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Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor involved in maintaining redox balance and activates
the expression of downstream antioxidant enzymes. Nrf2 has received wide attention considering its crucial role in oxidative and
electrophilic stress. Large amounts of studies have demonstrated the protective role of Nrf2 activation in various pulmonary
hypertension (pH) models. Additionally, various kinds of natural phytochemicals acting as Nrf2 activators prevent the
development of pH and provide a novel and promising therapeutic insight for the treatment of pH. In the current review, we
give a brief introduction of Nrf2 and focus on the role and mechanism of Nrf2 in the pathophysiology of pH and then review
the relevant research of Nrf2 agonists in pH in both experimental research and clinical trials.

1. Introduction

Pulmonary hypertension (pH) is a progressive life-threatening
cardiopulmonary syndrome characterized by pulmonary
vasoconstriction and pulmonary vascular remodeling (PVR)
of pulmonary arterioles, leading to increased pulmonary
artery pressure and pulmonary vascular resistance, culminat-
ing in right heart failure and even death [1]. Emerging evi-
dence has shown the significant role of ROS in the
pathogenesis of PH [2]. As a member of cap’n’collar basic-
region leucine zipper transcription factor family, Nrf2 plays
a critical role in sustaining cellular redox homeostasis through
interconnecting effects [3]. Nrf2 regulates the transcription of
large amounts of genes, including detoxifying enzymes, anti-
inflammatory enzymes, stress response proteins, and meta-
bolic enzymes [4]. Current researches have revealed decreased
Nrf2 expression in pH; Nrf2 upregulation could remarkably
ameliorate pulmonary vascular remodeling and right ventric-
ular hypertrophy induced in a hypoxic pH experimental
model [5]. The present review mainly focuses on the recent
investigations on the therapeutic efficacy of Nrf2 agonists, par-

ticularly phytochemicals, in different types of pH and the
underlying mechanisms.

2. Reactive Oxygen Species (ROS) in pH

Intima dysfunction, aberrant hyperplasia of vascular
media, and dysregulated inflammation are the pathological
basis of pH [6]. pH therapeutic approaches are mainly
designed to target pulmonary vascular vasoconstriction,
including proteinoids, endothelin receptor antagonists, and
phosphodiesterase-5 inhibitors. These vasoactive agents
attenuated the symptoms and delay the progression of pH.
However, current approved drugs only confer modest bene-
fits of mortality and life quality; pH remains an incurable dis-
ease [7]. The underlying mechanisms of pH are complicated;
DNA damage response, endothelial-to-mesenchymal transi-
tion, metabolic reprogramming, inflammation, and epige-
netic modification all participate in the pathogenesis and
have become a focus in pH research field [8]. Various kinds
of transcription factors, chemokines, cytokines, enzymes,
and oxidative stress are involved in the pathogenesis of pH.
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Therefore, the underlying mechanism needs further elucida-
tion, and a novel therapeutic target needs to be developed [9].

Oxidative stress response is activated to counter the
harmful effects of redox imbalance. Altered redox status,
enhanced oxidant stress, and ROS production were observed
in the lung and right ventricular tissues of chronic hypoxia
and monocrotaline (MCT) induced pH rat model as well
as PAH patients, contributing to the development and pro-
gression of PH [10]. Emerging evidence has shown the gen-
eration of mitochondrial ROS; especially, superoxide
mediates the pathology of pH, including acute pulmonary
vasoconstriction, chronic pulmonary vascular remodeling,
and right ventricular remodeling [11]. In particular, several
NADPH oxidase (Nox) enzymes were identified as the main
source of ROS [12]. Meanwhile, large amounts of antioxi-
dant protective genes were expressed and provide benefit
in the pH murine model, including detoxifying enzymes
and antioxidant enzymes. Large amounts of studies showed
ROS production is closely associated with various key char-
acteristics of pH pathophysiology, including pulmonary
vasoconstriction, pulmonary vascular remodeling, inflam-
mation, and extracellular matrix remodeling [12]. Further-
more, increased ROS generation contributed to the
hyperproliferation and apoptosis resistance and metabolic
switch from oxidative phosphorylation to aerobic glycolysis
in hypoxia-induced PASMCs [13]. ROS also stimulates
inflammatory cascade and result to proliferation and apo-
ptosis imbalance in PASMCs. Increased ROS production is
also related to endothelial dysfunction in the PAH model
induced by dasatinib [14]. Nox4-mediated ROS production
in adventitial fibroblasts also contributed to hypertensive
vascular remodeling and PAH development [15]. Current
studies have been conducted to explore whether inhibition
of oxidative stress through blockage of ROS-dependent sig-
naling pathway or inhibition of ROS generation could pre-
vent against the deleterious effects on pH and resultant
right ventricular failure [16, 17].

