
Research Article
Adipose Mesenchymal Stromal Cell-Derived Exosomes
Prevent Testicular Torsion Injury via Activating PI3K/AKT and
MAPK/ERK1/2 Pathways

Hengchen Liu , Manyu Shi , Xiangqi Li , Wenjun Lu , Mingzhao Zhang ,
Tingting Zhang , Yang Wu , Zenan Zhang , Qingbo Cui , Shulong Yang ,
and Zhaozhu Li

Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road,
Nangang District, Harbin 150001, China

Correspondence should be addressed to Zhaozhu Li; zhaozhu247@163.com

Received 28 March 2022; Accepted 23 May 2022; Published 16 June 2022

Academic Editor: Chaoliang Tang

Copyright © 2022 Hengchen Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Adipose mesenchymal stromal cell-derived exosomes (ADSC-Exos) have shown great potential in the treatment of oxidative stress
induced by ischemia-reperfusion injury. However, alleviation of testicular torsion injury by ADSC-Exos has not been reported.
Therefore, we investigated the protective effect of ADSC-Exos against testicular torsion-detorsion injury. ADSC-Exos were
isolated by ultracentrifugation and injected into torsion-detorsion-affected testes of rats. H&E staining and sperm quality were
used to evaluate the therapeutic effects of ADSC-Exos, and tissue oxidative stress was measured by determining MDA and
SOD levels. In addition, TUNEL staining and immunohistological analysis (Ki67, Cleaved Caspase-3, IL-6, IL-10, CCR7, and
CD163) were used to clarify the effects of ADSC-Exos on spermatogenic cell proliferation, apoptosis, and the inflammatory
microenvironment in vivo. Possible signaling pathways were predicted using sequencing technology and bioinformatics
analysis. The predicted signaling pathways were validated in vitro by assessing the proliferation (EdU assay), migration
(transwell assay and scratch test), and apoptosis (flow cytometry, TUNEL staining, and western blotting) of spermatogenic
cells. The results showed that ADSC-Exos alleviated testicular torsion-detorsion injury by attenuating oxidative stress and the
inflammatory response. In addition, ADSC-Exos promoted the proliferation and migration of spermatogenic cells and
inhibited their apoptosis by activating the PI3K/AKT and MAPK/ERK1/2 signaling pathways.

1. Introduction

Testicular torsion is a urological emergency characterized by
acute scrotal pain with nausea and vomiting, which often
occurs in male children [1, 2]. The incidence of testicular
torsion in adolescents is 1/4000, accounting for 26% of scro-
tal pain cases [3]. Early detection, diagnosis, and treatment
are key to avoiding testicular necrosis [4, 5]. However, 10%
of testicles cannot be saved even in the first 6 h after torsion
occurs [6]. In addition, the rate of testicular atrophy and
infertility is reportedly between 40% and 60% despite suc-
cessful surgical intervention [7].

The primary pathological mechanism of testicular
torsion is ischemia-reperfusion (I/R) injury. Changes in
microvascular blood flow cause the release of proinflamma-
tory cytokines and production of large amounts of reactive
oxygen species (ROS), thus causing membrane lipid peroxi-
dation [7]. Polyunsaturated fatty acids, which are major
components of the sperm cell membrane, are highly suscep-
tible to ROS-induced damage [8]. In addition, ROS produc-
tion affects spermatogenic cell structure and function or
even causes apoptosis, leading to spermatogenic impairment
[9, 10]. Recently, several antioxidants, such as Fumaria
parviflora extract, vitamin C, and coenzyme Q10, have been
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shown to help to reduce ROS levels and improve sperm
parameters [8, 11]. Thus, early surgery combined with
antioxidants, anti-inflammatory cytokines, or other drugs
is important means of improving the prognosis of testicular
torsion.

Adipose-derived mesenchymal stromal cells (ADSCs)
play profound roles in various preclinical studies [12, 13].
For example, abundant data have demonstrated that the
anti-inflammatory, antioxidant, and antiapoptotic effects of
ADSCs are helpful in the treatment of organ I/R injury
[14–17]. Although local injection of ADSCs has been shown
to rescue testicular torsion-induced infertility [18, 19], stud-
ies have found that transplanted mesenchymal stromal cells
(MSCs) do not survive effectively in the ischemic microenvi-
ronment post infarction [20]. Therefore, the functional
benefits of transplanted MSCs are likely due to the release
of paracrine mechanisms, such as exosomes, which can
regulate cell growth [21]. Exosomes derived from ADSCs
(ADSC-Exos) have been shown to effectively reduce I/R
injury in the brain [22], heart [23], and kidney [16]. In
addition, ADSC-Exos have shown promising efficacy in the
treatment of erectile dysfunction caused by conditions such
as diabetes mellitus and postradical prostatectomy [24, 25].
In a recent study, Bader et al. demonstrated that cell culture
medium containing ADSC-Exos could improve sperm
parameters in a concentration- and time-dependent manner
[26]. However, alleviation of testicular I/R injury by ADSC-
Exos has not been reported. Therefore, the aim of this study
was to evaluate the effects of ADSC-Exos on spermatogenic
cell viability, sperm quality, and inflammation in vivo and
the proliferation, migration, and apoptosis of spermatogenic
cells in vitro. In addition, we aimed to identify the major
pathways through which ADSC-Exos exert their effects
by microRNA (miRNA) sequencing and bioinformatics
analysis.

