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Parkinson’s disease (PD) is a prevalent neurodegenerative disorder that manifests as motor and nonmotor symptoms due to the
selective loss of midbrain DArgic (DA) neurons. More and more studies have shown that pathological reactions initiated by
autoimmune cells play an essential role in the progression of PD. Autoimmune cells exist in the brain parenchyma,
cerebrospinal fluid, and meninges; they are considered inducers of neuroinflammation and regulate the immune in the human
brain in PD. For example, T cells can recognize α-synuclein presented by antigen-presenting cells to promote
neuroinflammation. In addition, B cells will accelerate the apoptosis of DA neurons in the case of PD-related gene mutations.
Activation of microglia and damage of DA neurons even form the self-degeneration cycle to deteriorate PD. Numerous
autoimmune cells have been considered regulators of apoptosis, α-synuclein misfolding and aggregation, mitochondrial
dysfunction, autophagy, and neuroinflammation of DA neurons in PD. The evidence is mounting that autoimmune cells
promote DA neuron apoptosis. In this review, we discuss the current knowledge regarding the regulation and function of B
cell, T cell, and microglia as well as NK cell in PD pathogenesis, focusing on DA neuron apoptosis to understand the disease
better and propose potential target identification for the treatment in the early stages of PD. However, there are still some
limitations in our work, for example, the specific mechanism of PD progression caused by autoimmune cells in mitochondrial
dysfunction, ferroptosis, and autophagy has not been clarified in detail, which needs to be summarized in further work.

1. Introduction

Parkinson’s disease (PD) is a central neurodegenerative dis-
ease second only to Alzheimer’s disease. The incidence of
PD ranges from 10 to 18 per 100000 person-years [1, 2].
The main pathological manifestations of the disease were
DArgic (DA) neuron apoptosis and deposition of α-synu-
clein protein in the Substantia Nigra (SN). When the apopto-
sis of DA neurons accounts for more than 50% of the total
DA neurons, patients can develop clinically assessable motor
symptoms. [3]. A complete understanding of the mechanism
of DA neuron apoptosis may be the key to the research of PD
therapy.

In the past, the role of the autoimmune system in PD has
not been valued [4]. However, data accumulated over the
past decade regarding immune alterations in PD increased
the interest to pursuing such an association [5]. Immune-
related genes and antigen molecules play a particular role
in DA neuron apoptosis. Herein, we present a comprehen-
sive review of the impacts of autoimmunity in PD. We have
composed a logical argument to substantiate that autoim-
munity is actively involved in the pathogenesis of DA apo-
ptosis in PD through several proteins, including α-
synuclein, DJ-1, PINK1, and parkin [6–8], as well as autoim-
mune cells, such as B cells and plasma cells, conventional
CD4+ and CD8+ T cells, microglial cell, dendritic cell, and
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NK cell [9, 10]. Furthermore, based on the relationship
between autoimmune cells and their related genes and anti-
gen molecules on the DA neuron apoptosis in PD, we put
forward our own opinions for the research and clinical treat-
ment of the disease.

Despite the potential significance of autoimmune cells in
the development of PD, there is a lack of discussion about
them. Therefore, the aim of this study is to conduct a sys-
tematic review of autoimmune cells in PD to further explore
them. In this review, we consider the link between autoim-
mune cells and PD and summarize the role of autoimmune
cells in PD and discuss their role in DA neuron apoptosis
based on the extensive literature. We hold the opinion that
alterations in autoimmune cells may contribute to one of
the key mechanisms in PD.

2. Immune Landscape in PD

More andmore studies have shown that PD is an autoimmune
disease, when the immune mechanism is out of balance, the
autoimmune systemmistakenly attacks normal cells, including
DA neurons. For PD, chronic autoimmune attacks play an
important role in the early stage of the disease and participate
in the whole development. Autoimmune disorders will first
lead to the upregulation of neuroinflammation and then, with
the participation of various autoimmune cells and immune-
related molecules, induce the apoptosis of DA neurons and
accelerate the progression of PD [6]. The involvement of B
cells in the above processes has been found more and more
widely, while there is not much research on plasma cells.

It is undeniable that many previous studies have described
the changes in the number and subsets of B cells in PD patients.
Still, few studies reported the correlation between B cells and PD
progression [11]. With the progress of research, people increas-
ingly find that there may be a special relationship between this
change and the progression of PD. First, in terms of quantity,
there was an overall decrease of B cells in PD patients compared
with healthy controls, especially in immature B cells [12]. By
detecting the number of T cells, B cells, NK cells, andmonocytes
in peripheral blood, it was found that CD4+ T and CD19+ B
cells decreased slightly (15-25%) in patients with PD [13], and
the decrease of CD3+, CD4+, CD8+ T, and B cell was associated
with the progression of PD [14]. In the study of PDmodel mice
of different ages, it was further observed that CD3+ T cells and
CD4+ Th cells increased and CD19+ B cells decreased in 2-
month-old A53T mice, which was related to a mood disorder
in mice. The number of CD4+ Th cells, CD3+, CD4+, and
CD25+ T regulatory cells in 10-month-old mice increased,
which was related to movement disorder in mice, and B cells
had no significant change [15]. In addition, an increase in the
number of α-synuclein-specific B cells was found in the periph-
eral blood of PD [16], suggesting that B cells may also be
involved in the pathological process of α-synuclein-related PD.
The above arguments prove that there are changes in the num-
ber of B cells in patients with PD and are related to the overall
progress of PD.

In the study of the changes of B cell subsets in PD, some
scholars reported that the number of proliferative B cells in
PD patients was lower than that in normal controls. The

proportion of B cell subsets with regulatory function
decreased, such as transitional B cells. In contrast, the pro-
duction of B cells producing inflammatory factors increased,
enhancing proinflammatory function of B cell. In addition,
the principal component analysis also showed that the
expression of TNF-α and GM-CSF in B cells and T cells of
PD patients was increased. In addition, the decrease of follic-
ular T cells, an essential group of B cell helper T cells, has
also been proven to be related to B cell abnormalities. The
study also shows that B cells are the first to be affected in
the progression of PD [17]. It has been proved that the num-
bers and subset changes in B cell may participate in the path-
ological process of PD and profoundly affect the progression
of the disease.

Autoimmune cells are found in the brain parenchyma,
cerebral spinal fluid, and meninges, which can be regarded
as either induction factors or protective factors of neuroin-
flammation [18, 19]. Studies have shown that peripheral
antigen-presenting cells (APCs) could migrate across blood-
brain barrier (BBB) and intake α-synuclein accumulates in
the substantia nucleus (SN) of PD [20], and then present them
to CD4+ and CD8+ T cells, so α-synuclein serve as a major
antigen to active antigen-specific T cells [20]. Once T cells
recognize the antigens, the local adaptive immune response
can be induced. T cells will differentiate into a variety of effec-
tive T cells, including Th1, Th2, Th17, follicular helper T cells
(Tfh), and Tregs. Among these effector subsets, Th1, Th2, and
Th17 cells drive proinflammatory responses while Tregs exert
anti-inflammatory and immunosuppressive activities. Th1
secretes IL-2, interferon-gamma (IFN-γ), and tumour necrosis
factor (TNF); Th2 secretes IL-4, IL-5, IL-10, and IL-13; Th17
secretes IL-17, and Tregs secrete IL-10 and transforming
growth factor-beta (TGF-β) [21]. All these immune factors
will consequently reversely recruit APCs, so it leads to a malig-
nant circulation of the severe immune response.