3. Brief Introduction of Nuclear Factor
Erythroid 2-Related Factor 2 (Nrf2)

ROS-producing enzymes and antioxidant enzymes are
responsible for controlling intracellular ROS levels. In addi-
tion, both two kinds of enzymes are regulated by the pivotal
transcription factor Nrf2.

Nrf2 is a member of cap’n’collar (CNC) basic-region leu-
cine zipper (bZip) transcription factor family, which com-
prises nuclear factor erythroid-derived 2 (NFE2), Nrf1,
Nrf2, and Nrf3 [18]. Nrf2 is encoded by NFE2L2 gene; it is
a main sensor of oxidative stress and involved in sustaining
cellular redox homeostasis, metabolism, and inflammation
and is involved in the initiation of transcriptional regulation
of downstream antioxidant enzymes. Nrf2 is increasingly
recognized as a key transcription factor in protection against
oxidative and electrophilic stress through modulating anti-
oxidant protein expression [19]. Nrf2 induced the transcrip-
tion of genes responsible for ROS detoxifying and damaged
protein removal and contributed to cell survival [20]. Nrf2
regulates over 250 cytoprotective genes that present a regula-

tory enhancer sequence termed antioxidant response ele-
ment (ARE). These genes construct a network participating
in the regulation of antioxidant metabolism, inflammation,
and the metabolism of carbohydrates, lipids, and iron [21].
Nrf2 is also essential for transcriptional induction of phase
II enzymes, and Nrf2-knockout mice presented largely elim-
inated phase II enzymes in the liver and intestine [22]. Novel
Nrf2 functions and targets have been identified, and Nrf2
relevant research is increasing. Pharmacological Nrf2 activa-
tion is a potential target for attenuation of ROS generation.
Numerous Nrf2 activating compounds improved endothelial
dysfunction and reduce oxidative stress. Previous findings
indicated that targeting Nrf2-mediated ROS production
might provide promising benefits in vascular oxidative
stress [23].

Nrf2 has 7 functional domains termed Neh1-7, tangled
in the regulation of its stability and transcriptional activity.
NRF2 contains a bZip motif in Neh1, which is independent
of heterodimerization with small musculoaponeurotic fibro-
sarcoma protein (sMAF) and activation of genes with ARE
sequence. At the N-terminal domain, ETGE and DLG motifs
in Neh2 are responsible for the combination between Nrf2
and Kelch-like epichlorohydrin-related protein 1 (Keap1),
followed by Keap1-independent ubiquitination and degrada-
tion of Nrf2 in Neh 6 through binding to E3 ubiquitin ligase
β-transducin repeat-containing protein (βTrCP) [24].
Neh3-5 domain activates transcriptional activity [25], while
Neh7 mediates the combination with retinoic X receptor α
and suppresses Nrf2 activity [26].

4. Keap1/Nrf2 Signaling Pathway

Cytoplasmic protein E3 ubiquitin ligase substrate adaptor
Keap1 is the main upstream signaling pathway regulating
Nrf2 expression. Keap1 belongs to the Kelch protein family
and is a principal negative regulator of Nrf2 signaling path-
way [27]. Nrf2-Keap1 system is essential for protection
against oxidative and electrophilic stress via coordinated
induction of a series of cytoprotective genes. Two Keap1
molecules form a homodimer and then bind to Nrf2 to form
a trimer complex; this structure accelerates the proteasomal
degradation of Nrf2 [28]. The two binding motifs ETGE and
DLG in Neh2 domain of Nrf2 are responsible for recruiting
Keap1 molecule and binding with DC domain of Keap1 [29].
Importantly, Keap1 acts as an essential bridge between Nrf2
and ubiquitination ligase Cullin-3 (Cul-3). Under quiescent
conditions, Cul-3 is indispensable for the ubiquitination of
lysine in Neh2 domain and the subsequent proteasomal deg-
radation of Nrf2 by the 26S proteasome. Therefore, Nrf2 is
sequestered in the cytoplasm with limited half-life at a very
low level [30]. Inactivation of Keap1 strongly stimulates
Nrf2 expression, which is often observed in chronic diseases,
especially cancer. On exposure to oxidants or electrophiles,
electrophiles and ROS react with distinct functioning cyste-
ine sensors (C151, C226, C273, C288, and C613) of KEAP1;
then sulfhydryl modifications of cysteine residues on Keap1
disrupted the proper conformation of Keap1-Nrf2-Cul3
complex [31]. Nrf2 activators disrupt the weakly interaction
between Keap1 and DLG motif. Then, Nrf2 dissociates from
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Keap 1 and is prevented from ubiquitination degradation
[32]. Nrf2 subsequently translocates to the nucleus, accumu-
lating Nrf2 heterodimerizes with sMAFs, and promotes the
transcriptional activity of ARE-containing cytoprotective
genes [33, 34] (Figure 1). Recent studies have unveiled the
Nrf2/Keap1 system is broadly involved in various biological
processes, including cell proliferation and differentiation.
Other cysteine-independent mechanisms have been found
by interfering Nrf2/Keap1 complex through competitively
binding to Keap1 or Nrf2 [35, 36]. β-TrCP-mediated nuclear
Nrf2 degradation is another degradation pathway apart from
Keap1/Nrf2 signaling. Mechanistically, the serine residue in
Neh6 of nuclear Nrf2 is phosphorylated by glycogen syn-
thase kinase 3, and then β-TrCP recognizes and captures
phosphorylated Nrf2 and induces its proteasomal degrada-
tion [37].

