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The retina, owing to its cellular anatomy and physical location, is susceptible to generating reactive oxygen species (ROS), which
are associated with several major retinal diseases. When ROS exceeds the body’s natural antioxidants, the retina is in a state of
oxidative stress, which is recognized as the pathogenesis of retinal diseases. The early stage of the pathogenic process is an
adaptive change in which oxidative stress and endogenous defense mechanisms occur. If no treatment is applied, the retinal
diseases will progress to the pathological stage with neuronal and vascular dysfunction or damage and even blindness. This
review summarizes the role of oxidative stress in several common retinal diseases, including retinitis pigmentosa, age-related
macular degeneration, diabetic retinopathy, glaucoma, and retinopathy of prematurity. In addition, we discuss the early
intervention strategies for these diseases. An outline is provided to identify potential intervention targets for further research.
Early intervention for retinal diseases is necessary and urgent and may offer hope to improve patients’ quality of life through
functional vision.

1. Introduction

The retina is an extension of the brain and is a highly
oxygen-consuming organ in the body, relying more on aer-
obic glycolysis than the brain; it is also highly sensitive to
various stimuli [1]. Furthermore, the retina is extremely
metabolically active and rich in polyunsaturated fatty acids,
which are vulnerable to lipid peroxidation [2]. Under nor-
mal conditions, reactive oxygen species (ROS) in the retina
are related to physiological signaling and protective mecha-
nisms via the prosurvival extracellular signal-related kinase
1/2 pathway and endoplasmic reticulum stress signaling.
ROS production-induced oxidative stress may contribute to
the pathogenesis of several retinal degenerative diseases,
including diabetic retinopathy (DR), retinal vascular occlu-

sion, retinitis pigmentosa (RP), age-related macular degen-
eration (AMD), glaucoma, and retinopathy of prematurity
(ROP).

The number of people with retinal diseases, including
AMD, DR, and glaucoma, is expected to more than double
by 2050 [3]. This prediction indicates that there will be a
healthcare crisis that not only affects patients with visual dis-
turbance but also the caregivers and entire healthcare sys-
tem. Thus, there is an urgent need to focus on the
prevention of and protection against retinal diseases. This
review includes the necessary recommendations and neuro-
protective strategies for preventing the progression of vision
loss and blindness in individuals with retinal diseases.

In living cells, oxidation-reduction reactions may gener-
ate metabolic byproducts—free radicals, which are ROS and
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reactive nitrogen species (RNS) [4]. Free radicals are a class
of molecules containing one or more unpaired electrons.
ROS can be generated via multiple pathways, including
endogenous and exogenous substances [4]. ROS are highly
active and may react with biomolecules, e.g., proteins, lipid
membranes, and DNA, leading to cell damage or functional
impairment. Oxidative stress is a condition of oxidation-
reduction imbalance characterized by elevated levels of
ROS and free radicals or a reduction of antioxidants [5, 6].
Under physiological conditions, the generation of ROS and
the scavenging of free radicals may reach a dynamic redox
balance. When various excess stimuli (endogenous and/or
exogenous) occur, ROS accumulate massively. This may lead
to oxidative stress in the corresponding cells and organs [7].
Continuous oxidative stress may ultimately damage cells in
target organs. Therefore, the inhibition of ROS generation
and scavenging of excessive ROS by various pathways have
been used as therapeutic strategies for the treatment of eye
diseases. In this review, we will introduce the mechanisms
of ROS generation in several retinal diseases, summarize
the pathogenetic roles of oxidative stress in their develop-
ment, and discuss the early intervention pathway of antiox-
idative stress.