A balance between pro- and anti-inflammatory immune
responses is essential to maintain generalized homeostasis,
especially within the CNS, where an imbalance immune
responses can lead to disease [22]. The CD4+ T and CD4/
CD8 ratio in cells is significantly decreased in PD patients
compared with healthy controls, indicating an immune
disorder in PD. However, the T cell clonally increased in
CSF of PD patients. Among the CD4+ T cells, a group of
cytotoxic CD4+ T cells (CD4 CTLs) dramatically clonally
increased in PD patients, and these CD4 CTLs were vali-
dated to be differentiated from Th1 cells [23], Li et al. also
found that PD patients had more Th1 cells compared with
healthy volunteers [24]. Additionally, cell frequencies and
absolute numbers of naive CD4 T cells, gamma delta T cells
(γδT), and iNKT cells were significantly decreased in groups
with PD [25, 26]. Another subset of CD4+ T cells, cTfh and
cTfr cells, may be connected with the chronic progression of
PD; cTfh is crucial for proinflammation through promoting
the differentiation of B cells into high-affinity plasma cells
and the formation of germinal centers, while cTfr plays a
negative role in both B cell activation and neuroinflamma-
tion. The proportion of cTfh cells among CD4(+) T cells
in PD patients was significantly higher than that in HCs,
while cTfr cells in PD patients were slight decreased [27].
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Moreover, patients with PD had a higher proportion of
Treg cells both in periphery blood and SN [28]. Increased
Treg cells might indicate the effort of the immune system
to suppress ongoing neuroinflammation [29]. Autoimmune
cells also vary along with the progression of PD; longitudinal
research validates the quantity of CD8+ T cells that were
various in different stages of PD. In the earliest stage of the
disease, when SN α-synuclein aggregation is absent, a robust
CD8+ T cell infiltration and no DA neuron apoptosis were
found; in the next stage, CD8+ T cell infiltration is milder
while α-synuclein accumulated. Subsequently, their density
of CD8+ T cells positively correlated with neuronal death
[29]. In conclusion, it indicates that more proinflammatory
T cells may across the BBB into the brain parenchyma and
contribute to DA neuron apoptosis suffering more intensive
immune response; however, the specific mechanism between
T cells and DA neuron apoptosis needs further research
(Table 1).

In 2012, Anderson et al. reported that the killer cell
immunoglobulin-like receptor (KIR) in NK cells decreased
significantly with the aggravation of stiffness and gait disor-
der in PD patients [30]. A study compared the number of
NK cells in the blood of PD patients with non-PD patients
and found that the number of NK cells in the blood of PD
patients was significantly higher than that of the control
group [31]. Recently, it has been reported that in PD’s pre-
clinical mouse model, the depletion of NK cells results in
an increase in α-synuclein in many brain regions, including
the striatum, SNpc, and brainstem. This suggests that NK
cells may be associated with the pathogenesis and progres-
sion of PD, and this association may be protective. It was
found that NK cells were close to α-synuclein aggregates
using an immunohistochemical technique to analyze the
brain tissue after the death of PD and PD dementia [32].

3. Mechanism of DA Neuron Apoptosis

The DA neurons in SN play an essential role in maintaining
the human brain’s normal sensation, movement, emotion,
and cognition. The abnormality of its structure and function
is closely related to various neurodegenerative diseases. Up
to now, studies have shown that DA neuron apoptosis is
the main factor in the pathological progress of PD, and its
mechanisms mainly include α-synuclein misfolding and
aggregation, apoptosis, autophagy, mitochondrial dysfunc-
tion, oxidative stress, and neuroinflammation.

Studies have shown that α-synuclein plays a vital role in
DA neuron apoptosis, and its structure and function have
been widely studied [33]. One of the main pathological
features of PD is the widespread protein inclusion bodies in
SN neurons, namely, Lewy bodies (LBs) and Lewy neurites
(LNs) [34], which are mainly composed of filamentous
aggregates containing phosphorylated and ubiquitin α-synu-
clein proteins. Among them, the most direct evidence shows
that the aggregation of α-synuclein under pathological
conditions is the most direct toxic medium of DA neuron
apoptosis, which can directly cause DA neuron apoptosis
and promote the onset and development of PD [35, 36].
Secondly, apoptosis, mainly characterized by cell size reduc-

tion, cytoskeleton collapse, and nuclear pyknosis, is also
widely studied in PD [37–39]. For example, the caspases
pathway has been widely and deeply involved in apoptosis-
mediated DA neuron apoptosis response [40, 41]. Subse-
quently, autophagy was found abnormal in DA neurons as
the main pathway of intracellular protein degradation and
maintenance of cell homeostasis. Ultrastructural examina-
tion of autophagosomes in the brain of patients with PD
revealed a large number of phosphorylated erk-labelled
mitochondria, suggesting that DA neuron apoptosis was
related to abnormal mitochondrial autophagy [42].

In recent years, more and more new mechanisms have
been found to play a role in DA neuron apoptosis, and mito-
chondrial dysfunction is considered the core of the patho-
genesis of sporadic and familial PD. Knockout of PINK1 in
DA neurons of human and PD model mice can lead to a
wide range of mitochondrial dysfunction, including abnor-
mal mitochondrial morphology, a decrease in membrane
potential and an increase in ROS production, resulting in
DA neurons susceptible to apoptosis [43]. More and more
research results show that microglia-mediated neuroinflam-
mation seems to be one of the most critical mechanisms of
DA neuron injury; studies have found that microglia activa-
tion and NF-κB nuclear translocation can be induced by
pathological factors and further promote the release of
inflammatory cytokines under the action of autophagy and
other mechanisms [44, 45], resulting in neuroinflammation
and DA neuron apoptosis [45].

Chronic oxidative stress is a critical factor in DA neuron
apoptosis [46]; it can induce the accumulation of α-synu-
clein and lead to the impairment of DA neurons. For
instance, it has been reported that under oxidative stress,
SNCA mutations in PD patients lead to a significant
accumulation of α-synuclein in Lewy bodies and accelerate
disease progression [47, 48]. At the same time, misfolding
and aggregation of α-synuclein can, in turn, increase the
production of ROS and aggravate the process of oxidative
stress [49, 50]. First, in CD8+T cells, MPP+/MPTP can
accelerate the oxidative stress, then trigger major histocom-
patibility complex class I (MHC-I) presentation and CD8+
T cells activation, and finally aggravate the immune damage
susceptibility and degeneration of DA neurons. It suggests
that oxidative stress can accelerate the destruction of DA
neurons by CD8+T cells; this may be one of the mechanisms
of which oxidative stress induces PD [51]. In addition, the
role of activated microglia mediated DA neuron apoptosis
is also attributed to oxidative stress. Thus, α-synuclein-accu-
mulated microglial cells developed a strong reactive state
with excessive production of oxidative and proinflammatory
molecules. This inflammatory state created more DA neuron
apoptosis. Pharmacological inhibition of oxidative and
nitrosative molecule production was sufficient to attenuate
neurodegeneration [52]. These results suggest that oxidative
stress in microglia induces DA neuron apoptosis by promot-
ing an excessively inflammatory environment and the
selective recruitment of autoimmune cells. However, we
found no direct evidence for this in B cell. More studies will
be needed to further explore the link between oxidative
stress and B cell induces DA neuron apoptosis.
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4. Autoimmune Cells in the Pathogenesis of DA
Neuron Apoptosis in PD

4.1. B Cells. There are different opinions on whether B cell is
an essential regulator of DA neuronal apoptosis. In a study
on the regulation of autoimmune cells in A53T-α-synuclein
PD model mice, it was observed that T cells could cause
DA nerve degeneration and promote PD. Still, no degenera-
tion of DA neurons was observed in the downregulated B cell
model mice [53]. Some studies have also found that 6-OHDA
injection can significantly increase B cells in the SN of rats at
the injection side, which may be related to extensive DA
neuronal destruction [54]. In recent years, the relationship
between B cell and PD progression and DA neuronal apopto-
sis has gradually deepened, and a breakthrough has been
made in PD-related genes and autoimmune antibodies.

