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Currently, Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are widely prevalent in the elderly population, and
accumulating evidence implies a strong link between them. For example, patients with T2DM have a higher risk of developing
neurocognitive disorders, including AD, but the exact mechanisms are still unclear. This time, by combining bioinformatics
analysis and in vivo experimental validation, we attempted to find a common biological link between AD and T2DM. We
firstly downloaded the gene expression profiling (AD: GSE122063; T2DM: GSE161355) derived from the temporal cortex. To
find the associations, differentially expressed genes (DEGs) of the two datasets were filtered and intersected. Based on them,
enrichment analysis was carried out, and the least absolute shrinkage and selection operator (LASSO) logistic regression and
support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify the specific genes. After
verifying in the external dataset and in the samples from the AD and type 2 diabetes animals, the shared targets of the two
diseases were finally determined. Based on them, the ceRNA networks were constructed. Besides, the logistic regression and
single-sample gene set enrichment analysis (ssGSEA) were performed. As a result, 62 DEGs were totally identified between AD
and T2DM, and the enrichment analysis indicated that they were much related to the function of synaptic vesicle and MAPK
signaling pathway. Based on the evidence from external dataset and RT-qPCR, CARTPT, EPHA5, and SERPINA3 were
identified as the marker genes in both diseases, and their clinical significance and biological functions were further analyzed. In
conclusion, discovering and exploring the marker genes that are dysregulated in both 2 diseases could help us better
comprehend the intrinsic relationship between T2DM and AD, which may inspire us to develop new strategies for facing the
dilemmas of clinical or basic research in cognitive dysfunction.

1. Introduction

Alzheimer’s disease (AD), the leading cause of dementia, is
emerging as a major global health challenge. Clinically,
patients show a cognitive decline, accompanied by signifi-
cant psychobehavioral abnormalities and impaired social life
[1]. However, the molecular mechanism that can effectively
explain this abnormal alteration is not yet clear. Usually, sev-
eral nonspecific factors, such as age, vascular disease, infec-
tion, and environmental changes, are thought to play a role
[2]. Currently available drugs developed to target these fac-
tors only slow the progression of the disease, not cure or pre-
vent it. The realistic quandary forces us to expand theoretical
hypotheses. Now, dysglycaemia involving the central ner-

vous system (CNS) appears to be the next frontier in AD
research [3].

Approximately 6% of the global population is affected by
type 2 diabetes mellitus, and the prevalence of this chronic
endocrine disease is rising [4, 5]. In-depth research on glucose
metabolism brings new insights into our understanding of
AD-related mechanisms. At present, a close association
between AD and T2DM has been found. Epidemiological evi-
dence shows much greater impairments in executive function,
processing speed, and verbal memory plague adults with
T2DM [6], and they have a higher incidence of cognitive dys-
function compared with the general population [7, 8]. Insulin
is a major polypeptide hormone that plays crucial roles in the
brain, including the release or reuptake of neurotransmitters,
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the improvement of learning and memory abilities, and the
activation of signal transduction cascades leading to long-
term memory consolidation [9]. Besides, research shows the
involvement of insulin in the activation of glycogen synthase
kinase 3β, which leads to the phosphorylation of tau and the
formation of neurofibrillary tangles [10]. It can be seen that
the disorder of blood glucose metabolism in the brain may
be closely involved in the pathological changes of Alzheimer’s
disease. So some people refer to Alzheimer’s disease as “brain
diabetes” [11]. On this basis, studies on specific brain regions
are still preliminary.

Studies have demonstrated that impairment of executive
ability and memory is associated with the reduced gray matter
density and glucose metabolism in the temporal cortex (middle
gyrus, parahippocampus, and uncinate lobe) [12]. Diabetics are
at risk for brain structural changes [13], and the medial tempo-
ral structures are vulnerable to being involved, causing abnor-
mal atrophy of the hippocampus and amygdala [14]. This has
some similarities with Alzheimer’s disease and maybe one of
the neural mechanisms of type 2 diabetes patients’ easy trans-
formation to dementia. These suggest that temporal lobe abnor-
malities play an important role in type 2 diabetes-related
cognitive impairment [15].