2. Physiological Role of Free Radicals and
ROS in Organisms

The free radicals in the human body can be divided into oxy-
gen and nonoxygen radicals. Free oxygen radicals are the
predominant category derived from molecular oxygen, and
their proportion of oxygen radicals is approximately 95%
of the total radicals. Oxygen radicals include hydrogen per-
oxide (H2O2), hydroxyl radicals, superoxide anions (O2-·),
nitroxides, and peroxynitrite, which are defined as ROS
and RNS. ROS/RNS can be produced by the metabolism of
normal cells and exogenous stimuli, e.g., chemical drugs,
high-pressure oxygen, radiation, mental stress, insomnia,
smoking, and pollution [8] Free radicals are highly reactive
and short-lived intermediates that have one or more
unpaired electrons and exist independently on their own
[9, 10]. Under normal conditions, free radicals are important
for maintaining homeostasis and defending the body against
hazardous invasion [11] by (1) enhancing phagocytosis of
leukocytes, (2) promoting synthesis of prostaglandin and
lipoxygenases, and (3) relaxing vascular smooth muscle
and modulating blood pressure. Endogenous ROS are
derived from the mitochondria by escaping electrons to
molecular oxygen [12]. The generation sources include
NADPH oxidases (Nox), xanthine oxidase, and lipoxygenase
on the membranes of endothelial cells and phagocytes [2]. In
most cases, the terms “free radicals” and “ROS” are regarded
as interchangeable [12]. Healthy organisms always generate
low levels of free radicals, and antioxidant defense systems
may scavenge them rapidly before they cause oxidative dam-
age to the cell. If the dynamic redox balance is imperfect,
ROS/RNS-mediated damage may occur continuously. In
other words, oxidative stress injury is generated when the
speed of free radical production exceeds the capacity of the
cellular defense system, for example, exposure to high oxy-

gen pressure or ionizing radiation [8]. Oxidative stress dam-
ages biological macromolecules, e.g., nucleic acids, proteins,
and lipids by peroxidation, degeneration, crosslinking, and
breakage. Finally, oxidative stress can cause injuries to cell
structures and functions, as well as to the tissues and organs
in the body [11]. Thus far, increasingly more diseases/disor-
ders are recognized gradually by linking them directly or
indirectly with oxidative stress [8]. Some of these disorders
are due to free radicals, whereas others may be only second-
arily involved. Tissue injured by various processes, such as
trauma, toxic substances, and infections, may undergo free
radical damage more rapidly than healthy tissues. Tissue
destruction and degeneration may increase oxidative dam-
age through processes including metal ion release, phagocyte
activation, and disruption of mitochondrial electron trans-
port chains. Iron chelation, superoxide dismutase, catalase,
vitamins (C and E), and antioxidants (flavonoids) could
have protective effects under various experimental condi-
tions, which further indicate the key role of free radicals in
many disorders [13–16]. Additionally, an increasing number
of small-molecule drugs have been developed and imple-
mented to target ROS [17].

3. Oxidative Stress and Retinal Pathology

Oxidative stress plays a prominent role in the pathogenesis
of many degenerative retinal diseases, such as AMD, DR,
and RP. Normal, healthy retinal cells are susceptible to sig-
nificant light exposure, which may lead to the generation
of abundant ROS [18]. However, under pathological condi-
tions, the normal homeostatic mechanisms are destroyed.
When the relationship of prooxidative stress and antioxida-
tive stress signaling is unbalanced, it may lead to excessive
oxidative stress, inflammatory responses, blood-retinal bar-
rier injury, and retinal tissue damage [18, 19]. Retinal dis-
eases, including photoreceptor degeneration, diabetic
retinopathy, and retinal ganglion cell injury, always involve
the same process of oxidative stress and apoptosis in the
final pathological stages. This review will provide a summary
of the effects of oxidative stress in several congenital retinal
diseases and possible early intervention strategies.