2. Material and Methods

2.1. Animals. Male Sprague-Dawley rats (200–250 g, 8–10
weeks of age) were purchased from the Animal Experiment
Center of Harbin Medical University. All experiments
involving animals were approved by the Ethics Committee
of Harbin Medical University (approval no. Ky2018-135).

2.2. Isolation and Identification of ADSCs and ADSC-Exos.
ADSCs were isolated from the subcutaneous fat of rats,
which was sliced into 1mm3 sections and digested in 0.2%
collagen I for 1 h at 37°C. Next, samples were centrifuged
at 1000 × g for 10min, and the fatty layer and supernatant
were removed. The cells obtained in the pellet were cultured
in DMEM/F12 (Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 10% FBS (Sigma-Aldrich), 1% penicillin, and
streptomycin (Beyotime Biotech, Haimen, China) at 37°C
under 5% CO2. At passage three, the culture medium
was replaced with DMEM/F12 supplemented with 10%
exosome-depleted FBS (Sigma-Aldrich), and cells were incu-
bated for 24h. Finally, the ADSCs were collected, and ADSC-
Exos were isolated by ultracentrifugation, as previously
reported [27]. The surface markers (CD90, CD105, CD34,

CD45, and CD11b) and multilineage differentiation capacity
(adipogenic, osteogenic, and chondrogenic) of ADSCs were
previously reported [27]. Nanoparticle tracking analysis,
transmission electron microscopy (TEM), and western blot-
ting were used to identify the collected exosomes.

2.3. Experimental Protocols and Surgical Procedures. Sixty
rats were randomly divided into five groups (n = 12): Group
1 animals underwent surgery for scrotal incision and
suturing (Control); Group 2 animals underwent surgery for
testicular torsion, received a local injection of 100μL PBS
before detorsion, and were sacrificed 3 days later (I/R-3D);
Group 3 animals underwent surgery for testicular torsion,
received a local injection of 100μL PBS containing 400μg
ADSC-Exos before detorsion, and were sacrificed 3 days
later (ADSC-Exos-3D); Group 4 animals underwent surgery
for testicular torsion, received a local injection of 100μL PBS
before detorsion, and were sacrificed 7 days later (I/R-7D);
and Group 5 animals underwent surgery for testicular tor-
sion, received a local injection of 100μL PBS containing
400μg ADSC-Exos before detorsion, and were sacrificed
7 days later (ADSC-Exos-7D).

All surgical procedures were performed under aseptic
conditions with ketamine-based anesthesia (50mg/kg). To
achieve unilateral testicular torsion, the testis and spermatic
cord were exposed through a left inguinal incision, and
the left testis was rotated counterclockwise 720° for 3 h
[18, 28]. After the testis was fixed to the tunica albuginea
with 6/0 silk sutures, the incision was closed with 4/0 silk
sutures, and the operated testis was protected with wet
gauze and warm light for 3 h. Half an hour before the
detorsion procedure, 100μL ADSC-Exos or PBS was
injected into the testis. Given that Cui et al. confirmed
that 400μg ADSC-Exos can protect the myocardium
from I/R injury in Sprague-Dawley rats [13], the same
dose was selected for the rat testicular torsion-detorsion
injury model in the current study. Subsequently, the testis
underwent detorsion using the same surgical approach.
The testis was fixed in the normal anatomical position
with 6-0 silk sutures, and the incision was closed with
4-0 silk sutures. All experimental animals were treated
with 0.02mg/kg buprenorphine for pain relief. Animals
were sacrificed on the third and seventh postoperative
days, and the testes and epididymides were collected for
further study.

2.4. Determination of Spermatozoal Parameters. Rat epididy-
mal tissues were cut into 1mm3 cubes and immersed in 0.9%
NaCl at 37°C for 20min to extract the spermatozoa. Sperm
quality (quantity, morphology, and motility) was assessed
using the WHO sperm analysis method [29]. The morphol-
ogy and motility of 200 sperm in each group were evaluated.