5. Nrf2-Targeted Genes and Their Function

Nrf2-sMAF heterodimer induces numerous cytoprotective
genes expression through binding to ARE or electrophile
responsive element (EpRE) in the promoter region of Nrf2
target genes. ARE is essential for the recruitment of key tran-
scription factors and characterized with the consensus
sequence TGACNNNGC at 5′-neighboring regions [38].
Interestingly, the ARE of NFE2L2 promoter region contrib-
utes to the own activation of Nrf2, thereby amplifying the
biological effects of Nrf2 in a positive feedback manner
[39]. Nrf2-ARE signaling pathway plays an important role
in protecting cells from physiological and pathophysiologi-
cal injury through upregulation of a series of ARE dependent
antioxidative genes and xenobiotic detoxifying enzyme
expression [40].

Nrf2 regulates over 500 gene transcription encoding pro-
teins acting as redox balancing factors, detoxifying and anti-
inflammatory enzymes, stress response proteins, and meta-
bolic enzymes and controls cellular homeostasis through
interconnecting effects. The maintenance of intracellular
redox homeostasis is mostly studied. Antioxidant and phase
II detoxifying enzymes are key Nrf2 transcriptional products,
including NAD (P)H:quinone dehydrogenase 1 (NQO1),
heme oxygenase-1 (HO-1), glutathione S-transferase (GST),
thioredoxin, thioredoxin reductase, glutamate-cysteine ligase
catalytic subunit (GCLC), PRDX1 (Peroxiredoxin1), and
other ROS scavengers. Chromatin immunoprecipitation
sequencing (ChIP-Seq) analyses have discovered hundreds of
novel cytoprotective target genes of Nrf2 [41].

HO-1 is a crucial stress-inducible antioxidant enzyme in
the downstream of Nrf2 and confers tissue protection in
multiple oxidative and inflammatory related diseases. HO-
1 catalyzes the degradation of heme to bilirubin, carbon
monoxide, and ferrous iron; thereby, these enzymatic end
products contributed to the antioxidative effect of HO-1
[42]. Alam et al. found the transcription of HO-1 is signifi-
cantly enhanced 25–30-fold in the presence of Nrf2 in fibro-
blasts [43]. Nrf2 is a regulator of both GCLC and its modifier
subunit (GCLM), and Nrf2 promotes GSH synthesis under
cysteine-replete conditions. The expression of GCLC and
GCLM was associated with high levels of Nrf2 [44].

NQO1 is one of the main target genes of rfF2, and
NRF2/NQO1 axis activates the antioxidant response and
accelerates HO-1 expression. Upregulated NQO1 and HO-
1 induced by Nrf2 activation showed a cellular protective
effect [45].

6. Nrf2-Mediated Oxidative Stress and pH

pH is a progressive disease characterized by pulmonary vas-
cular remodeling (PVR) and increased pulmonary vascular
pressure. Vascular media thickening, stenosis of vascular
lumen, and muscularization of pulmonary vessels contribute
to the development of PVR, increased pulmonary artery
pressure, leading to right heart failure [46]. Emerging evi-
dence has suggested decreased Nrf2 contributed to the path-
ogenesis of PAH. It was demonstrated that expression of the
Nrf2-regulated antioxidant enzymes was decreased in a
patient with chronic obstructive pulmonary disease associ-
ated with pH. The pharmacologically or genetically induced
Nrf2 activity clearly decreased right ventricular hypertrophy
(RVH) and pulmonary vascular remodeling in the hypoxic
pH model [47].

Increasing evidence supports the enhanced generation of
pathological levels of ROS in the injured pulmonary vascula-
ture in PAH. The aberrant behavior of PAECs, PASMCs,
fibroblasts, and immune cells partially resulted from over-
production of ROS and reactive nitrogen species (RNS) via
posttranslational modification, including binding to soluble
guanylate cyclase, cysteine residues, oxidation of cysteine,
and methionine residues [48]. Dysregulated oxidative signal-
ing caused by an excess of ROS has been heavily implicated
in the pathophysiology of PAH and participated in the met-
abolic switch from mitochondrial oxidative phosphorylation
to aerobic glycolysis [13]. Uncontrolled ROS generation was
determined to play a role in PVR and PASMCs proliferation
[49]. Mitochondria and NADPH oxidases have been sug-
gested as sources of ROS generation in HPH. Therefore,
maintenance redox homeostasis might provide a therapeutic
strategy for normal cell function and reverse PVR. Recent
findings indicated the involvement of Nox4 in the genera-
tion of ROS triggered PVR induced by chronic hypoxia
and right ventricular failure [50]. Another research showed
Nox1 was responsible for increased intracellular superoxide
production and PASMCs proliferation in the MCT-
induced pH model. Therefore, different Nox isoforms were
involved in the regulation of PASMCs proliferation and
migration in different types of PH [49] [51].