To figure out the association between Alzheimer’s disease
and type 2 diabetes as precisely as possible and determine the
mechanisms and targets that potentially regulate their interre-
lationships in the temporal lobe, an exploratory method that
combines high-throughput gene expression detection technol-
ogy with bioinformatics was mainly employed to discover the
molecular markers and quest their subtle physiological func-
tions in this research. Based on the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/), we
firstly identified the codysregulated genes in the temporal cor-
tex, respectively, obtained from the patients of type 2 diabetes
and AD to try to find a genetic bridge. The protein-protein
interaction (PPI) and enrichment analysis were then per-
formed. Besides, the machine learning algorithms were intro-
duced to further screen the potential markers. With the
validation in the external dataset and animal samples, targets
were finally confirmed. Their disease-related risks and regula-
tory factors, such as miRNAs and interacting drugs, were pre-
dicted. These findings may provide a deeper insight into the
molecular interactions between type 2 diabetes and Alzhei-
mer’s disease, assisting us in discovering new regimens for
the disease transformation.

2. Materials and Methods

The whole analysis flow of this study is shown in Figure 1.

2.1. Microarray Data. Gene expression profiling in this work
was downloaded from the NCBI-GEO database [16]. Specif-
ically, the GSE161355 [17] dataset for the human temporal
cortex (T2DM: 6 cases; normal controls: 5 cases) was exe-
cuted on the GPL570 platform; the GSE122063 [18] (AD:
28 cases; normal controls: 22 cases) and GSE5281 (AD: 16
cases; normal controls: 12 cases) datasets for the human
temporal cortex were, respectively, based on the GPL16699
and the GPL570 platforms.

2.2. Data Processing. R software (version 4.0.2) and Biocon-
ductor packages (http://www.bioconductor.org/) [19] were
subsequently applied in the data processing.

For the .CEL format files (GSE161355), the “affy” [20]
(version 1.66.0), and “affyPLM” [21] (version 1.64.0) pack-
ages are used to process the raw data by the RMA (robust
multiarray average) function firstly [22]. Then, the probe
identification numbers were converted into the official gene
symbols according to the GPL570 platform. If multiple
probes correspond to one gene, the average value was
selected. After processing the missing value of the gene
expression profile file by the KNN (k-nearest neighbor) algo-
rithm [23], the “LIMMA” package [24] (version 3.44.3)
built-in R was used to identify the differentially expressed
genes (DEGs; adjusted P < 0:05 and jlogFCj > 1 were set as
the cutoff criteria).

For the .txt format files (GSE122063 and GSE5281), the
probe identification numbers were converted into the official
gene symbols according to the GPL16699 and GPL570 plat-
forms. The average expression was taken when multiple
probes corresponded to the one. After log2 transformation
and normalization, the “LIMMA” package (version 3.44.3)
was used to identify the DEGs (adjusted P < 0:05 and jlog
FCj > 1 were set as the cutoff criteria). The GSE5281 dataset
served as the validation set in this research.

2.3. Gene Ontology and Pathway Enrichment Analysis. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses [25] were
executed by using clusterProfiler package [26] (version
3.16.0) in R software (version 4.0.2) for function annotating
and pathway predicting. When the results met the cutoff cri-
terion (P < 0:05), it was considered statistically significant.

2.4. Construction of Protein-Protein Interaction (PPI)
Network and Module Analysis. STRING (Search Tool for
the Retrieval of Interacting Genes/Proteins; https://www
.string-db.org/) [27] integrating multiple databases that pro-
vide information on candidate genes was employed for pre-
dicting the potential PPI network and detecting the possible
associations (confidence score 0.4). Furthermore, the
MCODE (version 1.6.1) and cytoHubba (version 0.1) plugin
[28] built in the Cytoscape software (http://cytoscape.org/;
version 3.7.2) were, respectively, used to identify the signifi-
cant module and hub genes in the constructed network.