2.5. Histopathological and Immunohistological Analyses. The
testicular tissues were fixed in Davidson’s fixative (Beyotime
Biotech), and tissue sections were stained with hematoxylin
and eosin (H&E). Johnsen’s score (Table 1) was used to eval-
uate spermatogenic function [30]. Fifty seminiferous tubules
were examined in each testis.
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The tissue sections were immunohistochemically stained
using the primary antibody anti-Ki-67 (AF0198; Affinity
Biologicals, Ancaster, ON, Canada), followed by incubation
with goat anti-rabbit IgG secondary antibody (ab6721;
Abcam, Cambridge, UK). For immunofluorescence analysis,
the tissue sections were incubated with primary antibodies
anti-Cleaved Caspase-3 (AF7022; Affinity Biologicals), anti-
CCR7 (ab32527; Abcam), anti-CD163 (ab182422; Abcam),
anti-IL-6 (TA500067S; Origene), and anti-IL-10 (ab33471;
Abcam), followed by incubation with secondary antibodies
(SA00013; ProteinTech, Chicago, IL, USA). Nuclei were
stained with 4′,6-diamidino-2-phenylindole (DAPI). Posi-
tive signals were quantified using the ImageJ software.

2.6. Biochemical Analysis. The malondialdehyde (MDA)
content in testicular tissue was determined by colorimetry
using the Lipid Peroxidation MDA Assay Kit (Beyotime
Biotech). Superoxide dismutase (SOD) activity in testicular
tissue was detected using the CuZn/Mn-SOD Assay Kit with
WST (Beyotime Biotech).

2.7. Cell Culture and Treatment. The GC-1 spg cell line was
purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA). The cells were cultured in
DMEM with high glucose (Sigma-Aldrich) supplemented
with 10% FBS and 1% penicillin and streptomycin at 37°C
with 5% CO2. To establish the I/R model in vitro, 1 × 106
cells were cultured in glucose-free DMEM (Sigma-Aldrich)
in a 1% O2 environment for 18 h, followed by reoxygenation
with normal O2 in complete medium with or without
exosomes.

In vitro, GC-1 spg cells were randomly sorted into six
groups as follows: Group 1 cells were cultured under normal
conditions (Control); Group 2 cells underwent cellular I/R
injury only (I/R); Group 3 cells underwent cellular I/R
injury, followed by reoxygenation with 100μg/mL ADSC-
Exos (ADSC-Exos (100)); Group 4 cells underwent cellular
I/R injury, followed by reoxygenation with 200μg/mL
ADSC-Exos (ADSC-Exos (200)); Group 5 cells were pre-
treated with 50μM LY294002 (PI3K/AKT inhibitor; Med-
ChemExpress, Monmouth Junction, NJ, USA) for 30min

before reoxygenation with 200μg/mL ADSC-Exos (ADSC-
Exos+LY); and Group 6 cells were pretreated with 50μM
PD98059 (MAPK/ERK1/2 inhibitor; MedChemExpress) for
30min before reoxygenation with 200μg/mL ADSC-Exos
(ADSC-Exos+PD). The exosome dose was selected based
on a previous study [31]. Cells from each group were col-
lected after 30min or 24h for western blotting, after 3 h for
flow cytometric analysis or TUNEL assay, and after 24 h
for EdU, transwell, and scratch assays.

2.8. ADSC-Exos Internalization Analysis. ADSC-Exos were
labeled using 1μM PKH26 dye (Sigma-Aldrich) in Diluent
C for 5min. After ultracentrifugation, PKH-26-labeled
ADSC-Exos were added to GC-1 spg cells cultured in
exosome-depleted medium. Nuclei were counterstained with
DAPI after 24 h, and ADSC-Exos internalization was
observed under a fluorescence microscope.

2.9. Proliferation of GC-1 spg Cells. For cell proliferation
analysis, 10μM 5-ethynyl-2-deoxyuridine (EdU) was added
to GC-1 spg cells for 30min. Subsequently, the cells were
fixed and stained using an EdU assay kit (UE, China). Cell
proliferation was observed under a fluorescence microscope
after nuclei were counterstained with DAPI.

2.10. Migration of GC-1 spg Cells. For cell migration analysis,
scratch tests and transwell assays were performed. For the
scratch test, a scratch was made through the cultured cells
after hypoxic injury. The extent of cell migration was mea-
sured after 0 and 24h.