3.1. Oxidative Stress in RP. RP is an inherited retinal disease
caused by different genetic mutations. The pathological pro-
cess leads to photoreceptor cell degeneration (successive rod
and cone cell loss) and eventually results in retinal pigmen-
ted epithelium (RPE) dysfunction [2]. The prevalence rate is
1 in 4000 persons worldwide, and there are >1.5 million
patients with RP worldwide [20]. The early phenotype of
RP is difficult to observe at night, and loss of peripheral
vision is caused by apoptosis of rod photoreceptors. Then,
vision loss becomes more restricted to the central visual field
and is eventually lost [20]. Studies have demonstrated that
progressive visual loss in RP is associated with the loss of
photoreceptor cells and oxidative stress (Figure 1) [21, 22].
Clinical evidence also showed that 8-oxo-7,8-dyhydro-2′
-deoxyguanosine (8-oxo-dG) and protein carbonyl contents
were increased in the vitreous and aqueous humor of
patients with RP [23, 24]. This finding indicates that
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oxidative stress exists in the ocular tissues of patients with
RP. In the outer nuclear layer, rods account for 95% of the
cells and are more metabolically active than cones. These
cells gradually decrease in number as RP progressed [24].
Subsequently, retinal oxygen demand and usage also
decrease. Retinal circulation is not regulated; therefore, the
oxygen supply to the outer retina increases spontaneously
[24]. Hyperoxia in the outer retina can induce Nox and dual
oxidase, but not xanthine oxidase, to produce excessive
amounts of ROS and contribute to tissue damage [25].
Hyperoxia in the outer retina induced by rod degeneration
may activate Nox enzymes and may also activate the high
levels of Nox2 in microglia, which have been demonstrated
to migrate into the outer retina in RP. This leads to an
increase of superoxide radicals and oxidative damage [25,
26]. High levels of nitric oxide in the outer retina are another
indirect oxidative stress factor that may react with superox-
ide radicals to form highly reactive and damaging peroxyni-
trite radicals. Hence, inhibition of Nox and nitric oxide
synthase (NOS) together with antioxidative stress by scav-
enging ROS directly should be regarded as a strategy to help
maintain photoreceptor function in patients with RP.

3.1.1. RP: Intervention Strategy at an Early Stage. RP is a
family of inherited diseases. Over 250 gene mutations are
associated with the cause of rod death, and it is likely the
major pathogenesis of RP [27, 28]. Therefore, RP is difficult
to cure at the genetic level despite the development of
genotype-phenotype technology that may already character-
ize each causal gene in RP [29]. Currently, there is no spe-
cific pharmacological or genetic treatment for RP [27].
Antioxidants have shown promise as an intervention to
delay the reduction of cone cell loss and retard the progress
of RP [30]. However, the clinical evidence has not been clar-
ified. The application of antioxidant supplements, such as

vitamins A and E, beta-carotene, omega-3, docosahexaenoic
acid (DHA), zinc, and docosahexaenoic acid, might be able
to slow the decline in peripheral field function [20, 30].
The oral antioxidant N-acetyl cysteine (NAC) for RP was
studied in a phase 1 clinical trial [31]. However, its efficacy
should be addressed in future studies. In addition, a study
showed that smoking is detrimental to patients with RP, as
it worsens macular function and structural integrity [32].
Hence, smoking may not benefit patients with RP. Further-
more, ultraviolet and blue light exposure may accelerate
vision loss in RP [33, 34]. Wearing protective goggles is a
simple and effective method to prevent light damage. Regu-
lar to moderate physical activity, not endurance exercise
without adaptable physical training, may protect against
ROS/RNS damage in eye diseases, including RP [35]. Intra-
ocular pressure may affect the circulation of the outer retinal
layer. It is possible that an obvious reduction in choroidal
blood flow through the elevation of intraocular pressure
may prevent sufficient oxygen supply from the choroid
[36]. Therefore, it is reasonable to assume that appropriate
eyeball massage may be a preconditioning intervention to
the retinal outer layer to improve endogenous antioxidative
stress during the early stage of RP. Finally, prevention of
consanguinity and reinforcement of genetic counseling
before birth is very important in reducing the risk of RP.
Antioxidant gene modification may be a potential treatment
for late stages of RP in the future; although, transgenic over-
expression is not applicable to humans.