2.5. Screening and Validation of the Specific Genes in the
Disease. The least absolute shrinkage and selection operator
(LASSO) logistic regression [29] with the “glmnet” package
(version 4.1-1) and the support vector machine-recursive
feature elimination (SVM-RFE) [30] with the “e1071” pack-
age (version 1.7-6) were applied to screen the specific genes.
The obtained results of the two algorithms were intersected
and displayed in a Venn diagram, and all of them were fur-
ther screened through the combination of Comparative Tox-
icogenomics Database (CTD; http://ctdbase.org/) [31] and
the GSE5281 dataset. Besides, we used the pROC package
(version 1.18.0) [32] of R to analyze the receiver operating
characteristic (ROC) curve to evaluate their performance.
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2.6. Experimental Animals. Adult C57BL/6 mice (male; 4-
week-old; n = 10) were purchased for type 2 diabetes
model construction, and they were randomly divided into
the control (n = 5) and the diabetic group (n = 5). The
newly purchased animals were fed with regular chow diet
for one week. In the following 4 weeks, the control mice
were continued to be regular fed, while the model mice
were given high-fat diet [33]. Eight-month-old APP/PS1
mice (male; n = 5) were used as AD model in vivo, and
age-matched C57BL/6 mice were the controls (male; n =
5). All animals were housed in standard polypropylene
cages. During the period, they were allowed to free diet
under a stable condition (lights on: 08 : 00 am; lights off:
20 : 00 pm; optimum temperature: 23 ± 2°C; suitable
humidity: 55 ± 5%). All the animal experiments were
approved by the Institutional Animal Care and Use Com-
mittee of Jinan University.

2.7. Type 2 Diabetes Model. Before the start of the experi-
ment, another week of environmental adaptation was car-
ried out. For the diabetic group, 45mg/kg streptozocin
(STZ; Solarbio Beijing) was intraperitoneally injected for
one week, while the same volume of saline was injected into
the controls. During the week of drug injection, we trained
the mice on the Y maze for the first six days and performed
the final behavioral test on the seventh day. The blood glu-
cose in caudal venous was detected every two days. When
random blood glucose > 16:7mmol/L [34], they were con-
sidered diabetic.

2.8. Behavioral Test. The Y maze was applied to detect the
memory ability of mice. The maze consists of three arms
divided into 1 start arm and 2 nonstart arms. Each arm
was 30 cm long, 15 cm high, and 10 cm wide with an angle
of 120 degrees. Markers were set around the maze. The first
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Figure 1: The whole analysis flow for this study.
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six days are the training period. Each mouse was placed at
the end of one start arm and allowed to freely move
through the maze for adaptation over the course of 5
minutes. One (target arm) was randomly selected in the
two nonstart arms, with food placed on the end and well
marked, and the another (nontarget arm) was left
untreated. After the adaptation, put the animal back into
the end of the start arm, timing was initiated, and the
latency and times for the animal to correctly enter the
food arm were recorded. Each animal repeated 6 times
daily. On the seventh day, the mark of the target arm
was changed, and no food was put in. After the animal
was put into the start arm, the duration and times of the
animal entering the target arm were recorded. The test
period of each mice was 5 minutes. The maximum num-
ber of arm alternations was defined as the number of
occurrences in all arms minus 2, and the percentage of
arm alternations was ðnumber of occurrences in the target
arm/maximumnumber of alternationsÞ × 100 [35].

2.9. Sample Collection. After completing all tests, the experi-
mental mice were decapitated. The mice were anesthetized
with 15% pentobarbital sodium solution (intraperitoneal
injection; 0.4ml/100 g). Then, cardiac perfusion was per-
formed by irrigation with 0.9% sodium chloride solution
[36]. The temporal cortex was collected and stored at
−80°C until molecule experiments.

2.10. Reverse Transcription Quantitative Real-Time
Polymerase Chain Reaction (RT-qPCR). RNAs were
extracted from the temporal cortex of mice using TRIzol
reagent (Invitrogen, CA, USA), and the concentration and
purity were detected by Nanodrop. According to the manu-
facturer’s instructions, we reverse-transcribed the RNAs into
cDNAs with the PrimerScript RT Reagent Kit (Takara).
With the SYBR Premix Ex Taq (Takara), RT-qPCR pro-
ceeded in the Bio-Rad CFX96 TouchTM system. The primer
of different genes needed in our research is shown in the
Supplementary Table 1. Target genes were normalized to
GAPDH using the comparative CT method.