In addition, researchers also found that increasing the
level of DA in the body can promote the differentiation of
B cells into plasma cells [55], suggesting that plasma cells
may be related to the DA system, but we have not found
more evidence for it.

4.1.1. Gene-Mediated Apoptosis Related to B Cells

(1) LRRK2. The general decrease of B cell level in PD
patients may be associated with the change in B cell-
related gene expression. LRRK2 (leucine-rich repetitive ser-
ine/threonine protein kinase 2) is reported to be overex-
pressed in B cells of PD and may be associated with B cell
functional changes [45, 56, 57].

It was found that lipopolysaccharide (LPS) could induce
the increase of LRRK2 gene expression and protein kinase
activity in cells with a time-dependent manner. Specifically,
LPS can activate the Toll-like receptor signal pathway,
increase the TRAF6/LRRK2 and phosphorylation level of
MAPK (JNK1/2, p38 and ERK1/2), and then promote the
release of inflammatory cytokines, which may interfere with
the toxic effect of central nervous inflammation on DA neu-
rons. On the other hand, LRRK2 inhibitors can reduce LPS-
induced TRAF6/LRRK2 interaction and phosphorylation of
MAPK and IkB-α, thus reducing the release of inflammatory
factors such as TNF-α [56]. As B cells can actively express

LRRK2, these processes may play an essential role in B
cell-mediated DA neuronal apoptosis. As expected, follow-
up studies found that LRRK2 mutations in B cells aggravated
LPS-mediated neuroinflammation and accelerated DA
neuronal loss in the SN [58]. In addition, LRRK2 and
CD38 were found to exist in the plasma membrane complex
in B cells and act as upstream regulatory molecules of host
defence transcription factor TFEB (transcription factor EB)
to affect autophagy, which plays a potential role in promot-
ing DA neuron apoptosis [59].

(2) Parkin. Parkin mutation is the leading genetic factor in the
progression of PD. In B cells, parkin mutation does not
directly lead to cell death, but it has been proved to indirectly
affect the activity of the DA neural pathway [60]. Studies have
shown that the mutation in parkin can increase B cells’ sensi-
tivity to DA, iron, and hydrogen peroxide and may promote
the process of apoptosis [61]. In addition, manganese ions
have also been shown to accelerate the process of apoptosis
mediated by parkin mutation; manganese ions can accelerate
the cytotoxicity by affecting the cell cycle and promoting
DNA apoptosis [62], which may involve the inhibition of
mitochondrial function, ATP activity, and downregulation of
the caspase3 pathway [63]. In SN, excessive manganese ions
can lead to DA neuronal apoptosis and DA pathway distur-
bance [63, 64]. Therefore, in the pathological process of PD,
manganese ions may affect the functional status of parkin-
mutated B cells and affect the apoptosis of DA neurons
through classical pathways, such as caspase, to achieve syner-
gistic regulation of manganese ions and parkin genes on the
progression of PD.

Finally, MPTP treatment reduced DA neuron loss and
behavioral disorder caused by B cell deficiency in nuclear
gene recombination-activated gene 2 (RAG2) knockout mice
[65, 66]. In the future, more and more genes may be found
to be involved in B cell-mediated DA neuronal apoptosis
(Figure 1 and Table 2).

4.1.2. Receptor-Mediated Apoptosis Related to B Cells. Previ-
ously, we mentioned that memory B cells in patients with
PD increased significantly compared with healthy controls,
accompanied by increased expression of MHCII genes and

Table 1: The immune landscape of T cells in Parkinson’s disease.

Species of autoimmune cell Status of autoimmune cells in PD Sample source Pilot study Reference

T cells

↓/CD4 T lymphocytes
↓/CD8+ T lymphocytes

↓/CD4/CD8 ratio
Serum 8 PD vs. 6 HC [23]

↑/Th1
↓/Treg

Serum 20 PD vs. 20 HC [24]

↓/naïve CD4 T cells, γδT cells, and iNKT cells
↑/NK cells

Serum
47 PD vs. 47 HC
205 PD vs. 233 HC

[25]
[26]

↑/cTfh
↓/cTfr

Serum 26 PD vs. 26 HC [27]

↑/Treg Substantia nigra 205 PD vs. 233 HC [26]

B cells ↓ Serum 8 PD vs. 6 HC [12]
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Figure 1: Gene-mediated apoptosis of autoimmune cells in PD. The overexpression (blue) or downregulation of genes (green) in T cells, B
cells, and activated microglia is associated with the imbalance of intracellular homeostasis and promotion of inflammation and ultimately
leads to DA neuron apoptosis.

Table 2: The gene mutation of autoimmune cells associated with DA neuron apoptosis in PD.

Species
of cells

Gene mutation
Changes in gene
expression in PD

The immune response of
autoimmune cells to PD “triggers”

Effect to DA
neuron apoptosis

Reference

T cells

JKAP ↓ ↓/Th1 and Th17 cell proportions Alleviate [67]

PINK1 ↓ ↑/infiltration of CD8+ T cells Aggravate [51]

ICAM1 ↑
↑/infiltration of CD4+/CD8+ T cells Aggravate [68]

LFA1 ↑

GZMA, GZMB, GZMH, NKG7,
KLRC3, and KIR2DL3

↑ Aggravate [23]

LRRK2 ↑
↑/microglial activation

↑/CD4 and CD8 T cell recruitment
Aggravate [69]

Rab ↓
↓/α-synuclein aggregation
↓/α-synuclein-specific T cell

responses
Alleviate [70, 71]

B cells

LRRK2 ↑ Aggravate [58]

Parkin ↑ Aggravate [60, 61]

RAG2 ↓ Alleviate [65, 66]

Microglia

LRRK2 ↑ ↑/TNF-α, IL-6, and NO Aggravate [72, 73]

GBA ↑ ↑/IL-8, MIP-1α Aggravate [74]

Parkin and pink1 ↓ ↓/IL-10, ↑/IL-1β, IL-18, and ROS Aggravate [75]

PARK7 ↓ ↑/IL-1β and IL-6 Aggravate [76]

5Oxidative Medicine and Cellular Longevity



transcription factor activating protein 1 (AP-1), suggesting
that antigen presentation ability of B cells in patients with
PD is enhanced, which makes it possible for multiple anti-
gens and protein molecules to participate in the progression
of B cell-mediated PD [12]. It was found that the expression
of lgG and lgA increased in PD patients [72], lgG deposition
was also infiltration in DA neurons, and IgG also wrapped
the specific Louis corpuscles of PD patients. Still, the relation-
ship between B cell, lgG deposition, and DA neuronal apo-
ptosis in PD patients needs to be further explored [12, 16].