Thioredoxin-1 (Trx-1) is one of the main systems that
control the cellular redox environment and exerts a regula-
tory effect in cell survival and apoptosis [52]. Research
showed that MCT promoted the decreased expression of
Trx-1 and Nrf2. Moreover, Trx-1 is an antioxidant and reg-
ulated by Nrf2 [53]. Downregulated Nrf2, increased lipid
peroxidation, and decreased antioxidant capacity were found
in the lung tissue of theMCT-induced pHmodel. Intriguingly,
restoration of Nrf2 expression improved the hemodynamic
parameters and oxidative stress biomarkers [54]. Hood et al.
explored the underlying mechanism of PASMC proliferation
induced by serotonin and demonstrated decreased Nrf-2 and
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catalase activity in PASMCs. Dysregulated Nrf2 led to
increased oxidative modification of proteins, redox-sensitive
pathway activation, and abnormal mitogenic responses [55].
Nrf-2 is potentially a key molecule in preserving right ventric-
ular function caused by pH. Oxidative damage contributed to
right ventricular failure; upregulated Nrf2 partially reserved
PAH-induced cardiomyocyte apoptosis and RV fibrosis,
thereby limiting RV damage [56].

7. Epigenetic Regulation of Nrf2 Signaling

The development of the epigenetic research field has pro-
vided a novel dimension to the understanding of Nrf2 sig-
naling pathways without alterations to the DNA sequence.
Keap1 is the best regulator of Nrf2 via promoting its prote-
asomal degradation. In addition to the regulation of Nrf2
protein stability, we provide an update on various phyto-
chemicals that regulate NRF2 via DNA methylation, histone
modifications, and noncoding RNAs [57]. Targeting the epi-

genetic mechanisms of Nrf2 represents an attractive thera-
peutic strategy.

DNA methylation is a dynamical and reversible process
regulated by DNA methyltransferases (DNMTs) and DNA
demethylation enzymes. An increasing number of studies
revealed that altered DNA methylation plays a central role
in regulating Nrf2 expression and oxidative stress. Several
CpG islands have been identified in the promoter of
NFE2L2, and abnormal enhanced hypermethylation of these
GPG sites of Nrf2 promoter are associated with reduced
Nrf2 expression [58]. Recently, in preclinical and human
clinical trials, numerous types of natural phytochemicals and
herbs have been identified as Nrf2 epigenetic activator and
exert chemoprevention effect and anticancer potential against
tumors through reversing the hypermethylated status in CPG
promoter region of Nrf2 [59], including sulforaphane (SFN),
curcumin, luteolin, and γ-tocopherol [60–63].

Resveratrol significantly upregulated Nrf2 expression
and its target genes NQO1 and HO-1 dose dependently.
Additionally, the attenuated cellular and mitochondrial
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oxidative stress and improved vasodilation after resveratrol
treatment were diminished in Nrf2-/- mice [64]. Resveratrol
also provides therapeutic benefits on nonalcoholic fatty liver
disease (NAFLD) through epigenetic modification and the
Nrf2 activation. Mechanistically, resveratrol reversed the
methylation status of the Nrf2 promoter in NAFLD mouse
model and in HepG2 cells treated by high glucose, demethy-
lated Nrf2-promoted Nrf2 and Nrf2-controlled antioxidant
gene transcription, and inhibited ROS generation [65].

Apigenin (API) is a kind of dietary chemopreventive
phytochemical agent. Paredes-Gonzalez and his colleagues
investigated the potential epigenetic effect of API and dis-
covered that API could enhance the nuclear translocation
of Nrf2 and restore the decreased expression of Nrf2
through reversing the hypermethylated Nrf2 promoter at
15 GpG sites, coupled with reduced activity of DNMT1,
DNMT3a, and DNMT3b as well as histone deacetylases
(HDACs) [66].

The medicinal herb Radix Angelicae Sinensis (RAS, also
named Danggui) is widely used in Asia.

Su et al. reported that RAS and its bioactive component
Z-ligustilide (Lig) promoted endogenous Nrf2 expression
and downstream target genes, including HO-1, NQO1, and
UGT1A1 in TRAMP mice. Bisulfite genomic sequencing
and methylation DNA immunoprecipitation revealed that
Lig and RAS treatment prevented DNA methylation in the
first five CpGs of the Nrf2 promoter region and inhibited
DNA methyltransferase activity in vitro. Collectively, these
results suggest that Lig and RAS are able to demethylate
the Nrf2 promoter CpGs, resulting in the restoration of
Nrf2 and Nrf2 target genes [67].