3.2. Oxidative Stress in AMD. AMD is a chronic, irreversible
disease that primarily affects central vision and is an impor-
tant cause of blindness worldwide. Accumulations of lipid
and protein between the RPE and Bruch’s membrane
(BrM); loss of photoreceptors, RPE, and retinal neurons;
and neovascularization are the main pathological processes.

Genetic mutations

Dysfunction/death of rod cells

Night blindness

RP

NONoxs/Duoxs

Oxidative stress

Smoking, ultraviolet, light exposure

Hyperoxia in outer retina

ROS

Figure 1: Oxidative stress is involved in the rod cell death-induced clinical feature of RP. ROS: reactive oxygen species; RP: retinitis
pigmentosa.

3Oxidative Medicine and Cellular Longevity



Multiple risk factors have been reported for AMD including
age, light exposure, smoking, obesity, hypertension, poor
antioxidant intake, and a hereditary component [37, 38].
Many studies have demonstrated that oxidative stress is
involved in the pathogenesis of AMD [39–42]. The levels
of oxidative stress markers, including malondialdehyde, pro-
tein carbonyls, and 8-hydroxy-2-deoxyg, are increased sig-
nificantly in the blood serum of patients with AMD [37,
43]. This finding indicates that systemic oxidative stress is
associated with AMD. Additionally, a higher level of carbox-
yethylpyrrole (CEP) and damaged proteins was detected in
the BrM of donor eyes with AMD [44]. CEP is formed from
DHA during oxidative stress. The outer segments of photo-
receptors are abundantly composed of DHA, which
increases their vulnerability to oxidative damage. Under
stress conditions, photoreceptors must metabolize continu-
ously to regenerate outer segments, producing a unique
source of ROS in RPE cells [45]. RPE cells are responsible
for phagocytosis of photoreceptor outer segments. ROS
overaccumulation may cause disorders in cell structure and
function, which in turn increases ROS generation. Taken
together, high oxygen metabolism, continuous light expo-
sure, and high concentrations of polyunsaturated fatty acids
make the retina prone to retinal damage. Thus, oxidative
stress plays important roles in the pathophysiology of
AMD (Figure 2).

3.2.1. AMD: Intervention Strategy at an Early Stage. (1) Cig-
arette smoking has been shown experimentally to be directly
linked to the development of AMD and is a major risk factor
in epidemiological studies [46, 47]. Therefore, quitting
smoking as early as possible is a good strategy to prevent
AMD. (2) One of the mechanisms of retinal injury in
AMD is the interaction between light exposure and photo-
sensitive molecules (rhodopsin and lipofuscin) [48, 49].
Excessive activation of rhodopsin and light conduction can
cause the formation of ROS from the DHA content of the
outer segment membranes of the rod and induce photore-
ceptor cell degeneration [49]. It has been suggested that
shorter wavelengths have a higher risk of retinal injury than
longer wavelengths [50]. Avoiding exposure to blue light
may prevent the increased formation of ROS by photosensi-
tive molecules [51]. (3) Experimental studies have shown
that an antioxidation-deficient diet is associated with lipo-
fuscin accumulation and photoreceptor degeneration in the
RPE [52]. Increased antioxidants in the diet (vitamins A,
C, and E and carotenoids) or serum could protect against
AMD progression [49]. A longitudinal clinical study also
indicated that the consumption of antioxidants/zinc could
decrease the risk of early AMD in a highly susceptible group
[53]. Moreover, the topical antioxidant OT-551 (0.45%),
investigated in a single-center phase II trial, may improve
best-corrected visual acuity [54]. Age-related eye disease
studies, antivascular endothelial growth factor (VEGF) injec-
tions, and laser therapy are also useful for controlling the
progression of wet AMD [55, 56]