Additionally, B cells can upregulate the expression of crit-
ical proinflammatory factors through CD40-CD40L interac-
tion and promote the activation of many downstream signal
transduction processes, including the recruitment of tumour
necrosis factor receptor-related factors (TRAFs), which in turn
initiate intracellular signal cascades such as phos-
phatidylinositol 3-kinase (PI3K), p38MAPK (P38MAPK),
NF-kappa B, JunN terminal kinase (JNK), RAS, and Src family
kinase pathway [77–79], resulting in the production and
release of proinflammatory cytokines, angiogenic factors, pros-
taglandins, cell adhesion molecules, and chemokines such as
IL-1, TNF-α, IL-8, vascular endothelial growth factor, ICAM-
1, and vascular cell adhesion molecule-1 [80, 81]. It may accel-
erate the inflammatory reaction of the central nervous system
and apoptosis of DA neurons (Table 3) (Figure 2).

4.2. T Cells. The involvement of T cells in PD pathogenesis has
been found more and more widely. It has indicated the infil-
tration of CD4+ and CD8+ T cells in the SN of postmortem
brains of PD patients. Additionally, in the MPTP mouse PD
model, T lymphocyte infiltration was found in the brain
parenchyma, where T cells were associated with DA neuron
apoptosis [65, 95–98]. Several cell cytotoxic genes, such as
GZMA, GZMB, GZMH, and NKG7, were found overex-
pressed in PD patients’ CD4+ T cells [23]. This T cell response
to neurodegenerative changes can trigger harmful events,
including cytokine receptor-mediated apoptosis, oxidative
stress, and autophagy, consequently leading to DA neuron
apoptosis and disease development. Recently, studies on the
relationship between T cell and PD progression along with
DA neuronal apoptosis have been gradually deepened, and
breakthroughs have been made in receptor-mediated apopto-
sis, α-synuclein accumulation and replicative senescence.

4.2.1. Receptor-Mediated Apoptosis Related to T Cells. The
loss of DJ-1 is a rare cause of the development of early-
onset PD [82]. DJ-1 loss of function sensitizes microglia cells
to release interferon-γ (IFN-γ) and interferon-inducible T
cell alpha chemoattractant (I-TAC) and causes inflamma-
tory death to DA neurons. Moreover, DJ-1 depletion sug-
gested a critical role in inhibiting immunogen, including a
sign of almost doubled nonsenescent T cells. DJ-1 compared
with HCs, the potential mechanism may be in connection
with decreased oxidative phosphorylation (OXPHOS) and
impaired TCR sensitivity in naive CD8+ T cells at a young
age, resulting in a reduced aging process in T cell compart-
ments [82]. Additionally, JNK pathway-associated phospha-
tase (JKAP) activates T cell receptor (TCR) signalling by
directly inactivating Lck [99], which has also been reported

to be downregulated in PD patients compared to healthy
controls and regulate immune/proinflammatory process via
promoting Th1 and T17 cell differentiation in PD [67].
Another protective receptor in PD is DA receptor 2
(DRD2). MPTP-induced DA neuron apoptosis was aggra-
vated in CD4+ T cell-specific DRD2-knockout mice, as well
as more severe motor deficits and microglial activation;
whereas, DRD2 agonist reversed the shift of CD4+ T cells
[100]. Additionally, the deletion of DRD3 in CD4+ T cells
weakened the differentiation of primitive CD4+T cells into
the Th1 phenotype, which accelerated the formation of
Th2 cells, while Th17 differentiation was not affected [83].
Moreover, direct protective effects of CTLA-4 and PD-1 on
high inflammatory induced DA neurons were demonstrated.
The combination of CTLA-4 and PD-1 blocker contributes
to T cells reactivation and accelerates the differentiation of
microglia into M1 type to mediate the observed neuroin-
flammation [101]. Genetic deletion of TCRb or CD4 reduces
the MHCII response to α-synuclein, protecting DA neurons
from death in PD [84].

Th17 is a lineage of proinflammatory CD4+ T cells,
named after interleukin-17, the main cytokine produced by
these cells. The research found that T17 cells induce neuron
apoptosis. After coculture with T cells or the addition of IL-
17, PD midbrain neurons suffered increased neuronal death
due to upregulation of IL-17 receptor (IL-17R), while block-
ing IL-17R prevented neuronal death [85]. Additionally, the
interaction of intercellular adhesion molecule (ICAM1) with
its ligand lymphocyte function-associated antigen 1 (LFA1)
activated the CD4+/CD8+ T cell’s recruitment into the cen-
tral nervous system resulting in the observed DA apoptosis
[68]. Another well-recognized pathway that promotes neu-
roinflammation is Toll-like receptors (TLRs), including
TLR7 and TLR8. Campolo et al. have demonstrated that
the downregulation of TLR7 and TLR8 inhibits T cell
recruitment in the SN [86].

Similarly, MHC-I exerted a neuronal apoptosis d effect in
the MPTP-induced rat models of PD, accompanied by a
growth in the infiltration of CD8+ T cells. Its neuron apopto-
sis d effects were inhibited by silencing the expression of
PTEN-induced 1 (PINK1) [51]. In addition to the above con-
firmed neural injury mediators, many potential receptors for
DA neuron apoptosis have been identified. In recent single-
cell T cell receptor sequencing studies, some highly expressed
genes in each cluster were shown to have significantly higher
expression of CD4, and several are cytotoxic genes, such as
GZMA, GZMB, GZMH, and NKG7. Similar to CD8+ T cells,
KLRC3 and KIR2DL3, which exhibit toxic cell roles in DA,
were highly expressed [23]. To conclude, these results pro-
vide evidence that T cell receptor-mediated apoptosis could
influence DA apoptosis and suggest that specific subsets of
patients with a T cell receptor mutation could be more
appropriate for immune-targeted therapies (Table 2).

4.2.2. α-Synuclein Accumulation Related to T Cells. Over the
past several years, many studies have shown that α-synuclein
is generally distributed in the brains of patients with PD
[102]. Researchers have proposed that abnormal misfolding
of α-synuclein leads to neuroinflammation and lysosomal
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membrane permeability, contributing to calcium influx and
ion homeostasis destruction, resulting in neuronal toxicity
and DA neuron apoptosis [103, 104]. Major histocompati-
bility complex II (MHC-II), an epitope recognized by T cells,
has been recently demonstrated to be located in the Y39 and
S129 regions of α-synuclein [87]. The overexpression of α-
synuclein results in the upregulation of MHC II [84, 88].
Once T cells combine with the MHC-II of α-synuclein, a
series of the immune response are activated. Studies have
shown that α-synuclein promotes the polarization of CD4+
T cells towards Th1 and Th17 phenotype and infiltration
of CD4 and CD8 T cells [88], consequently causing the apo-
ptosis of DA neurons in the MPTP-induce cell model [65].
Van der Perren et al. have indicated that LRRK2 ablation
inhibits the accumulation of α-synuclein due to a decreased
microglial activation and CD4 and CD8 T cell recruitment
[69]. Above all, it indicates the crucial role of α-synuclein
in stimulating T cell immune response in DA neuron apo-
ptosis. Reversely, T cell infiltration is necessary for α-synu-
clein-induced neurodegeneration [84, 105].