The transwell assay was conducted after hypoxic injury.
A total of 1 × 105 GC-1 spg cells were cultured in the upper
chamber. Reoxygenation medium was added to the lower
chamber. After 24 h, cells in the upper chamber were fixed
with paraformaldehyde and stained with crystal violet. The
degree of cell migration was determined by counting the
number of cells in the upper chamber under a light
microscope.

2.11. Western Blot Analysis. Cells were lysed in RIPA buffer
(Beyotime Biotech) to extract the proteins. Immunoblot-
ting was performed with primary antibodies anti-Hsp70
(ab2787; Abcam), anti-TSG101 (ab125011; Abcam), anti-
CD9 (ab92726; Abcam), anti-AKT (4685S; Cell Signaling
Technology, Danvers, MA, USA), anti-phospho-AKT
(4060S; Cell Signaling Technology), anti-ERK1/2 (4695S;
Cell Signaling Technology), anti-phospho-ERK1/2 (4370S;
Cell Signaling Technology), anti-Bcl-2 (ab196495; Abcam),
anti-Bax (ab32503; Abcam), and anti-β-actin (ab8226;
Abcam), according to the manufacturer’s instructions. Goat
anti-rabbit IgG (ab205718; Abcam) was used as the second-
ary antibody. The quantification of protein bands was per-
formed using the ImageJ software.

2.12. Flow Cytometry Analysis. To analyze apoptosis, cells
were collected and stained using the FITC Annexin V Apo-
ptosis Detection Kit (Becton-Dickinson, Franklin Lakes, NJ,
USA) and then analyzed by flow cytometry. The data were
analyzed using the FACSDiva software (Becton-Dickinson).

Table 1: Johnsen’s score for spermatogenic function.

Score Characteristics

10 Complete spermatogenesis with many spermatozoa

9
Many spermatozoa present but germinal epithelium
disorganized with marked sloughing or obliteration

8 Only few spermatozoa (<5–10) present in the section

7 No spermatozoa but many spermatids present

6 No spermatozoa and only few spermatids (<5–10) present

5
No spermatozoa and no spermatids but several or many

spermatocytes present

4
Only few spermatocytes (<5) and no spermatids or

spermatozoa present

3 Spermatogonia are the only germ cells present

2 No germ cells but Sertoli cells are present

1 No cells in tubular section
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2.13. Terminal Deoxynucleotidyl Transferase dUTP Nick End
Labeling (TUNEL) Assay. The apoptosis of spermatogenic
cells in vivo was detected using a TUNEL apoptosis assay
kit (Wanleibio, Shenyang, China). Briefly, paraffin sections
of testicular tissues were incubated with 50μL TUNEL reac-
tion mixture. The sections were dehydrated and fixed after
nuclei were counterstained with hematoxylin. Apoptosis of
spermatogenic cells was evaluated under a light microscope.

In addition, the TUNEL assay was performed in vitro.
Briefly, GC-1 spg cells from each group were fixed and
stained using the TUNEL Assay Apoptosis Detection Kit
(UE). Apoptosis was observed under a fluorescence micro-
scope after nuclei were counterstained with DAPI.

2.14. miRNA Sequencing and Data Analysis. miRNA
sequencing of ADSC-Exos was performed by the OE Biotech
Company (Shanghai, China). Briefly, 20 ng of exosomal
RNA was extracted and sequenced using the HiSeq 2500 sys-
tem (Illumina, San Diego, CA, USA) (n = 3). Target genes of
the top 50 highly expressed miRNAs in ADSC-Exos were
predicted using the miRanda software. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses of the target genes
were performed using DAVID (https://david.ncifcrf.gov/)
and KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/kobas3/), respec-
tively. The results were visualized using the R software.

2.15. Statistical Analysis. Data are expressed as the mean ±
standard deviation (SD). Statistical analysis for multiple
groups was conducted using the Tukey-Kramer t-test. P <
0:05 was considered statistically significant.

3. Results

3.1. Characterization of ADSC-Exos. ADSC-Exos exhibited
circular vesicular structures under TEM (Figure 1(a)). The
average size of ADSC-Exos was 111.9 nm (Figure 1(b)).
Western blot analysis demonstrated high expression of
ADSC-Exos surface markers, including CD9, TSG101, and
HSP70 (Figure 1(c)).