Histone modification is another key epigenetic mecha-
nism involved in Nrf2 mediated oxidative stress. The under-
lying mechanism of histone modification of Nrf2 has been
widely elucidated in prostate cancer. Previous research
reported Nrf2 is partly suppressed epigenetically by histone
modifications in the prostate tumor of TRAMP mice. ChIP
assays revealed increased binding trimethyl histone H3
(Lys9) protein to the CpG sites in TRAMP C1 cells. More-
over, Nrf2 levels could be reversed by HDAC inhibitors
[68]. The anticancer effect of SFN and corosolic acid
(CRA) was partially attributed to restored Nrf2 expression
caused by altered histone modification. Specifically, SFN
attenuated the protein expression of HDAC 1, 4, 5, and 7
while increasing the level of acetyl-Histone 3 (Ac-H3). ChIP
assay revealed CRA upregulated acetylation of histone H3
lysine 27 (H3K27ac) and downregulated trimethylation of
H3K27 in the Nrf2 promoter region, inducing the expres-
sion of impaired Nrf2 [69, 70]. Histone H3 lysine 27
(H3K27me3) trimethyltransferase EZH2 was associated with
decreased Nrf2 level through upregulation of histone tri-
methylation at Nrf2 promoter [71].

The addition and removal of acetylation modification
are crucial in the function of Nrf2. Acetylation of Nrf2 at
Neh1 DNA-binding domain is necessary for Nrf2-
dependent gene transcription [72]. HDAC2 deacetylated
lysine residues of Nrf2 and thereby prevented Nrf2 protein
from degradation [73]. Altered HDAC expression partially
contributed to the restored Nrf2 level treated by API [66].

Su et al. indicated SFN exerts its cardioprotective effect
through preventing Ang II-induced cardiac inflammation,
oxidative damage, fibrosis, cardiac remodeling, and dysfunc-
tion, coupled with activation of Nrf2. They also revealed
SFN promoted Ac-H3 accumulation in Nrf2 promoter
region, accompanied by decreased HDAC activity and
HDAC enzyme expression [74].

Various noncoding RNAs including microRNAs (miR-
NAs) and long noncoding RNAs (lncRNAs) involved in
the regulation of Nrf2. Numerous miRNAs are widely recog-
nized negatively regulated Nrf2 levels by targeting the 3′
untranslated region in podocytes, neuroblastoma cells, ery-
throid cells, and HepG2 cells, including miR-27a, miR-28,
miR-34, miR-93, miR-128, miR-142-5p, miR-144, and
miR-153 [75]. Increased miRNAs target Nrf2 and accelerate
the degradation of Nrf2 mRNA, leading to an impaired anti-
oxidative response [76]. Furthermore, miR-140-5p directly
sponges Nrf2 and promotes myocardial oxidative damage
in doxorubicin-induced cardiotoxicity [77]. Ashrafizadeh
et al. reviewed over 20 miRNAs directly or indirectly
involved in the regulation of Nrf2 pathway [78]. In terms
of pH, miR23a was selected as the significantly expressed
miRNA in idiopathic pulmonary artery hypertension
patients and related to the pulmonary function of pH
patients. miR23a inhibition resulted in an increase of Nrf2,
suggesting miR23a might be an upstream regulator of Nrf2
[79]. lncRNA MIAT/miR-29a-5p axis might stimulate oxi-
dative stress response in the HPH model through regulation
of Nrf2 pathway [80]. Additionally, overexpression of small
nucleolar RNA ACA11 was linked to Nrf2 nuclear import
and reactive oxygen species generation.

RNA binding proteins mediated posttranscriptional
modification is also involved in the regulation of Nrf2.
HuR and AUF1 activated Nrf2 in different manner. HuR
promotes Nrf2 maturation and nuclear export, while AUF1
enhances the stability of Nrf2 mRNA [81]. Moreover, tran-
script mutations of Nrf2 could also interfere Nrf2’s binding
to Keap1 and hinder its degradation [82].