Autophagy removes many misfolded proteins in cells
through a double-membrane crescent-shaped structure of
autophagosomes. If autophagy is impaired, misfolded pro-
teins and dysfunctional mitochondria persist and accumu-
late in the cytoplasm. Thus, α-synuclein accumulation
probably results from autophagy impairment [69], further
contributing to DC antigen presentation to T cells or pro-
moting neuroinflammation and DA neuron apoptosis by
damaging the lysosome [106]. Missense mutation of LRRK2
is the predominant cause of PD [107], LRRK2 kinase activity
contributes to neuroinflammation via phosphorylating p53

in PD, and the phosphorylation of p53 induces the expres-
sion of TNF-α [108]. LRRK2 mutation is also associated
with autophagy via promoting dendric cells’ antigen presen-
tation to CD4+ T cells [109]. Additionally, Ras-related pro-
tein in brain (Rab) proteins are crucial in mediating
autophagy and lysosomal degradation. Different subtypes
of Rab participate in different periods of the endolysosomal
pathway by connecting with Beclin1 and LC3, which is asso-
ciated with the transfer of α-synuclein for antigen presenta-
tion by DCs [70] (Table 3).

4.2.3. Replicative Senescence Related to T Cells. It is well
acknowledged that aging is a significant risk factor for PD
[110]. Aging-related immune senescence is probably has rela-
tion to the pathogenesis of PD, for which aging is a risk factor
[111]. It is dominantly mediated by CD8+ cells. The most
apparent phenotype change is the loss of CD 28 and the over-
expression of CD 57, which promotes the secretion of proin-
flammatory cytokines and limits the proliferative ability of
autoimmune cells [112–114]. Effector memory T cells reex-
pressing CD45RA (TEMRA) cells, a sign of age-associated
immune dysregulation, were found at low level in the CD4+
and the CD8+T cell [115]. Meanwhile, the percentage of effec-
tor memory T cells reexpressing CD45RA, CD57+CD56− T
cells, and CD57+CD56+ T cells was significantly decreased
in PD patients [116]. Taken together, immune replicative
senescence is reduced in PD, thus the enhanced proinflamma-
tory cytokines may lead to the DA neuron apoptosis.

4.3. Microglial.Microglia are resident macrophage-like auto-
immune cells in the central nervous system. It accounts for

Table 3: Receptor-induced DA damage related to autoimmune cells in PD.

Species of cells Receptor The immune response of autoimmune cells to PD “triggers” Effect on DA neuron apoptosis Reference

T cells

DJ-1 ↓/IFN-γ,I-TAC Alleviate [82]

DRD2 ↓/shift of CD4+ T cells to Th1 and Th17 cells Alleviate [83]

TCRb
↓/MHCII response to α-synuclein Alleviate [84]

CD4

CTLA-4
↓/IL-10 and IL-4 Alleviate [84]

PD-1

IL-17R ↑/IL-17, IL-22, TNF-α, IL-1β, IFN-γ, and iNOS Aggravate [85]

TLR7
↑/recruitment of T cells Aggravate [86]

TLR8

MHC-I ↑/infiltration of CD8+ T cells Aggravate [51]

MHC II
↑/α-synuclein accumulation

↓/shift of CD4+ T cells to Th1 and Th17 cells
Aggravate [65, 87, 88]

B cells CD40 ↑/TRAF, PI3K, IL-1, TNF-α, IL-8, IFN-γ, and iNOS Aggravate [12, 80]

Microglia

TREM2 ↓/IL-1β, iNOS, IL-6, ↑/IL-10, and Arg-1 Alleviate [76]

GPR30 ↓/TNF-α, IL-1β, 和IL-6 Alleviate [89]

MT1 ↓/IL-6, TNF-α Alleviate [90]

CD200R1 ↑/microglia activation Alleviate [91]

CR3 ↓/INOS, TNF-α, IL-1β, and ↑/Arg-1, Alleviate [92]

MHC II ↑/IL-2 and TNF-α Aggravate [93]

TRL-4 ↑/IL-1β, iNOS, IL-6, ↓/IL-10, and Arg-1 Aggravate [94]

DJ-1 ↓/IL-1β and IL-6 Alleviate [75]
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10% of the total glial cells in the brain of healthy people [75,
117]. Especially in the SN, microglia content is the highest,
about 4.5 times higher than in other parts. Under the trigger
of pathology, microglia migrate to the apoptosis site and play
a double-edged sword role, reduce or aggravate the injury.
Microglia performed these tasks in two primary states: the
resting and activated states, which can be distinguished from
each other. In a resting state, microglia continue to wander
in the surrounding environment and perceive pathology.
Once the nervous system is attacked and pathological changes
occur, microglia will change to an activated state [118]. In the
brain of cadaveric patients diagnosed with PD dementia,
HLA-DR-positive microglia increased significantly in the
hippocampus, accompanied by decreased choline acetyltrans-
ferase activity in the cortex [119].

4.3.1. Receptor-Mediated Apoptosis Related to Microglia.
During the progression of PD, the activation of microglia
can promote the inflammatory reaction and lead to the loss
of DA neurons. For example, reactive oxygen species (ROS)
induce reduced nicotinamide adenine dinucleotide phos-
phate oxidase 2 (NOX2) and then promote the production
of hydrogen peroxide (H2O2), which ultimately shows tox-
icity and induces irreversible DA neuron apoptosis [120].

Microglia can also present antigen-derived peptides to
CD4+ T cells via MHCII to enhance inflammatory response
and further promote the degeneration of DA neurons [121].
Tumour necrosis factor (TNF) and complement Clq pro-
duced and released by microglia can directly induce astro-
cytes to differentiate into A1 phenotype and lead to DA
neuron apoptosis [122, 123]. Activated microglia can also
cause large-scale oxidative stress in DA neurons by produc-
ing nitric oxide (NO) and superoxide.

In addition, there is mutual induction between α-synu-
clein and microglia. Phagocytosis of α-synuclein oligomer
mediated by FC7 receptor can induce microglia to transform
into proinflammatory phenotype and then release a variety
of cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-
6) and TNF-α, and cyclooxygenase-2 nitric oxide synthase,
free radicals. Moreover, compared with the monomer form
of α-synuclein, the reaction caused by polymer α-synuclein
is stronger [124].

4.3.2. α-Synuclein Accumulation Related to Microglia. Study
also found that microglia activated by α-synuclein can
aggravate the loss of DA neurons in vitro, suggesting protein
can play a role in neurodegeneration by activating microglia.
C-terminal-truncated α-synuclein is the most potent inducer
of neurotoxic behavior of microglia [125]. The specific
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Figure 2: Receptor-mediated apoptosis of autoimmune cells in PD. The different receptors on the autoimmune cell surface recognize
various antigens (e.g. α-syn) and consequently activate the intensive immune response, including releasing immune factors, which result
in DA neuron apoptosis.
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conformation and specific mutation of extracellular α-synu-
clein can directly activate microglia. In BV2 microglia, α-
synuclein fibrils and early-onset PD-related mutations
induce a more robust immune response [126]. The activation
of microglia is also involved in the pathological progression
of α-synuclein. In pathological process, the cell activation
and inflammation persist, and the clearance of microglia to
the pathological form of α-synuclein is slowed. The mecha-
nism may be that the misfolding and aggregation of α-synu-
clein can apoptosis the intracellular lysosome system,
resulting in the gradual accumulation of undegraded α-synu-
clein, and finally lead to the physiological dysfunction of
microglia and α-synuclein can also affect the permeability
and function of other organelles by combining with lipids.
It caused a decrease in phagocytosis of microglia [127]. In
summary, the progress of PD may be driven by a vicious
circle between dead neurons and microglia caused by oxida-
tive stress, mitochondrial autophagy, and autophagy dys-
function, α-synuclein accumulation and proinflammatory
cytokine release [128].