3.3. Oxidative Stress in DR. DR, a progressive microvascula-
ture complication of diabetes, is one of the most common

causes of blindness in adults of working ages [57, 58].
Approximately 90% of diabetic patients develop DR compli-
cations within 25 years of diagnosis [59]. Oxidative stress
and inflammation are considered to play key roles in the
pathogenesis of DR because the retina has high vasculariza-
tion and long-term light exposure [60]. Chronic hyperglyce-
mia exposure, resulting in increased ROS production, makes
microvessels more vulnerable to oxidative stress. The distur-
bance of redox homeostasis contributes to the death of neu-
rons in the retina, followed by the rupture of the blood-
retinal barrier and increased vascular permeability, leading
to advanced DR. In retinal cells under oxidative stress condi-
tions, excessive ROS directly acts on protein and DNA or
indirectly acts as a second messenger to affect the pathogen-
esis of DR (Figure 3) [58, 61, 62]. As the main source of
intracellular ROS, mitochondria are abundant in photore-
ceptors, which are the major O2- contributor in DR [63].
Studies have shown that mitochondrial dysfunction in turn
affects the production of ROS in retinal cells, activity of optic
nerve cells, and function of photoreceptors. ROS accumula-
tion causes further deterioration [64]. Besides, mitochon-
drial dysfunction may reduce mitochondrial energy
production, leading to optic nerve degeneration [65, 66].
Additionally, the accumulation of byproducts caused by
metabolic abnormalities induced by hyperglycemia, e.g.,
the activation of protein kinase C, hexosamine, polyol flux,
and advanced glycation end-products (AGEs), induces oxi-
dative stress through ROS/RNS formation, leading to the
death of retinal neurons [58, 67]. Oxygen-derived free radi-
cals, such as hydroperoxyl species, have been shown to cause
lipid peroxidation, contributing to the production of ROS to
facilitate the senescence of RPE cells, leading to the progres-
sion of DR [68–70]. Therefore, oxidative stress plays an
important role in DR progression.

3.3.1. DR: Intervention Strategy at an Early Stage. Current
therapies for DR, such as anti-VEGF treatment, laser ther-
apy, vitrectomy, and glucocorticoids, focus on the late stage,
which may reduce visual loss by temporarily protecting ret-
inal vessels [71, 72]. However, it is still difficult for patients
with severe vision loss to reestablish normal vision. As a
major factor in the progression of DR, oxidative stress is a
hot target at an early stage. Nox, the main enzymatic source
of ROS, has been demonstrated to be a direct risk factor for
DR, and inhibitors of the Nox family have been studied to
prevent the development of DR. For example, diphenyle-
neiodonium (a Nox inhibitor) can suppress ROS generation,
alleviate blood-retinal barrier breakdown, and recover the
death of retinal capillary endothelial cells [73, 74]. Nox 1/4
specific inhibitors, GKT136901 and GKT137831, have
shown potent effects in DR treatment [75]. Polyphenols
are antioxidants that are abundant in vegetables, fruits, bev-
erages, whole grains, etc. Studies have demonstrated the pro-
tective effects of DR against various polyphenols, including
green tea polyphenols, chlorogenic acid, curcumin, beta-glu-
cogallin, and cocoa polyphenols [76–78]. Resveratrol, the
most studied polyphenol, has been shown to activate antiox-
idant enzymes and inactivate NOS activity with a decrease in
ROS/RNS in the blood and retina in various experimental
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models [79–81]. The ROS scavengers NAC and duloxetine
are effective in the early stages of DR [82]. Nuclear factor
erythroid 2-related factor 2 (NRF2) binds to antioxidant
response elements to regulate antioxidant protein levels
and fight against oxidative stress. Recent studies have shown
that activation of the NRF2 pathway provides new insights
for DR treatment. The novel NRF2 activator dh404 provides
potential protection to the retina in diabetes, including
vision-threatening breakdown of the blood–retinal barrier
[83, 84]. Herein, the inhibition or clearance of ROS genera-
tion provides an early candidate strategy for blindness
caused by DR.