3.2. Alleviation of Testicular Torsion-Detorsion Injury by
ADSC-Exos. H&E staining showed that testes in the Control
group exhibited normal testicular structure and seminifer-
ous tubule morphology, as well as many mature sperm.
However, severe damage was observed in the testes three
days after torsion-detorsion injury, which manifested as
seminiferous tubule disorder, unclear boundaries, interstitial
edema, and few sperm. In contrast, the histological appear-
ance of the testes was significantly improved after treatment
with ADSC-Exos. Seven days after torsion-detorsion injury,
the ADSC-Exos group had significantly more spermatogenic
cells than the I/R group, and the cells exhibited a more
orderly arrangement (Figure 2(a)). Spermatogenic function
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Figure 1: Characterization of ADSC-Exos. (a) Morphology of ADSC-Exos under a transmission electron microscope. (b) Particle size
distribution. (c) Western blot was used to detect exosome surface markers. Bars, 100 nm.
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Figure 2: ADSC-Exos alleviate testicular torsion-detorsion injury. (a, b) H&E staining after torsion-detorsion injury at days 3 (n = 6) and 7
(n = 6). (c) Sperm with normal and abnormal morphology. (d–f) Results of sperm parameters (quantity, morphology, and motility) at days 3
(n = 6) and 7 (n = 6). (g, h) Results of biochemical analysis (MDA and SOD) at days 3 (n = 6) and 7 (n = 6). Bars, 50μm. Data are
represented as mean ± SD. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:001.
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was substantially improved in the ADSC-Exos group on
days 3 and 7 (Figure 2(b)).

To further determine whether ADSC-Exos could improve
spermatogenesis after torsion-detorsion injury, sperm was
extracted from epididymides in each group. Analysis of sperm
parameters indicated that testicular torsion-detorsion injury
led to poor sperm quality. Sperm quantity, mobility, and
morphology were significantly decreased in the I/R groups
compared to those in the Control group. However, treatment
with ADSC-Exos significantly improved sperm quality
(Figures 2(c)–2(f)). Furthermore, MDA levels in the I/R
groups were significantly increased compared to those in the
Control group, while SOD levels were decreased. ADSC-
Exos treatment reduced MDA levels and increased SOD levels
compared to those in the I/R groups (Figures 2(g) and 2(h)).
Spermatogenic function and sperm quality did not differ in
the contralateral testis among the three treatment groups on
day 7 (Figure S1).

3.3. Protection of Spermatogenic Cell Activity by ADSC-Exos.
Immunohistochemical analysis revealed that the expression
of Ki67 in spermatogenic cells was decreased after testicular
torsion-detorsion injury. However, treatment with ADSC-
Exos significantly increased the number of Ki67+ spermato-
genic cells (Figure 3(a)). TUNEL staining demonstrated
massive spermatogenic cell apoptosis after testicular torsion-
detorsion injury. However, the numbers of apoptotic sper-
matogenic cells in the ADSC-Exos groups on days 3 and 7
were lower than those in the I/R groups (Figure 3(b)). As
expected, the immunofluorescence staining results for Cleaved
Caspase-3 (apoptosis marker) concurred with the TUNEL
staining results (Figure 3(c)). These results indicated that
ADSC-Exos promoted spermatogenic cell proliferation and
reduced apoptosis after testicular torsion-detorsion injury
(Figure 3(d)).

3.4. miRNA Sequencing and Bioinformatics Analysis of
ADSC-Exos. The top 50 miRNAs detected in ADSC-Exos
are shown in Figure 4(a). To ascertain their possible target
genes, GO and KEGG pathway enrichment analyses were
performed (Figure 4(b)). The biological process (BP) was
mainly enriched in “regulation of cell adhesion,” the cellular
component (CC) was mainly enriched in “proteinaceous
extracellular matrix,” and the molecular function (MF) was
mainly enriched in “SH3 domain binding” (Figure 5(a)).
KEGG pathway enrichment analyses indicated that the
PI3K/AKT and MAPK signaling pathways were the main
signaling pathways through which miRNAs in ADSC-Exos
function (Figure 5(b)). Therefore, the hypothesis that
ADSC-Exos alleviate testicular torsion-detorsion injury via
the PI3K/AKT and MAPK/ERK1/2 signaling pathways was
further investigated.

3.5. ADSC-Exos Activate the PI3K/AKT and MAPK/ERK1/2
Signaling Pathways. PKH-26-labeled ADSC-Exos could be
internalized by GC-1 spg cells after I/R injury (Figure 6(a)).
The western blotting results indicated that p-AKT and
p-ERK1/2 expression was decreased in GC-1 spg cells
subjected to I/R injury, while ADSC-Exos treatment acti-

vated the PI3K/AKT and MAPK/ERK1/2 pathways. Further-
more, pretreatment with LY294002 (PI3K/AKT inhibitor) and
PD98059 (MAPK/ERK1/2 inhibitor) inhibited the expression
of p-AKT and p-ERK1/2, respectively (Figures 6(b)–6(e)).