8. Nrf2 Activators as a Novel Therapeutic
Approach for pH

Oxidative stress and inflammation are the two key mecha-
nisms underlying the pathogenesis of pH. Oxidative stress
and ROS were found accumulated in the lung tissues of
pH, which contributes to the pathogenesis and progression
of cardiac and pulmonary changes in chronic hypoxia medi-
ated PH [83]. Experimental evidence has illustrated that per-
sistent inflammation, including numerous inflammatory cell
infiltrations, proinflammatory cytokines, and chemokines,
was all closely correlated with various types of PH [84].
Given the essential role of Nrf2 signaling pathway in protec-
tion against oxidative and inflammatory stress, researchers
hypothesized that reinforcement of homeostasis through
pharmacological activation and upregulation of Nrf2 might
become an innovative approach for the treatment of pH. A
previous report has demonstrated that Nrf2-deficient mice
developed more severe RVH, while Keap1 knockdown mice
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presented improved PVR compared with WT mice after 3-
week hypoxia exposure [85]. Of note, several types of phyto-
chemicals have been identified as effective Nrf2 inducers and
prevent pH development in vitro and in vivo, providing a
novel insight into therapeutic targets for pH.

Resveratrol is a natural stilbenoid polyphenol widely
present in many fruits and has antioxidant, anti-inflamma-
tory, antitumor, and estrogenic activities [86]. Convincing
supportive evidence has suggested the promising therapeutic
prospect of resveratrol in pH. Resveratrol shows cardiovas-
cular beneficial effects on pH by attenuating PASMC prolif-
eration and ameliorating endothelial dysfunction through
regulation of multiple signaling pathways, including sup-
pression of SphK1/S1P-mediated NF-κB activation and nor-
malization of BMP/SMAD signaling pathways [87, 88].
Especially, the progression of hypertension in SHR rats was
attenuated through restoration of Nrf2 expression and
increased antioxidant potential after resveratrol administra-
tion [89]. However, it remains unknown whether resveratrol
could ameliorate the progression of pH through targeting
Nrf2-mediated oxidative stress.

SFN is an isothiocyanate and abundantly presented in
various kinds of cruciferous vegetables. It possesses antioxi-
dant, anti-inflammatory, and antitumor biological activities
[90]. Studies showed sulforaphane acts as an effectively
strong Nrf2 activator and motivates Nrf2-mediated anti-
inflammatory pathways [91]. Mechanistically, SFN demeth-
ylation modification at the CpG islands of Nrf2 promoter
region, leading to upregulation of Nrf2 gene expression via
modulation of the expression of DNA methyltransferases,
exhibits anticancer potential in colon cancer [92] and skin
neoplasm [62]. Intriguingly, sulforaphane partially rescued
SuHx-induced RV dysfunction and normalized increased
right ventricular systolic pressure. Right ventricular hyper-
trophy, fibrosis, inflammation, and PVR were all amelio-
rated after sulforaphane treatment. Sulforaphane might
have a direct effect on PVR and then reduce RV afterload,
as well as directly improved RV function. Nrf2 and the
downstream gene NQO1 were found increased in the right
ventricle after administration of SFN [93]. Zhang and his
colleagues further investigated whether the protective effect
of SFN on pH is Nrf2 dependent. The findings revealed that
Nrf2 knockout mice present RV diastolic dysfunction earlier
than wild mice induced by SU5416 and 10% hypoxia for 4
weeks. SFN partially/completely reversed RV diastolic and
systolic dysfunction, while the protective effect disappeared
in Nrf2 knockout mice [94]. Therefore, Nrf2 exerted an
essential role in SFN-medicated RV dysfunction and PVR,
and Nrf2 activation might provide a novel therapeutic
approach for pH treatment.

Dimethyl fumarate (DMF) is an FDA-approved first-in-
class potential Nrf2 pathway activating agent exhibiting
excellent anti-inflammation and antioxidative stress effect,
and it has been explored in an experimental HPH model.
Intriguingly, preclinical results demonstrated DMF provided
hemodynamic benefit, ameliorated pulmonary vascular
muscularization, and prevented the development of lung
fibrosis in the HPH mouse model [95]. Excitingly, agonists
of the Nrf2 signaling pathway, DMF, have entered the clini-

cal study phase for the treatment of patients with pulmonary
hypertension caused by systemic sclerosis (SSc) [96]. Regret-
tably, a double-blind, randomized, placebo-controlled trial
demonstrated that SSc-PAH patients tolerated DMF poorly,
and nonsignificantly reduced decline in 6-minute walking
distance was found after 24 weeks of DMF treatment
(-7.07% vs. -14.97%). Large sample clinical trials need to
be conducted to further evaluate the tolerance and efficacy
of DMF in PAH [97]. Muralidharan and his colleagues suc-
cessfully designed advanced inhalable dry powders contain-
ing DMF for targeted delivery to the lungs using particle
engineering design technology. Predictive lung deposition
modeling showed the capability of these DMF particles to
reach the lower airways to treat inflammation in pH and
other pulmonary diseases [98].