3.4. Oxidative Stress in Glaucoma. Glaucoma is a progressive
optic neuropathic disease characterized by retinal ganglion
cell (RGCs) degeneration and synaptic loss of dendrites
and axon terminals and is the most common cause of irre-
versible blindness worldwide [85]. It was estimated that the
number of people with glaucoma will reach 111.8 million
by 2040 globally because of the increase in the number of
people of advanced age [86, 87]. Although intraocular pres-
sure is the only known risk factor for glaucoma, increasing
studies have shown that oxidative stress plays an important
role in the pathogenesis of glaucoma [88, 89]. Increased
intraocular pressure and advancing age are closely implica-
ted in the pathogenesis of glaucoma. Oxidative stress occurs
in the eyes and may explain the potential mechanism under-
lying the development of glaucoma [90–92]. Moreover,
mitochondrial dysfunction is largely related to oxidative
stress in the pathogenesis of glaucoma [93, 94]. Especially
in the aging retina, oxidative stress and lipid peroxidation
are the major risks to activate the inflammatory response,
leading to RGC death and apoptosis, aggravating glaucoma
(Figure 4) [95]. Exposure to sunlight and a high-oxygen
environment causes higher oxidative stress in the eyes than
in other tissues, which can further damage the eye tissue

[96, 97]. The trabecular meshwork (TM) is the most sensi-
tive tissue in the eye and is vulnerable to oxidative stress
[98]. Studies have shown that increased 8-OH-dG levels
are found in the TM of patients with glaucoma, indicating
the occurrence of DNA oxidative stress damage [99, 100].
In addition, the accumulation of ROS, particularly H2O2,
was also detected in TM cells, which reduced antioxidant
activity and inhibited the secretion of adhesion molecules
to TM cells, contributing to cytoskeleton reorganization
and eventually resulting in cell loss [91, 101, 102].

3.4.1. Glaucoma: Intervention Strategy at an Early Stage.
Early diagnosis and intervention are important to prevent
visual loss in patients with glaucoma due to irreversible
blindness [103]. Based on the increasing evidence of oxida-
tive stress in glaucomatous tissues, the levels of biomarker
candidates related to oxidative stress, e.g., protein carbonyls
and AGEs, have been shown to increase significantly in the
blood and aqueous humor samples of patients with glau-
coma [104]. Oxidative stress is an important risk factor for
ocular hypertension, which is a target of glaucoma treatment
[105, 106]. Drugs with antioxidant properties, such as val-
proic acid and spermidine, have been reported to prevent
glaucomatous retinal degeneration in glaucoma mouse
models [107, 108]. The grafting of antioxidant molecules to
drug carriers can also effectively reduce the intraocular pres-
sure in glaucoma [109]. The activation and recruitment of
microglia and astrocytes to the edge of the optic nerve are
early characteristics of glaucoma [110–112]. Inhibition of
ROS can inhibit the byproducts of electron leakage along
the electron transport chain during cell respiration and
improve mitochondrial dysfunction, contributing to the
delay in glaucoma progression [95, 113, 114]. Additionally,
data based on a large population have shown that quitting
smoking and moderate-intensity aerobic exercise may
reduce the risk of glaucoma [115–117]. A balanced diet,

Bruch’s membrane
RPE

Photoreceptors
(outer segments)

Smoking, light, age, obesity

ROS

Lipids

Higher metabolism

Oxidative
stress
injury

Phagocytosis

Deposits

Protein DNA

Lipids acummulation 

Figure 2: Oxidative stress in AMD. ROS are increased in RPE and photoreceptors since the exposure of environmental risk factors in the
early stage of AMD. ROS lead to the deposits of lipid substances, phagocytosis disability, and cell injury in protein, lipids, and DNA, until
cell death. AMD: age-related macular degeneration; ROS: reactive oxygen species; RPE: retinal pigmented epithelium.
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including vegetables, omega fatty acids, and coffee, may help
prevent the occurrence or progression of glaucoma [118].
Studies showed that oxidative stress might be a potential tar-
get for the prevention and treatment of glaucoma in the
early stages; although, there is no direct clinical evidence.