3.6. ADSC-Exos Regulate GC-1 spg Cell Proliferation and
Migration. The effects of ADSC-Exos on the proliferation
and migration of GC-1 spg cells were evaluated using differ-
ent concentrations of ADSC-Exos, as well as pathway inhib-
itors. The results of the EdU assays showed that ADSC-Exos
promoted GC-1 spg cell proliferation after I/R injury in a
dose-dependent manner, whereas LY294002 and PD98059
significantly attenuated this effect (Figures 7(a) and 7(d)).
Similarly, the results of the transwell assays (Figures 7(b)
and 7(e)) and scratch tests (Figures 7(c) and 7(f)) showed
that ADSC-Exos promoted GC-1 spg cell migration after
I/R injury, which was suppressed by LY294002 and
PD98059.

3.7. ADSC-Exos Protect GC-1 spg Cells against Apoptosis.
Flow cytometry and TUNEL assays were used to detect the
apoptosis of GC-1 spg cells. The number of apoptotic GC-
1 spg cells was significantly increased after I/R injury,
whereas treatment with ADSC-Exos substantially reduced
cell apoptosis. LY294002 and PD98059 inhibited the antia-
poptotic effects of ADSC-Exos (Figures 8(a), 8(b), 8(f), and
8(j)). In addition, the western blotting results indicated that
ADSC-Exos could increase I/R-induced low expression of
Bcl-2 and decrease I/R-induced high expression of Bax. Sim-
ilarly, LY294002 and PD98059 attenuated the regulation of
Bcl-2 and Bax expression by ADSC-Exos (Figures 8(c)–8(e)
and 8(g)–8(i)).

3.8. ADSC-Exos Regulate the Inflammatory Response
Induced by Testicular Torsion-Detorsion Injury. Immunoflu-
orescence analysis revealed that a large amount of IL-6 (pro-
inflammatory factor) was aggregated within the testicular
tissue on day 3 after testicular torsion-detorsion injury,
which decreased on day 7 (Figure 9(a)). However, IL-6
expression was significantly decreased in the ADSC-Exos
groups on days 3 and 7 compared to that in the I/R groups.
In contrast, IL-10 (anti-inflammatory factor) expression was
increased in the ADSC-Exos groups compared to that in
the I/R groups (Figure 9(b)). In addition, the numbers of
CCR7+ (M1 macrophage marker) and CD163+ (M2 macro-
phage marker) cells were increased after testicular torsion-
detorsion injury. However, the ADSC-Exos groups had
significantly fewer CCR7+ cells and significantly more
CD163+ cells than the I/R groups (Figures 9(c) and 9(d)).
The quantitative results are shown in Figure 9(e).

4. Discussion

Testicular torsion is a major cause of testicular loss in
male adolescents [4]. Effective antioxidation and anti-
inflammatory adjuvant therapy are the main means of
reducing I/R injury after testicular torsion. Recent studies
have shown that ADSC-Exos can effectively alleviate I/R
injury of the cerebrum and myocardium [32]. In this
study, ADSC-Exos were shown to reduce oxidative stress,
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inhibit inflammation, promote the proliferation and migra-
tion of spermatogenic cells, and prevent apoptosis in the
testis.

The physiological properties of spermatogenic cells,
which are borderline hypoxic, make them sensitive to
changes in blood flow [33]. In the present study, rat testes
that were severely damaged after torsion-detorsion injury
exhibited seminiferous tubule disorder, interstitial edema,
and few sperm. Tissue I/R injury is closely related to ROS.
ROS production induced by torsion-detorsion injury
exceeds the scavenging ability of antioxidant enzymes, lead-
ing to the accumulation of ROS in tissues. Subsequently,
ROS production seriously damages spermatogenic and
Sertoli cells, greatly affecting the spermatogenic function of
the testes [34]. MDA is the end product of ROS and thus a
reliable indicator of ROS levels [35]. SOD protects cells
against superoxide radical damage by catalyzing the dismu-
tation of superoxide radicals into H2O2 and O2 [36]. Several
studies have shown that the application of antioxidants can
reduce the level of oxidative stress in testicular tissue and
improve the histological score of testes. Shokoohi et al.
reported that hesperidin protected against oxidative damage
caused by testicular varicocele in rats and reduced pro-
grammed cell death in germ cells [37]. Wei et al. dem-
onstrated that probucol could effectively attenuate ROS
overproduction induced by testicular torsion-detorsion
injury and protect testicular spermatogenesis [38]. In addi-
tion, Zhou et al. found that transplantation of the uncultured
adipose-derived stromal vascular fraction could promote
spermatogenesis while reducing oxidative stress levels after

testicular torsion [39]. Hsiao et al. obtained similar results
using ADSCs in the treatment of testicular torsion-
detorsion injury [18]. As expected, ADSC-Exos in the present
study significantly reduced MDA levels, increased SOD
levels, and improved sperm quality (quantity, morphology,
and motility) after testicular torsion-detorsion injury.