Pachymic acid (PA) is a kind of traditional Chinese
medicine and one of the main components of Poria cocos.
The extensive pharmacological effect of PA has attracted
the attention researchers, including anti-inflammatory, anti-
oxidation, and insulin-like effects, and exhibits low toxicity
[99]. Previous research reported PA inhibits the prolifera-
tion of gastric tumor cells [100]. Besides, PA attenuated
sepsis-induced acute kidney injury via activation of Nrf2/
HO-1 pathway. He and his colleges demonstrated that PA
pretreatment could effectively ameliorate pulmonary vascu-
lar remodeling and dose dependently inhibit hypoxia-
induced PASMC proliferation via activating Nrf2-Keap1-
ARE signaling pathway. Both cytoplasmic and nuclear
Nrf2 expression levels were significantly diminished in
PASMCs induced by hypoxia, while hypoxia promoted
Keap1 accumulation and PA reversed the dysregulated
Nrf2 and Keap1 expression caused by hypoxia in PASMCs.
PA treatment also upregulated the decreased Nrf2 down-
stream gene expression, including HO-1 and SOD-1, and
reduced intracellular ROS generation [101]. The research
findings demonstrated that PA might become a potential
pH treatment approach.

Polyphenol has been demonstrated as a class of Nrf2
activator through binding with keap1 and inhibiting
Keap1-mediated Nrf2 degradation [32]. Salvianolic acid A
(SAA) is a kind of natural polyphenol antioxidant and has
attracted increasing attention due to its oxidative and antifi-
brotic effect on various diseases [102]. Intriguingly, SAA
administration ameliorated PVR, lung apoptosis, lung fibro-
sis, and myocardial hypertrophy in the MCT-induced PAH
rat model [103]. Endothelial-to-mesenchymal transition
(EndMT) has been demonstrated to be involved in PVR.
Oxidative and inflammatory stress in PAECs partially con-
tributed to development of EndMT [104]. Furthermore,
SAA attenuated ROS production and protected PAECs
against hypoxia-induced EndMT [105]. Another research
suggested that SAA reduced oxidative stress-associated
EndMT and improved pulmonary vascular function. Mech-
anistically, SAA acts as a direct radical scavenger and sup-
presses ROS generation via inhibiting the expression of
ROS-producing enzyme Nox4 [106]. Additionally, SAA
enhanced Nrf2 translocation and activation, subsequently
leading to increased downstream antioxidative gene HO-1
expression [107].
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Acosta and colleagues successfully produced 4 different
inhalable powders of simvastatin (Nrf2 activator). The
inhalable nanostructured microparticle dry powders of sim-
vastatin were developed for targeted pulmonary delivery
through advanced particle engineering design technology,
and all powders successfully aerosolized with dry powder
inhalers (DPI) human devices. They reported for the first
time that inhaling simvastatin for the treatment of pH is
safe and effective. The results showed that inhaled simva-
statin as an aerosol could restore the dysregulated endothe-
lial function and reduce pulmonary vascular resistance in
pH rat model. Pulmonary artery pressure was significantly
decreased from 25.2mmHg to 21.6mmHg after simvastatin
inhalation [108].

Andrographolide (ANDRO) is a natural labdane diterpene
lactone possessing anti-inflammatory, antitumor, and anti-
proliferation activity [109]. The antiproliferative activity of
ANDRO promptedNie to investigate the potential therapeutic
effects of anti-inflammatory and antioxidant agent ANDRO
on hypoxia-induced PVR. ANDRO ameliorated distal pulmo-
nary arteries remodeling, right ventricular hypertrophy. In
vitro, ANDRO decreased cell viability, proliferation, and
migration and promoted cell apoptosis in PASMCs. Nrf2
was downregulated, whereas ROS-generating enzyme NOX
was upregulated, contributing to rapid ROS production in
PAH-PASMCs compared with healthy control. ANDRO
treatment blocked ROS generation by suppressing NOX acti-
vation and augmented Nrf2 expression. NOX/Nrf2-mediated
oxidative stress and inflammation might be involved in the
underlying mechanism ANDRO reversing PVR [110].

Blueberry (BB) is a natural antioxidant agent and pre-
sents therapeutic effect in PAH. BB improved echocardiog-
raphy and catheterization parameters in the MCT-induced
PAH model. BB improved the blood flow across the tricus-
pid valve and decreased the PAP in the MCT-induced pH
model [111]. BB attenuated ROS generation and lipid perox-
idation and improved the redox state in right ventricle of pH
rats [112]. Furthermore, BB restored the decreased Nrf2
expression in lung tissues of pH rats and improved pulmo-
nary redox state [111]. The findings provide a basis for nat-
ural antioxidant interventions as a novel treatment approach
in PAH.