4.3.3. Gene-Mediated DA Apoptosis Related to Microglia.
Some studies have shown that LRRK2 knockout can reduce
the oxidative stress and morphological changes of primary
microglia induced by LPS [129, 130]. Manganese exposure
can induce DA neuronal apoptosis and activate microglia.
Inhibition of LRRK2 can effectively reduce the effect of man-
ganese on microglia and restore the autophagy function
[131]. Studies have shown that LRRK2/microglia increase
migration behavior and change the response to fractalkine
(CX3CL1) may mediate this phenotype [132]. Some studies
have also found that LRRK2 affects mitochondrial function
in microglia in a kinase-dependent manner through Drp1
and promotes the inflammatory response of microglia
[133]. LRRK2 is involved in the internal regulation of micro-
glial activation and lysosome degradation [134]. In G2019S
knockout mice, iron deposition in microglia increased sig-
nificantly after LPS injection into the striatum, accompanied
by ferritin accumulation. Microglia derived from iPSC in
patients with LRRK2 mutation G2019S transfer transferrin
to lysosomes near the nucleus under proinflammatory con-
ditions [135]. LRRK2 may regulate microglial cytoskeleton
and vesicle transport under pathophysiological conditions
[136]. Microglia from PD patients with LRRK2-G2019S
mutation also increase phagocytosis through cytoskeleton
remodelling factors [137] PD-related mutations in LRRK2
may affect the balance between microglia and α-synuclein,
leading to cell dysfunction and neurodegeneration [134].

In addition, many other PD-related gene mutations may
also affect the function of microglia. Plasma inflammatory
markers and cytokines, including IL-8 and macrophage
inflammatory protein-1 α [74], are increased in patients with
GBA mutations in PD. The accumulation of GBA may also
activate complement, which aggravates microglia-mediated
neuronal dysfunction [138]. Indeed, one study observed that
systemic GCase inhibition increased the accumulation of α-
synuclein in the SN and upregulated complement C1q [139].

PINK1 deficiency can lead to loss of DA neurons and
early apoptosis of mitochondrial function and morphology

in zebrafish. The expression of zebrafish TigarB, human zeb-
rafish homologue, tp53-induced glycolysis, and apoptosis
regulator TIGAR was significantly increased in pink (- / -)
larvae. Antisense TigarB inactivation leads to complete nor-
malization of mitochondrial function, thereby saving DA
neurons in pink (- / -) larvae. Pink (- / -) larvae also have
prominent microglial activation, but the decrease of microg-
lia cannot save the loss of DA neurons. It is considered that
the activation of microglia is the critical factor in the patho-
genesis of the disease [140]. In addition, parkin may play an
essential role in microglia by regulating ubiquitin. The
absence of parkin exacerbates inflammation and promotes
the survival of activated microglia, leading to chronic neuro-
inflammation [141]. It has been found that parkin is
involved in regulating mitochondrial autophagy, mitochon-
drial biogenesis, and mtDNA maintenance pathways, thus
protecting midbrain neurons from neuroinflammation and
degeneration [142] (Table 1).

4.4. NK Cell. NK cells are critical autoimmune cells in the
body, and their origin is unclear. It is generally believed that
they are derived from bone marrow and mature depending
on the microenvironment of bone marrow [143]. They are
widely found in lymphoid and nonlymphoid tissues,
accounting for 10% of the total number of circulating cells
15% [144]. In recent years, many functions of natural killer
cells have been discovered, such as reducing inflammation,
forming immune memory, and regulating the function of
antigen-presenting cells [145].

α-synuclein polymer was internalized and degraded by
the endosome/lysosome pathway. In addition, NK cells can
recognize and eliminate senescent cells, and the mechanism
may be related to the interaction with senescent cells
through granule exocrine secretion of granzyme, perforin,
and production of INF-γ [146]. At present, it is still
unknown whether NK cells can be cleared against α-synu-
clein-loaded cells. In addition, NK cells also have the effect
of relieving neuroinflammation. Studies have shown that
NK cells can decrease MHCI molecules’ expression on acti-
vated microglia through interaction with microglia, produce
cytotoxicity to activated microglia, and reduce the produc-
tion of proinflammatory factors to alleviate neuroinflamma-
tion [147]. Microglia are continuously activated under α-
synuclein loading [148]. And NK cells may also reduce
microglial activation by scavenging α-synuclein. Li et al.
found that the presence of MiR207 in the exocrine body of
NK cells can reduce the release of proinflammatory factors
from astrocytes and alleviate the symptoms of stress in
mice [149].

The decrease of NK cells in autoimmune encephalomy-
elitis leads to the increase of autoreactive T cells and the
enhancement of inflammation-related diseases [150]. NK
cells can improve the symptoms of autoimmune diseases
by releasing IFN-γ and play a neuroprotective role [151,
152]. The corresponding gene microarray analysis of IFN-γ
shows that IFN-γ can promote the expression of genes
related to protein degradation (ubiquitin D) and proteasome
degradation (proteasome subunit β 9), suggesting that IFN-γ
may promote lysosome digestion of excessive α-synuclein
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[153]. The decrease of IFN-γ produced by NK cells in the
elderly population may be one of the reasons for the high
incidence of PD in the elderly [154].

5. Autoimmune Cells in the Gut-Brain Axis of
DA Neuron Injury in PD

5.1. B Cells and Plasma Cells. In peripheral system, the effect
of intestinal flora on the number and function of B cells has
been reported for a long time. For example, the structure of
intestinal flora can regulate the differentiation, maturation,
and activation of B cells. Dietary changes and probiotic ther-
apy have been shown to control the number and function of
B cells [155], while altering the intestinal microenvironment.
In the central nervous system, many studies have also sug-
gested that changes in intestinal colonies also seem to affect
the state of central B cells profoundly.

First of all, it was found that intestinal IgA plasma cells
were observed in the parenchyma of the central nervous sys-
tem inmice withmultiple experimental sclerosis. Studies based
on neuroimaging also suggest that peripheral developing B
cells may enter the dura mater from the skull’s bone marrow
[156–158]. A large number of plasma cells [159], CD8T cells,
CD4T cells, NK cells, and Foxp3+ regulatory T cells [160] were
colonized in the dural venous sinus wall [161]. After the intes-
tinal barrier was destroyed, the number of IgA+ plasma cells
and B cells around the paranasal sinuses increased. In addition,
a subgroup of plasma cells in the sinus wall of the dural vein
can coexpress the junction (J) chain and secrete polymerized
IgA, similar to that secreted by intestinal plasma cells. And this
phenomenon almost does not exist in mice that eradicate
intestinal flora and can realize lgA resecretion of plasma cells
in the dural venous sinus wall through the recovery of intesti-
nal flora [161]. Moreover, central autoimmune cells, including
B cells and T cells, can promote neuroinflammation by activat-
ing microglia and producing proinflammatory cytokines and
oxidative stress products [162]. In the specific pathway mech-
anism, it is found that Phlorizin (PZ) not only improves the
structure and diversity of intestinal microorganisms but also
regulating the interleukin-1β/inhibitor of nuclear factor-
kappa B alpha/nuclear factor-kappa-light-chain-enhancer of
activated B cells signalling pathways in brain tissues, thus play-
ing a role in the regulation of neuroinflammation. In the end, it
may regulate DA neuron apoptosis and PD progression, indi-
cating that intestinal microorganismsmay regulate DA neuron
apoptosis and PD progression by affecting the immune func-
tion of central B cells [163].