After testicular torsion-detorsion injury, ROS produc-
tion is accompanied by the activation of apoptotic pathways
[40]. Apoptosis induced by testicular torsion-detorsion
injury occurs in all spermatogenic cells, among which
apoptosis of primary spermatocytes is the main reason for
impaired fertility [41]. In the present study, TUNEL staining
and Cleaved Caspase-3 immunofluorescence analysis
indicated that after testicular torsion injury, the caspase-
dependent apoptosis pathways were activated and spermato-
genic cells were largely apoptotic, whereas treatment with
ADSC-Exos significantly attenuated the degree of apoptosis
in spermatogenic cells. Seven days after injury, the number
of apoptotic cells was significantly decreased, indicating that
the apoptotic spermatogenic cells had died. Similarly, Bai
et al. reported that ADSC-Exos can effectively alleviate
inflammation and apoptosis in skin flaps after I/R injury
[42]. Moreover, Zhu et al. found that ADSC-Exos could
protect renal tubular epithelial cells against apoptosis caused
by renal I/R injury [43]. However, H&E staining in the
current study indicated that the number of spermatogenic
cells increased after ADSC-Exos treatment. Therefore, the
effects of ADSC-Exos on the proliferation of spermatogenic
cells were further investigated. Immunohistochemical analy-
sis revealed that spermatogenic cell proliferation mainly
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occurred in primary spermatocytes in normal testicular tis-
sues, which was inhibited after testicular torsion-detorsion
injury. Following treatment with ADSC-Exos, the expression
of Ki67 (cell proliferation marker) in spermatogenic cells
was increased. Interestingly, the proliferative effect of
ADSC-Exos on spermatogenic cells was not restricted to pri-
mary spermatocytes. These results suggest that ADSC-Exos
can inhibit spermatogenic cell apoptosis and promote their
proliferation after testicular torsion-detorsion injury.

Whether unilateral testicular I/R causes contralateral tes-
ticular damage is a controversial issue. Dejban et al. reported
that unilateral testicular torsion significantly decreased sper-
matogenic function in the contralateral testis [44]. Wei et al.
found that unilateral testicular torsion did not affect the con-
tralateral testis [45]. In addition, Hsiao et al. detected no

damage to the contralateral testis when rats were treated
with ADSCs for unilateral testicular torsion [18]. Similarly,
unilateral testicular torsion did not damage the contralateral
testes in the current study. Compared with the Control and
I/R groups, the contralateral testes in the ADSC-Exos groups
showed no statistical difference in either spermatogenic
function or sperm quality. Therefore, the study findings
indicate that local injection of ADSC-Exos into the injured
testis has no effect on the contralateral testis.

MicroRNAs, the main mediators of exosomal function
[46], affect the expression of genes upon entering target cells,
which in turn affects signaling pathways. In order to under-
stand the mechanism underlying alleviation of testicular
torsion-detorsion injury by ADSC-Exos, miRNA sequencing
was conducted. Several identified miRNAs, including let-7c-
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5p, miR-143-3p, and miR-22-3p, have been previously
shown to attenuate tissue I/R injury [47–49], which sug-
gested that the therapeutic effect of ADSC-Exos may be syn-
ergistically mediated by multiple miRNAs. The results of the
enrichment analysis of the top 50 miRNAs in ADSC-Exos
indicated that the PI3K/AKT and MAPK pathways may play
major roles. In addition, Lai et al. reported that the PI3K/
AKT signaling pathway was involved in the therapeutic
effects of ADSC-Exos in the treatment of cardiac I/R injury
[50]. Meanwhile, Zhang et al. found that ADSC-Exos atten-
uated hepatic I/R injury via the MAPK/ERK1/2 signaling

pathway [51]. Therefore, the association between ADSC-
Exos and the PI3K/AKT and MAPK/ERK1/2 signaling path-
ways were examined in vitro. The results indicated that I/R
injury inhibited p-AKT and p-ERK1/2 expression in GC-1
spg cells, while treatment with ADSC-Exos upregulated
this expression. In addition, ADSC-Exos promoted prolif-
eration and migration while inhibiting apoptosis of GC-1
spg cells after I/R injury. Pathway inhibitors LY294002 and
PD98059 effectively inhibited the expression of p-AKT and
p-ERK1/2, respectively, and blocked the protective effects of
ADSC-Exos against GC-1 spg cell I/R injury. Taken together,
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Figure 8: ADSC-Exos inhibit apoptosis of spermatogenic cells after I/R injury. (a, b, f, j) Effect of ADSC-Exos on apoptosis of GC-1 spg cells
by flow cytometry analysis and TUNEL staining. (c–e, g–i) Western blot analysis of protein levels of Bcl-2 and Bax induced by ADSC-Exos
or pathway inhibitors. Bars, 200 μm. Data are represented as mean ± SD. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:001.