3.5. Oxidative Stress in ROP. ROP is a complex eye disease
characterized by retinal neovascularization in low-birth-
weight preterm infants (LBWs), and it is the most common
cause of blindness in children [119, 120]. Oxidative stress is
a physiological redox imbalance caused by excessive ROS/
RNS. It plays a key role in the pathogenesis of ROP and sig-
nificantly increases the mortality and morbidity of ROP in
very LBWs (Figure 5) [119, 121, 122]. There are two phases
of ROP: (1) abnormal retinal neovascularization motivated
by hypoxia and (2) delayed growth of retinal vascularization
induced by supplemental oxygen [123–125]. Clinical data
showed a connection between the incidence of ROP in
LBWs and unrestricted oxygen exposure, and the corre-
sponding findings have shown that reduced oxygen satura-
tion can decrease the incidence of ROP [126]. For
newborns, oxidative stress is a challenge during the process
of birth itself. The sharp postnatal transition from a lower
oxygen content with an intrauterine environment into a
higher oxygen content environment causes oxidative stress
in infants, and most preterm infants lack antioxidant
enzymes and chemical antioxidants because the increase in
key antioxidant enzymes such as superoxide dismutase only
occurs in late pregnancy, showing a lower antioxidant ability
in premature infants [127, 128]. Retinal hyperoxia in LBWs
due to the lack of autoregulation of the blood network in the
retina causes an imbalance of prooxidants and antioxidants,
contributing to the inflammation of retinal tissue, eventually
resulting in the development of ROP [129–131]. Moreover,
in ROP, damage of the outer retina occurs along with the
increased ROS levels in the inner retina [131, 132].

3.5.1. ROP: Intervention Strategy at an Early Stage. Early
intervention is an efficient strategy to control the incidence
of ROP, a preventable ocular disease [133]. According to
the early treatment of ROP, cryotherapy and laser therapy
are now effective methods to prevent ROP in preterm
infants [134–136]. Strict oxygen limitation effectively
reduces the incidence of ROP in LBWs. Flavonoids are a
group of antioxidants present in the diet [137, 138]. For
example, green tee has been demonstrated to prevent ROP
through the inhibition of corneal neovascularization in ani-
mal models [139, 140]. Bilberries, a natural source of antho-
cyanins with high antioxidative properties, can significantly
render lipid peroxidation and neovascular proliferation and
protect the retinal vasculature after high oxygen therapy,
contributing to the suppression of ROP progression [140,
141]. Other flavonoids, e.g., baicalin and luteolin, have also

AGE/RAGE Hexosamine
pathway

BRB rupture

Polyol pathway

Hyperglycaemia (hypertension, hyperlipidaemia, obesity)

Oxidative stress

Pericytes demise

PKC

Inflammation

Vascular leaking

Progression of DR

Figure 3: The driving mechanism of oxidative stress in the progression of DR. PKC: protein kinase C; AGEs: advanced glycation end-
products; BRB: blood-retinal barrier; DR: diabetic retinopathy.
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Figure 4: The role of oxidative stress in glaucoma RCG injury.
IOP: intraocular pressure; RGC: retinal ganglion cell.
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been shown to protect against ROP because of their ability to
scavenge ROS [142, 143]. Additionally, prenatal supplemen-
tation with antioxidants, such as carotenoids and vitamins
(A and E), helps to promote normal fetal growth, resulting
in a reduction in the birth rate of preterm infants; although,
there is no clinical evidence that it can prevent ROP in
LBWs [144–147]. Moreover, supplementation with essential
fatty acids, e.g., ω-fatty acids, leads to a decrease in ROP
development, which can be explained by the antioxidant
effect of unsaturated fatty acids that reduces lipid peroxida-
tion [148, 149]. Therefore, it would be a key early interven-
tion strategy to reasonably expect a status with strong
antioxidants at birth or provide antioxidant supplementa-
tion to reduce the risk of ROP in preterm infants.