2.11. ceRNA Network Construction. The miRNAs interacting
with the DEGs were predicted by the StarBase (http://
starbase.sysu.edu.cn) database [37] or miRSystem (http://
mirsystem.cgm.ntu.edu.tw/) database [38]. StarBase inte-
grates seven well known miRNA target gene prediction pro-
grams: PITA, RNA22, miRmap, microT, miRanda, PicTar,
and TargetScan, while miRSystem integrates DIANA,
miRanda, miRBridge, PicTar, PITA, RNA22, and TargetS-
can. After comprehensive evaluation, the miRNAs hitting
the most programs will be included in our research. The
interaction between miRNA and lncRNAs/circRNAs was
also predicted by using the StarBase. During the operation,
we refer to the ClipExpNum to remove the weak interactions
with miRNAs for net simplifying.
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Figure 2: Volcano plot of differently expressed genes. (a) GSE161355 (T2DM), (b) GSE122063 (AD), and (c) the intersection of the two sets
of DEGs: 62 genes.
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2.12. Nomogram Model. A nomogram model (“rms” pack-
age; version 6.2-0) [39] was built to predict the risk of AD.
Using the calibration curve, the predictive ability of nomo-

gram model was evaluated. In addition, decision curve anal-
ysis and clinical impact curve were used to assess the clinical
value of the model.
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2.13. The Gene-Drug Interaction Analysis. The Drug Gene
Interaction Database (DGIdb) [40] (https://www.dgidb.org)
provides information about the association of genes with
their known or potential drugs. We searched the specific
genes in it to explore their possible drugs and their
directions.

2.14. Assessment of Hallmark Gene Sets and Immune Cell
Infiltration. The relative levels of the 50 hallmark gene sets
and the 28 immune cells in the GSE122063 dataset (AD)
were quantified using ssGSEA algorithm [41]. Plots were
generated to present the differential expression levels
between the controls and AD. In addition, Spearman’s cor-
relations for the 50 hallmark gene sets and the 28 immune
cells with the specific genes were calculated, which were
visualized by using the “ggplot2” package [42] (version
3.3.2).

2.15. Statistical Analysis. Statistical analyses were executed
using SPSS 23.0 (Chicago, USA). The results for the behavior
test and molecular experiments are presented as mean ±

SEM. For data examination, the parametric Student’s t-test
was employed. All tests were two-tailed. When P < 0:05, it
was considered statistically significant.

3. Results

3.1. DEG Identification. The analysis of differentially
expressed genes (GSE161355 or GSE122063) was executed
by the “LIMMA” package (version 3.44.3) with the criteria
of the jlog 2 FCj > 1 and adjusted P value < 0.05. In general,
a total of 1508 DEGs (Supplementary file 1) were screened in
human diabetes-associated temporal cortex, including 1473
downregulated genes and 35 upregulated genes, which were
intuitively presented in a volcano map (Figure 2(a)). On the
other side, 788 DEGs (Supplementary file 2) were identified
in AD temporal cortex when compared to controls, includ-
ing 475 downregulated genes and 313 upregulated genes,
which were also exhibited in a volcano map (Figure 2(b)).
Among the two sets of DEGs, there were 62 overlapping
items (Figure 2(c)). Here, we used the overlapping for subse-
quent studies to explore the mechanisms linking diabetes to
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Figure 6: The expression value of CARTPT, EPHA5, and SERPINA3. (a) Validated in the GSE5281 (AD, P < 0:05), (b) expression value
calculated based on the GSE122063 (AD, P < 0:05), and (c) expression value calculated based on the GSE161355 (T2DM, P < 0:05).
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AD. Supplementary Figure 1 visualizes the expression level
of these 62 genes in GSE122063 (AD) in the form of a
heatmap.