12 Oxidative Medicine and Cellular Longevity



these results support that ADSC-Exos alleviate testicular
torsion-detorsion injury by promoting activation of the
PI3K/AKT and MAPK/ERK1/2 signaling pathways.

The inflammatory response is an important pathological
mechanism of I/R injury [52]. ROS-induced redox changes
lead to the release of inflammatory cytokines [53]. Tamer
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et al. reported that the expression of TNF-α and IL-6 was
increased after testicular torsion, while that of IL-10 was
decreased [41]. Further, Turner et al. found that TNF-α,
IL-6, and IL-1β released by macrophages exacerbated
inflammation in testicular torsion-detorsion injury [54].
Recent studies have confirmed that polarization determines
the role of macrophages in inflammation [55–57]. In addi-
tion, previous studies have shown that ADSC-Exos can
modulate macrophage polarization from the proinflamma-
tory M1 phenotype to the anti-inflammatory M2 phenotype
in vitro [58–60]. In the present study, treatment with ADSC-
Exos reduced the number of CCR7+ M1 macrophages and
increased the number of CD163+ M2 macrophages after
testicular torsion-detorsion injury. As expected, the expression
of proinflammatory cytokine IL-6 was decreased after ADSC-
Exos treatment, whereas that of anti-inflammatory cytokine
IL-10 was increased. Therefore, ADSC-Exos may alleviate
inflammation induced by testicular torsion-detorsion injury
through modulation of macrophage polarization.

A previous study confirmed that testicular torsion for at
least 1 h can cause substantial tissue damage [61], while tor-
sion for more than 4h reportedly causes irreversible focal
infarction in testicular tissue [62, 63]. The current study is
aimed at investigating the effects of local injection of
ADSC-Exos on testicular torsion-detorsion injury without
creating irreversible ischemic damage. Therefore, 3 h was
selected to induce testicular torsion injury in the current
study. Given the sudden and painful nature of testicular
torsion, surgery is usually performed as soon as possible in
the clinic. Thus, the reperfusion injury resulting from testic-
ular detorsion is superimposed on the initial ischemic injury
due to testicular torsion, resulting in secondary damage to
spermatogenic cells. In order to prevent further injury due
to reperfusion, pretreatment with ADSC-Exos before
surgical detorsion is preferable to treatment after surgical
detorsion. Additionally, considering that preoperative prep-
aration usually lasts approximately 30min, ADSC-Exos
was locally injected into the testes 30min before the detor-
sion procedure to improve the clinical relevance of the study
findings. Moreover, because transplanted exosomes may not
be able to enter the testis via normal circulation due to the
physiological blood-testis barrier, ADSC-Exos were admin-
istered by local injection to the testis rather than typical
intravenous administration. The low immunogenicity of
exosomes, compared to that of stromal cells, enables their
direct transplantation into organs such as the testis.

Nevertheless, this study had some limitations. First, the
experiments were only performed in a rat model and have
not been confirmed in humans. Thus, further clinical studies
are needed to clarify the therapeutic effects of ADSC-Exos
on human testicular torsion injury. Second, only the early
efficacy of ADSC-Exos in ameliorating testicular torsion-
detorsion injury was evaluated, and the long-term efficacy,
such as fertility function, requires further study. Third, opti-
mizing the dose and frequency of ADSC-Exos injections
warrants further study. Finally, this study was based on
global analysis of miRNAs in ADSC-Exos. Individual analy-
sis of the identified miRNAs will be performed to determine
the predominant miRNAs in subsequent research.

5. Conclusion

This study showed that ADSC-Exos can alleviate testicular
torsion-detorsion injury by reducing oxidative stress and
promoting M2 polarization to inhibit inflammation.
ADSC-Exos activated the PI3K/AKT and MAPK/ERK1/2
pathways to promote the proliferation and migration of
spermatogenic cells while inhibiting their apoptosis. In addi-
tion, this study provides a therapeutic reference for clinical
use. Collectively, the study findings support the feasibility
of using ADSC-Exos to protect against testicular torsion-
detorsion injury and provide insight for future clinical treat-
ment of testicular torsion.
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