5.2. T Cells. In addition to the most apparent motor syn-
drome, most PD patients perform various nonmotor clinical
manifestations. Among nonmotor images, gastrointestinal
dysfunctions are the most common, which could be
regarded as necessary as potential early biomarkers of PD
since they are ubiquitously and typically found among
patients at earlier stages.

Constipation and inflammation of the gut mucosa are
the most aberrant gastrointestinal dysfunctions, with associ-
ated pathological features including the loss of neurons of
the enteric nervous system and the generation of Lewy bod-

ies in the gut. Research has demonstrated that secretion
levels of inflammatory markers, including CD8 B and NF-
κB p65, were significantly higher in PD patients’ colon biop-
sies compared with HCs, and decreased levels of DA
markers associated with colitis were observed in CD8+ T
cells depletion [164]. A significantly high level of Th17 and
Treg cells infiltration in PD patients with constipation was
observed compared with that in patients without constipa-
tion (P < 0:001). Among all PD patients with constipation,
the frequency of Th17 and Treg cells in STC was the highest
[165]. These indicate that T cell immune response triggered
in PD colon mucosa is indispensable with DA neurodegen-
eration in PD (Figure 3).

6. Therapeutic Prospects

The researchers immunized the B cell epitopes of α-synuclein
to induce high titers of antibodies that could bind to three B
cell epitopes associated with pathological α-synuclein deposi-
tion. Finally, they found that the resulting antibodies could
reduce α-synuclein deposition and neurodegeneration [166].
In addition, ten monoclonal antibodies against α-synuclein
protein were extracted from memory B cells of patients with
PD, some of which showed functional activity in synuclein
inoculation test in vitro and recognized pathological Lewy
bodies in tissues of patients with PD [167]. Finally, there was
increased activity of MAO-B in B cells of patients with PD
and could be sensitively detected by a U1 small molecular
probe [168]. All these suggest that B cell pedigree may be a
potential biomarker for diagnosis and treatment of PD.

As for T cells, T cell receptors (TCRs) of α-synuclein-spe-
cific T cells have been mapped in PD patients. Results showed
that TCR repertoires were specific to each PD patient. The
probable reason for it is the difference in HLA expression.
Thus, antigen-specific TCRs may be considered a therapeutic
target for PD patients [169]. CCR5, the properties of C–C che-
mokine ligand 5, has been previously reported to participate in
the activation of microglia and in the infiltration of T cell and
NK cells, which could either result in neuroinflammation or
DA neuron apoptosis [170, 171]. Several studies have identi-
fied CCR5 inhibitors’ good physicochemical and pharmacoki-
netic properties in treating T cell-induced DA neuron
apoptosis. Maraviroc, a blocker of CCR5, protects the central
nervous system from T cell infiltration and microglial activa-
tion [172]. HMGB1 A box, a competitive inhibitor protein of
HMGB1, which has been proved to aggravate the inflamma-
tory response in PD, inhibits the Th17 ratio in CD4+ T cells
and T cells infiltration in MPP+-induced animal model via
modulating CD200-CD200R signal pathway [173]. Besides
Maraviroc, adipose tissue-derived mesenchymal stem cells
(Ad-MSCs) also reduce CD4+ T cell infiltration and inhibit
the CD4+ T cell differentiating to Th17. The expression of
LIF, an anti-inflammation protein, was significantly increased
after the usage of Ad-MSCs [174]. Researchers also proposed
that FK506 (an immunosuppressant) capsuled into the outer
layer of alginate beads could reduce T cell response [175].
Enhancing the ability of Treg is a potentially helpful method
to alleviate DA neuron apoptosis. Granulocyte-macrophage
colony-stimulating factor (GM-CSF) is an essential immune
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regulator that increases the number of regulatory T cells
(Tregs) and plays a neuronal protective role in PD patients
[176]. A shift in CD4(+) T cell gene expression towards an
anti-inflammatory phenotype corresponded with decreased
microgliosis and increased DA neuronal cell survival.
mPDm608 protected MPP+-treated mouse primary mesence-
phalic neurons in vitro by shifting CD4(+) T cell gene
expression towards an anti-inflammatory phenotype and
improving DA neuronal cell survival, mPDM608 elicited a
neuroprotective peripheral immune transformation [177].
Additionally, LBT-3627, a vasoactive intestinal peptide
receptor-2 (VIPR2) peptide agonist, improves the activity of
Tregs instead of number [178]. However, the number or activ-
ity of Tregs improved alleviates the DA neuron apoptosis.
Direct neuroprotective effects of improving autophagy in PD
were also previously reported. Celastrol and dendric cell
(DC) vaccine adjuvants induced autophagy, leading to a
Th2-specific immune response and recruiting peripheral
leukocytes to the brain [70, 179]. These results suggest that T
cell lineage may be a potential biomarker for PD diagnosis
and treatment.

Chlorogenic acid, a type of phenolic acid, has been dem-
onstrated to have an antiapoptotic, anti-inflammatory, antiox-
idative, and neuroprotective properties [180–182]. Recently,
some studies proposed CGA may alleviate the impairment of

motor and inhibit the development of PD via inhibiting the
activation of proapoptotic proteins including Bax and cas-
pase-3, while elevating the expression of antiapoptotic protein
like Bcl-2 [182]. Additionally, immune cells have been
validated in CGA-mediated neuroprotective process, by
improving the secretion of IL-10, an anti-inflammatory cyto-
kines and inhibiting tumour necrosis factor-α and interleukin
(IL)-1β [180].

It has been reported that microglia-mediated neuroin-
flammation may be an essential factor in the occurrence
and development of PD. There is a relatively high inflamma-
tory expression in brain tissue, cerebrospinal fluid, and blood
of patients with PD [183]. Therefore, targeting activated
microglia may be a potential target for treating PD [184].
In addition, M2 activation of microglia has a neuroprotective
effect, and we can inhibit neuroinflammation by increasing
the M2 polarization of microglia. For example, vitamin D
can regulate the transition of microglia to M2 and play a
neuroprotective role [185]. It has been reported that fingoli-
mod (2mg/kg) can reduce the activation of microglia by
BV-2 microglia treated with MPTP and 1-methyl-4-phenyl-
pyridine (MPP). Mucuna pruriens was also found to have
neuroprotective effect and immunosuppressive properties
[186], and it possess a variety of pharmacological properties
including antioxidant and anti-Parkinsonism effects; studies
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Figure 3: Autoimmune cells in the gut-brain axis of DA neuron injury in PD. The variation of autoimmune cell composition in gut
mucosal, which travels through bone marrow into the dural venous sinus, constitutes the primary source of antigens driving immune
response (including the release of inflammatory cytokines) and DA neuron apoptosis.