2-Cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO)
is a kind of derivatives of synthetic triterpenoid development
for the treatment of inflammation and cancer. As the deriva-
tive of CDDO, Bardoxolone methyl (CDDO-Me) is more
potent in the activation of Keap1/Nrf2/ARE pathway. The
α,β-unsaturated carbonyl groups on CDDO-Me are respon-
sible for the combination with cysteine residues of Keap1,
leading to Nrf2 release from Keap1 and translocation to
nucleus, then thereby triggering antioxidant and anti-
inflammatory response [113]. Patients with advanced COPD
had declined Nrf2 and Nrf2 genetic deletion in mice led to
early-onset and severe emphysema. In addition, Nrf2 activa-
tor CDDO remarkably reduced oxidative stress in lung tissue
and improved pH caused by cigarette smoke. Therefore, tar-
geting Nrf2 might become a promising therapeutic approach
for COPD and subsequent pH [114]. CDDO-Me has been
applied in clinical trial of PAH due to its antioxidant, anti-

inflammatory, antifibrosis, and antiproliferative properties
[115]. A novel designed hybrid combining CDDO and nitric
oxide could significantly attenuate PVR, right ventricular
hypertrophy, and vascular muscularization in MCT-
induced PH rats, suggesting it may be a promising agent for
PAH intervention [116]. A phase II clinical trial for PAH
patients due to interstitial lung disease without cardiac risk
factors was conducted, and the interim data showed that
CDDO-Me was well-tolerated and improved six-minute
walk distance in PAH patients [117].

Ligustrazine is an active alkaloid obtained from Chinese
herbs and widely used for occlusive cardiovascular and cere-
bral diseases and PAH. Ligustrazine is a vasodilator, and the
underlying mechanisms include calcium antagonism, cAMP
production, and No release. Recently, ligustrazine was iden-
tified as a Nrf2 activator and exerts antioxidant effects.
Moreover, Muralidharan et al. reported for the first time that
they developed inhaled TMP both liquid and dry powder
inhalation aerosols. In vivo experiments showed safety and
efficacy of inhaled TMP in reducing PAP in the MCT-
induced pH model [118].

Mitochondrial oxidative phosphorylation is hindered in
pH, and increased glucose levels are found in PAECs and
PASMCs. Research reported metformin has positive effects
in pH treatment. In addition, metformin is also a Nrf2 acti-
vator and has been shown to improve mitochondrial func-
tion in the pathology of various pulmonary diseases.
Nanoparticle/microparticle metformin dry powder inhaler
was developed, and it could be developed as a therapeutic
treatment for pH [110]. Whether metformin could inhibit
the progression of PH through Nrf2 activation remains
unexplored and the underlying mechanisms needs to be fur-
ther unraveled.

Oxymatrine is one of the central functional components
of Chinese herb Kushen and has anti-inflammation and
antioxidant properties. Specially, oxymatrine concentration
in the lung and heart is markedly higher than other organs.
Zhang et al. investigated whether oral oxymatrine treatment
could bring benefit on the development of pH. The findings
showed that administration of oxymatrine attenuated RVSP
and PVR induced by MCT and hypoxia. In vitro experiment
showed oxymatrine decreased the proliferation of PASMCs.
Oxymatrine treatment reversed hypoxia induced Nrf2
downregulation, along with increased SOD1 and HO-1
expression, and downregulated hydroperoxide in PASMCs,
indicating the antioxidant agent oxymatrine prevented the
development of pH through activation of Nrf2 mediated
anti-inflammatory and antioxidative response [119].
Table 1 presents a brief summary of these phytochemical
Nrf2 activators in pulmonary hypertension.

Another nonphytochemical Nrf2 activator Oltipraz
also displayed the therapeutic potential in pH. Oltipraz
(50mg/kg/d for 3 d) significantly led to the nuclear accu-
mulation of Nrf2 and ameliorated right ventricular hyper-
trophy caused by hypoxia, while RVSP did not alter after
oltipraz administration. Furthermore, the protective effect
of oltipraz in pH was abolished in Nrf2-/- mice, suggesting
oltipraz exerted the therapeutic efficacy through Nrf2 activa-
tion [85].
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Celastramycin was selected out from 5562 compounds
using high-throughput screening system; it could inhibit
PAH-PASMC proliferation effectively and safely. Mechanis-
tically, celastramycin treatment increased Nrf2 expression,
then subsequently reduced inflammation and cytosolic
ROS levels, and improved mitochondrial energy metabolism
in PAH-PASMCs. Celastramycin reduced the levels of cyto-
solic ROS through significant upregulation of ROS scaven-
gers Nrf2, downregulation of NADPH oxidases, and slight
increase in mitochondrial ROS in PAH-PASMCs [120].

9. Conclusion

Nrf2 is a master regulator of cellular response against oxida-
tive stress and plays a significant role in protection against
oxidative stress through regulation of the downstream anti-
oxidant and anti-inflammatory genes expression. These
gratifying research results on phytochemicals as activators
of Nrf2 signaling are of great interest and might open ave-
nues for exploring new therapeutic insights into the preven-
tion and treatment of pH in the future. However, our
understanding of the mechanisms underlying diet phyto-
chemical needs further exploration due to the complicated
molecule mechanism network. Further research is required
to manipulate these mechanisms in a beneficial manner for
disease interception.
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