noted to mitigate the
acute stage of cerebral ischemia inflammatory response. G-
Rd decreased Iba-1-positive microglia contribute to neuron
death via secreting the proinflammatory cytokines including

interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor
necrosis factor alpha (TNF-α) [33, 53], and lowered induc-
ible nitric oxide synthase (iNOS) released from activated
astrocyte to stop triggering a stronger inflammatory cascade
[33]. The neuroprotection of G-Rd was related to the sup-
pression of cyclooxygenase-2 (COX-2) enzyme concentra-
tions targeted in the inhibition of arachidonic acid release
and metabolism [33]. NF-κb participates in these anti-
inflammation progress, G-Rd pretreatment restored nuclear
factor of kappa light polypeptide gene enhancer in B cell
inhibitor alph (IκBα) expression in the cytoplasm, reduced
the phosphorylation of IκBα, and blocked p65 nuclear trans-
lation by promoting the formation of IκBα-p65 complex
[52–54]. In addition, G-Rd makes effect on maintain the
blood-brain barrier integrity, not only to prevent peripheral
leukocyte infiltration but also reduce brain edema in aggra-
vating neurological deficit, and the machine is considered
to be mediated by suppressing the NF-κb/neuroinflamma-
tion-mediated matrix metalloproteases-9 (MMP-9) pathway
(Figure 7(c)) [52].

4.6. G-Rd Plays a Role in Antiapoptosis on Cerebral I/R
Damage to Impeded Injury. Ischemia induced the elevation
of intracellular ROS and Ca2+ levels leading the MMP to open,
which enhanced the mitochondria permeability and many
mitochondrial proapoptotic factors release are the important
event leading to neuronal apoptosis [67]. The TUNEL-
positive cell in the G-Rd treatment group was lowered signifi-
cantly [35, 48, 57]. G-Rd counteracts apoptosis was related to
the inhibition of apoptosis-inducing factor (AIF) and cyto-
chrome c [35, 54]. The expression of cleaved caspase-3 signif-
icantly depressed in the G-Rd-treated rats compared with the
control group [35, 57]. G-Rdmanagement inhibits AIF release
from mitochondria initiating the caspase-independent apo-
ptotic cascade through the adenosine 5′-monophosphate-acti-
vated protein kinase/poly ADP-ribose polymerase-1 (AMPK/
PARP-1) single pathway [35, 54]. G-Rd promoted the num-
bers of GFAP+ and DCX+ cells increased after focal I/R
through the PI3K/Akt [55]. On the other hand, G-Rd serves
as a promising drug to treat poststroke dementia by prevent-
ing the phosphorylation level of tau in the PI3K/AKT pathway
(Figure 7(d)) [50].

4.7. G-Rd Anti-NLRP3-Mediated Pyroptosis on Cerebral I/R
Damaged Tissues. Brain I/R damage involves a range of
complex pathological mechanisms, and ROS trigger the
NLRP3-mediated pyroptosis which has been implicated in
cerebral I/R damage [22, 68]. The effective of antipyroptosis
on G-Rd management has been investigated [22]. G-Rd pro-
motes NLRP3 inflammasome inactivation by reducing ROS
level to impeded procaspase 1 autocleaved into active caspase
1, which not only converts the precursors of IL-18 and IL-1β
into their mature forms but also promotes the gasdermin D
(GSDMD) maturation then causes the neuron pyroptosis
[69]. G-Rd upregulated miR-139-5p to inhibit forkhead box
transcription factor O1 (FOXO1), which regulates Kelch-like
ECH-associated protein 1 (Keap1) transcriptional activity and
subsequently triggers the Nrf2 antioxidant pathway. It is essen-
tial for the reduction of excessive ROS and inhibits the ROS/
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thioredoxin-interacting protein (TXNIP)/NLRP3 inflamma-
some axis-mediated pyroptotic in ischemic cortical tissues
(Figure 7(e)).

Several limitations should be considered, and first of all,
due to time constraints, the protocol of this study was not
registered in any registration platform, which was important
to restrict the likelihood of biased post hoc decisions in
review methods. Secondly, despite the quality of the
included studies was acceptable, there are still some short-
comings. For example, no studies included here have
reported sample size calculation and allocation concealment.
More than half of the studies did not report blind evaluation
of results. Only a half study was clearly proposed how to
define a completed stroke model according to neurological
function score. Then ischemic stroke affects elder patients
preferentially accompanied by multiple risk factors, such as

diabetes, hypertension, hyperlipidemia, obesity [70, 71],
and certain female-specific risk factors may explain their
higher risk of stroke [72]. G-Rd was well tolerated and with
no dose-related adverse event patterns were assessed in
healthy volunteers [73]. Preliminary, multicenter random-
ized, double-blind, placebo-controlled, phase II clinical trials
also have showed that G-Rd had significantly effective on
reduced neurological deficits and improved the scores of
National Institutes of Health Stroke Scale (NIHSS) [36, 37,
53]. Further investigations are needed to be included in clin-
ical trials to validate the results.

5. Conclusion

Pooled data analysis from this study approved that treat-
ment with G-Rd prior- and/or post-I/R reduced infarct
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volume and enhanced neurological functions in brain I/R
injury animal model. The recommended dosage is >10-
<50mg/kg. Based on the literature data, G-Rd can reduce
oxidative stress, antagonize the accumulated Ca2+, and
inhibit inflammatory resistance to apoptosis and antipyrop-
tosis on cerebral ischemia. In the future, the protective
effects of G-Rd are needed to be confirmed in clinical trial.
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