3.2. Enrichment Analysis for the 62 Overlapping DEGs. The
terms of GO mainly consist of biological process (BP), cellu-
lar component (CC), and molecular function (MF). As
shown in Figure 3(a), synaptic vesicle cycle (GO:0099504),

synaptic vesicle endocytosis (GO:0048488), and presynaptic
endocytosis (GO:0140238) were the most remarkable anno-
tations in BP. For the CC (Figure 3(b)), most of the overlap-
ping genes were enriched in synaptic vesicle (GO:0008021),
transport vesicle (GO:0030133), and exocytic vesicle
(GO:0070382). Among the significant MF enrichments
(Figure 3(c)), hormone activity (GO:0005179), bicarbonate
transmembrane transporter activity (GO:0015106), and
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Figure 7: Diagnostic performance of CARTPT, EPHA5, and SERPINA3. (a–c) The ROC curves based on the GSE122063 (AD) and (d–f)
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syntaxin-1 binding (GO:0017075) were dominant. On the
other hand, the MAPK signaling pathway (hsa04010) is
highlighted in the KEGG pathway enrichments
(Figure 3(d)).

3.3. PPI Network. All the 62 overlapping DEGs were then
imported into the STRING for the PPI network construc-
tion, which were finally visualized by the Cytoscape (http://
cytoscape.org/;version 3.7.2). This resulting network con-

tained 24 nodes and 39 edges (Figure 4(a)) with a most sig-
nificant module (Figure 4(b); score: 2.7) obtained by using
the MCODE plugin (version 1.6.1) of the Cytoscape. Relying
on the same software, we further captured the top 5 hub
genes in the network through the MCC algorithm with the
cytoHubba plugin (version 0.1) (Figure 4(c)).

3.4. Identification of the Specific Genes in Disease.We believe
that these 62 overlapping genes are differentially altered in
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Figure 8: Temporal cortex tissue for external validation: (a) time-flow diagram; (b) changes in blood glucose; (c) results of behavioral test (Y
maze); (d) RT-qPCR for CARTPT, EPHA5, and SERPINA3 (n = 5 in the control mice; n = 5 in the T2DM mice); and (e) RT-qPCR for
CARTPT, EPHA5, and SERPINA3 (n = 5 in the control mice; n = 5 in the APP/PS1 mice). The significance of differences indicated in
figures: ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < :001.

11Oxidative Medicine and Cellular Longevity

http://cytoscape.org/;version
http://cytoscape.org/;version


AD patients and susceptible to glycemic disturbances.
Therefore, we extracted their expression values in the AD
dataset for further study. Base on the gene expression matrix
from the GSE122063 dataset, we identified 13 specific genes

(IGLL5, COL24A1, C20orf195, LOC283737, SERPINA3,
LPP-AS2, ZCCHC12, OSR1, CHRDL2, LY96,
LOC100507165, EPHA5, and CARTPT) from the 62 over-
lapping DEGs with the LASSO logistic regression algorithm
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Figure 9: Sankey diagram for the ceRNA network of CARTPT, EPHA5, and SERPINA3. (a) lncRNA-miRNA-mRNA network and (b)
circRNA-miRNA-mRNA network.
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(Figure 5(a)). Furthermore, 40 specific genes (CARTPT,
LOC283737, SERPINA3, RNF165, LOC100507165,
COL24A1, TSPAN7, CHRDL2, C5orf55, DGKI, VGF,
IGLL5, LY96, LOC100129973, KDM4D, SLC26A4, OSR1,
C20orf195, SLC5A11, NPTXR, WDR54, MYOT, SST, LPP-
AS2, ABCC12, BDNF, LY86-AS1, SYNPR, FSTL5, AMPH,
ZWILCH, NRSN1, CHGB, CACNG3, PTPRR, COPG2IT1,
CASQ1, NLGN4Y, C2orf80 and EPHA5) were also filtered
using the SVM-RFE algorithm (Figure 5(b)). Subsequently,
12 genes (SERPINA3, CARTPT, LY96, EPHA5, COL24A1,
OSR1, CHRDL2, IGLL5, LPP-AS2, C20orf195,
LOC283737, and LOC100507165) were determined by the
combination of the two algorithms (Figure 5(c)). We ranked
these 12 genes according to their reference score involving
diabetes in the CTD and chose the top five ranked genes
(Figure 5(d)) for expression validation.