4. Summary

An increasing number of people will be diagnosed with ret-
inal diseases in the future. The number of people with vision

loss will be 61 million, and that of those with vision impair-
ment will be 470 million by 2050 [3]. The healthcare system
will face challenges from millions of people with vision loss
and their caregivers. Poor effective treatments currently exist
during the advanced disease stage in the clinical setting.
Hence, it is important to find ways to detect retinal diseases
early and monitor disease progression and treatment efficacy
because the adaptive phase and early pathology phase are
reversible and are also the most effective phases in retinal
diseases (Figure 6) [20].

Oxidative stress plays a critical role in the pathological
processes of many types of retinal dysfunctions [150]. Ana-
tomical features of the eye make the retina more susceptible
to ROS production, especially with increasing age [151–153].
The retina, especially the photoreceptors and retinal pig-
ment epithelium, is rich in polyunsaturated fatty acids,
which are susceptible to lipid peroxidation [50, 154]. Persis-
tent prooxidant factors and decreased antioxidant capacity
with age may accelerate oxidative stress. Thus, the increase

Hypoxia

Abnormal neovascularization

Oxidative stress damage

ROP

LBWs

Lack antioxidant enzymes

Supplemental oxygen

Delayed growth of vascularization

Outer retina-inner retina

Figure 5: The increased ROS level plays a key role in the pathogenesis of ROP. LBWs: low-birth-weight infants; ROP: retinopathy of
prematurity.
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Figure 6: The progression of retinal disease in the hypothetical stages. Effective intervention during the early stage of retinal disease would
be most beneficial in protection against vision loss (revised from Machelle T. Pardue, 2018, Prog Retin Eye Res).
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in ROS and intracellular Ca2+ concentrations are common
pathological changes in the retina [50]. Many studies have
indicated that oxidant stress injury is the first step to induce
the cell death of retinal neurons [24, 50, 155–157]. Ocular
diseases share the same cellular mechanisms. In the final
stages of retinal disease, there are limited effective treatments
that may rescue lost vision.

Therefore, early intervention for retinal diseases is nec-
essary and urgent, and may offer hope to improve
patients’ quality of life through functional vision. First,
management of the source of ROS generation is a key fac-
tor in preventing the progression of retinal disease. Vari-
ous factors that lead to ROS generation should be
suppressed, including hyperglycemia, intraocular hyperten-
sion, hyperlipidemia, ultraviolet light exposure, ischemia,
and obesity. Early reduction of these stressors may amelio-
rate ROS-induced retinal damage. Second, the application
of dietary antioxidants, antioxidant supplementation, or
pharmacological inhibitors could be an effective interven-
tion strategy in the early stages of retinal diseases. This
approach may scavenge excess free radicals and reduce
oxidative stress injury. Third, physical exercise as a reha-
bilitation treatment has shown pluripotent benefits in mul-
tiple systems of the body, including retinal diseases [158,
159]. Recently, exercise has been demonstrated to have
protective effects in animal models of retinal diseases via
multiple mechanisms, including the BDNF/TrkB signaling
pathway, increased blood flow, and modulation of VEGF
and its receptors [160, 161]. Retrospective studies in
humans have also indicated that exercise treatment for
visual disorders can improve visual function and quality
of life. Therefore, exercise interventions may be imple-
mented in the early stage of retinal disease. The retina is
a metabolically active tissue that is susceptible to oxidative
injury. Therefore, hepatic injury or hyperlipidemia may
induce metabolic turbulence and negatively affect retinal
health. Maintaining blood and liver health is beneficial to
the retina.

4.1. Future Directions

(1) Methods for the early detection of retinal dysfunc-
tion must be developed to identify the key treatment
window and monitor disease progression

(2) Simple, accessible self-screening is needed to address
the problem of visual function and obtain a clinical
examination

(3) To explore the differences in the therapeutic effects
of nonselective antioxidants, general ROS scaven-
gers, specific inhibitors of Nox isoforms, and molec-
ular/genomic target drugs are necessary to curb the
progression of retinal diseases
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