11Oxidative Medicine and Cellular Longevity



have shown that Mucuna pruriens significantly inhibited the
release of inflammatory mediators including nitric oxide
(NO), IL-1β, IL-6, and TNF-α in LPS-induced BV2 micro-
glial cells [187]. However, whether it regulates microglia
and DA neuron apoptotic by affecting oxidative stress is
unclear. But overall, Mucuna pruriens can protects the DA
neurons from the NO injury in substantia nigra [188]. In
addition, in MPP+-treated BV-2 cells and primary microglia,
fingolimod significantly decreased the phosphorylation level
of PI3/K/Akt/GSK3 β signalling pathway, ROS production,
and p65 phosphorylation by inhibiting NLRP3 inflammatory
bodies, suggesting that fingolimod may be a strategy against
PD [189]. The kinase activity of mutant LRRK2 also increases
mitochondrial fission in microglia, resulting in impaired
mitochondrial dynamics and higher production of TNF-α,
which can be saved by LRRK2 kinase inhibitors [133]. It is
suggested that LRRK2 kinase inhibitors have the potential
to reduce the occurrence of neuroinflammation and play an
anti-PD role. Finally, oxidative stress induced by microglia
is an important factor in the deterioration of PD, Withania
somnifera root extract have shown to counteract the prooxi-
dants and their associated oxidative stress in the PD model
[190], so it may play a role in the treatment of PD. Specific
perspectives on T cell, B cell, and microglia-mediated PD
treatment can be found in Table 4.

On the other hand, ursolic acid (UA), a natural pentacyclic
triterpenoid compound, has shown protective activity in sev-
eral experimental models of brain dysfunction by inhibiting
oxidative stress, inflammatory responses, and inhibiting apo-
ptotic signalling pathways. Yun et al. found that rotenone
injection resulted in marked motor deficits and prodromal
nonmotor symptoms, accompanied by marked loss of DA
neurons and deposition of aggregates such as p62 and ubiqui-
tin in the substantia nigra and striatum. Combined injection of

UA can ameliorate all pathological changes caused by rote-
none [191]; this suggests that UA may reduce neuronal apo-
ptosis by regulating neuronal autophagy, thereby improving
the symptoms and delaying the progression of Parkinson’s
disease. Peng et al. found that UA exhibitedmitochondrial res-
cue effects in a Parkinson’s model through activation of gluco-
corticoid receptors and increased Akt phosphorylation [192].
In addition, UA exhibited potent anti-inflammatory activity
in an MPTP-induced Parkinson’s disease model [193] and
ameliorated behavioral deficits and protected DA neurons in
MPTP-poisoned mice [188]. However, the potential of UA
in the treatment of autoimmune cells remains to be explored.

On recent advancements, some mechanisms revealed may
be key points for future PD therapeutic. The role of B cells in
the progression of PD has been increasingly emphasized; B
cells in the peripheral circulation are associated with PD pro-
gression and affected by the gut microbiot and may promote
neuroinflammation and DA neuron apoptosis through the
blood-brain barrier [16]. Therefore, blocking the entry of B
cells into the blood-brain barrier may be the key to future
research and treatment; on the other hand, Th1, Th2, and
Th17 cells drive the proinflammatory response, while Treg
cells play an antioxidant and immunosuppressive role [20,
21]. In therapy, scavenging of mtROS in Tregs of mice
reversed DNA damage response and prevented Treg cell
death, while attenuating the Th1 and Th17 autoimmune
responses [194]. These findings highlight an unrecognized role
of mitochondrial oxidative stress in defining Treg cell fate dur-
ing autoimmunity, which may facilitate the design of new
immunotherapies for PD mediated by autoimmune cell. In
particular, some clinical trials from the perspective of autoim-
mune cells are being registered in recent years, which will be
expected to further promote the treatment progress of PD
(Table 5).

Table 4: The therapeutic prospects of immune cells in PD.

Species
of cells

Therapeutic
method

Mechanism Effects Reference

B cells
Antibody from

B cells
Bind to three B cell epitopes associated with pathological α-

synuclein deposition
↓/α-synuclein deposition and

neurodegeneration
[166, 167]

T cells

Maraviroc
Blocker of CCR5, alleviate T cell infiltration and microglial

activation
↓/DA neuron apoptosis [170–172]

Ad-MSCs
Reduce CD4+ T cell infiltration; inhibit the CD4+ T cell

differentiating to Th17
↑/the expression of anti-
inflammation protein LIF

[174]

FK506 Reduce T cell response ↓/DA neuron apoptosis [175]

GM-CSF Increase the number of Tregs ↓/DA neuron apoptosis [176]

mPDm608
Promote the shift in CD4(+) T cell gene expression towards an

anti-inflammatory phenotype
↓/DA neuron apoptosis [177]

LBT-3627 Improve the activity of Tregs ↓/DA neuron apoptosis [178]

Celastrol
Induce autophagy; lead to a Th2-specific immune response; and

recruit peripheral leukocytes to the brain
↓/DA neuron apoptosis [70]

DC vaccine
adjuvants

Induce autophagy; lead to a Th2-specific immune response; and
recruit peripheral leukocytes to the brain

↓/DA neuron apoptosis [179]

Microglia

Vitamin D Regulate the transition of microglia to M2 ↓/DA neuron apoptosis [185]

Fingolimod Inhibit NLRP3 inflammatory bodies ↓/DA neuron apoptosis [189]

LRRK2 kinase
inhibitors

Reduce impaired mitochondrial dynamics; Reduce the
production of TNF-α

↓/DA neuron apoptosis [133]
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7. Conclusions

In conclusion, these studies indicate that B cells, T cells, NK
cells, and microglia are the most important autoimmune
immune cells responsible for the DA neuron apoptosis in
PD and are widely involved in the core mechanism of PD
initiation (Figure 4). The signalling pathways and molecular
factors involved in autoimmune cells to DA neuron apopto-

sis have become an important research method to identify
PD’s pathogenesis. Research on autoimmune cells is
expected to be an essential means to alleviate the progression
of PD. For example, CCR5 inhibitors have good physico-
chemical and pharmacokinetic properties in treating T cell-
induced DA neuron apoptosis; vitamin D can prevent
microglia activation, thereby preventing DA apoptosis and
playing a neuroprotective role.
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Figure 4: The mechanism of DA neuron injury is mediated by autoimmune cells. Autoimmune cells can enter the central nervous system
through bone marrow from gut mucosal, located in the dura mater, midbrain, and other parts, and release various pathological factors to
damage DA neurons through antigen presentation.

Table 5: Vaccines and drugs in clinical trials or approved for PD based on autoimmune cells.

Species of
autoimmune cell

Drugs Mechanism Effect Reference

T cells Glutathione Regulates T cell activation and propagation ↓/oxygen radical
NCT01398748

[195]

Microglia

Hypoesttoxide Decrease activation of microglia and astrocytes

↓/inflammatory
cytokines

↓/DA neuron
apoptosis

NCT04858074
[196]

WIN-1001X Blocking RhoA/ROCK2 signalling pathway

↓/inflammatory
cytokines

↓/DA neuron
apoptosis

NCT04220762
[197]

NLY01
Reducing activation of microglia, preventing healthy astrocytes

from turning into destructive astrocytes
↓/DA neuron
apoptosis

NCT04154072
[198]

Caffeine
Attenuated α -synuclein-induced microglial activation and

astrocytosis in mice

↓/inflammatory
cytokines

↓/DA neuron
apoptosis

NCT01738178
[199]
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Studies have shown that the regulation of signalling
pathways and molecular factors involved in the pathological
progression of autoimmune cells can effectively improve the
DA neuron apoptosis caused by it. This paradigm is moving
from theory to reality as a potential target for developing
new drugs to treat PD. Focusing on these signalling path-
ways and molecular factors involved in the autoimmune
response will help to understand the occurrence and devel-
opment of PD better. Ongoing research in this area may
open a new door for developing pharmacological strategies
to prevent and alter the pathogenesis of PD.
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