3.5. Verification of the Specific Genes in Datasets. We vali-
dated the expression value of the five specific genes in the
GSE5281 dataset (AD; the validation set; P < 0:05 was con-
sidered significant), and the results presented that CARTPT,
EPHA5, and SERPINA3 met the criteria (Figures 6(a)–6(c)).
Because the P value of COL24A1 (Supplementary Figure 2)
and LY96 (Supplementary Figure 3) was 0.37 and 0.7,
respectively, they were not available for the subsequent
analysis. In addition, the expression value of CARTPT,
EPHA5, and SERPINA3 in the GSE122063 (AD; the
training set; Figures 6(d)–6(f)) and GSE161355 (T2DM;
Figures 6(g)–6(i)) datasets was also calculated. The trend of
the dysregulated expression for the three genes was
consistent in the three different datasets.

Consequently, we drew receiver operating characteristic
(ROC) curve to further test their efficacy in the GSE122063
dataset (AD; the training set). For CARTPT, the area under
the curve (AUC) was 0.969 and 95% CI: 0.919−1.000
(Figure 7(a)). For EPHA5, the area under the curve (AUC)
was 0.739 and 95% CI: 0.588−0.865 (Figure 7(b)). For SER-
PINA3, the area under the curve (AUC) was 0.886 and 95%
CI: 0.760−0.981 (Figure 7(c)). We also evaluated them in the
GSE161355 dataset (T2DM). For CARTPT, the area under
the curve (AUC) was 1.000 and 95% CI: 1.000−1.000
(Figure 7(d)); for EPHA5, the area under the curve (AUC)
was 0.933 and 95% CI: 0.733−1.000 (Figure 7(e)); for SER-

PINA3, the area under the curve (AUC) was 0.967 and
95% CI: 0.800−1.000 (Figure 7(f)). All results indicated that
CARTPT, EPHA5, and SERPINA3 had high diagnostic
values in both AD and T2DM.

3.6. Animal Model Evaluation. The flow of the animal exper-
iment is shown in Figure 8(a). After STZ injection within 1
week, the level of random blood glucose in C57BL/6 mice
was significantly increased (Figure 8(b); >16.7mmol/L; P <
0:05) when compared with the controls (normal saline injec-
tion), indicating that STZ treatment successively induced
diabetic model. Besides, the percentage of correct alternation
arm was significantly decreased in the diabetic and APP/PS1
mice when compared with the controls (P<0.05,
Figure 8(c)), signifying that diabetic and 8-month-old
APP/PS1 mice had already developed memory impairment.

3.7. RT-qPCR. Following our successfully constructed ani-
mal models, RT-qPCR was conducted to finally verify the
specific genes in the mice temporal cortex of T2DM and
AD. In Figure 8(d), CARTPT and EPHA5 showed a signifi-
cant decrease (P < 0:05), while the expression of SERPINA3
statistically increased (P < 0:05) in STZ group when com-
pared with the control. In the aspect of AD model
(Figure 8(e)), CARTPT and EPHA5 decreased significantly
(P < 0:05), while the expression of SERPINA3 was signifi-
cantly enhanced (P < 0:05). Based on these data, we judge
that the previous speculations are reliable.

3.8. ceRNA Network. In miRSystem database, hsa-miR-377-
3p was predicted to interact with CARTPT by 3 programs.
In StarBase database, hsa-miR-20a-5p, hsa-miR-93-5p, hsa-
miR-106a-5p, and hsa-miR-106b-5p were, respectively, pre-
dicted to interact with EPHA5 by 6 programs; hsa-miR-137
was predicted to interact with SERPINA3 by 4 programs. To
better comprehend the regulation, we further constructed 2
ceRNA networks based on the StarBase database. The sim-
plified lncRNA-miRNA-mRNA network and circRNA-
miRNA-mRNA network are, respectively, exhibited in
Figures 9(a) and 9(b).

3.9. Prediction of the Potential Drugs. DGIdb was utilized to
quest the possible pharmaceutical compounds. Briefly, 4
compounds (amphetamine, insulin, dexamethasone, and

Table 1: The potential drugs targeting the specific genes based on the DGIdb.

Gene Drug Sources PMIDs
Query
score

Interaction
score

CARTPT AMPHETAMINE TdgClinicalTrial
15597110, 15661821, 15680473, 16713658, 15644956,

and 15680478
2.04 7.43

INSULIN NCI 12883265 0.17 0.62

DEXAMETHASONE NCI 12591118 0.12 0.44

PROGESTERONE NCI 18598674 0.1 0.38

EPHA5 VANDETANIB ChemblInteractions / 0.23 1.09

HESPERADIN DTC 19035792 0.11 0.53

PACLITAXEL PharmGKB 26133776, 22843789, 26763541, and 26133777 0.08 0.39

SERPINA3 / / / / /
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progesterone) were recognized to interplay with CARTPT;
the potential agents of EPHA5 may include vandetanib,
hesperadin, and paclitaxel. Unfortunately, no drugs for SER-
PINA3 have been predicted. More details are shown in
Table 1.

3.10. Construction of the Nomogram Model. Using the “rms”
package (version 6.2-0) in R (version 4.0.2), a nomogram
model based on the 3 specific genes (CARTPT, EPHA5,
and SERPINA3) was constructed to predict the risk of Alz-
heimer’s disease (Figure 10(a); GSE122063). As shown in
Figure 10(b), the calibration curve suggested a high predic-
tive accuracy of the nomogram model. From 0 to 1 on the
abscissa (Figure 10(c)), the red line in the DCA curve is far
from and consistently above the gray and black lines, mani-
festing that decision-making based on the nomogram model
may benefit AD patients. At last, we evaluated the clinical
impact of the nomogram model through a clinical impact
curve (Figure 10(d)).

3.11. Hallmark Gene Sets and Immune Cell Infiltration. To
further assess the differences in the hallmark gene sets and
the immune cell infiltration between controls and AD, the
ssGSEA algorithm was employed. The detailed distribution
of the 50 hallmark gene sets between AD and control
(GSE122063) was illuminated in Figure 11(a) (the signifi-
cance in the figure as follows: nsP < 1, #P < 0:2, ∗P < 0:05,
∗∗P < 0:01, and ∗∗∗P < :001). In addition, the infiltration of
28 immune cells between the two groups is shown in

Figures 12(a) and 12(b). Briefly, we can find that there are
14 differentially infiltrating immune cells between AD and
control groups; they are activated dendritic cell, immature
B cell, immature dendritic cell, MDSC, macrophage, natural
killer T cell, natural killer cell, neutrophil, plasmacytoid den-
dritic cell, regulatory T cell, type 1 T helper cell, type 17 T
helper cell, central memory CD8 T cell, and effector memory
CD8 T cell. Figure 11(b) shows the correlation of the hall-
mark gene sets with the specific genes (CARTPT, EPHA5,
and SERPINA3), and Figure 12(c) shows the details of their
related immune cells. P < 0:05 was considered statistically
significant. We can find that CARTPT and EPHA5 are gen-
erally consistent, while SERPINA3 has the opposite. For
instance, both CARTPT and EPHA5 are negatively corre-
lated with the HALLMARK_APICAL_JUNCTION, but
SERPINA3 is positively correlated with that; both CARTPT
and EPHA5 are negatively correlated with the natural killer
T cell, but SERPINA3 is positively correlated with that.
These data will help us further appreciate the critical role
of the specific genes.

4. Discussion

Alzheimer’s disease is a neurodegenerative disease with
insidious progression [43]. Despite nearly 100 years of
research on it, the etiology, pathogenesis, and risk factors
are far from being elucidated, which has also led to repeated
setbacks in AD drug development. Therefore, finding the
risk factors affecting AD, identifying AD high-risk
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populations, and intervening in novel therapeutic targets
have become hot spots in AD research. Recent studies have
shown that diabetes can accelerate the decline of executive

function in patients [44, 45]. This impairment is significantly
related to the time of suffering from diabetes and the level of
aging glycosylated hemoglobin in the blood [46]. Due to the
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Figure 11: Analysis of hallmark gene sets associated with AD (GSE122063): (a) the specific distribution of the 50 hallmark gene sets in AD
and (b) the correlation analysis of the 50 hallmark gene sets with CARTPT, EPHA5, and SERPINA3.
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lack of a complete cure, it is urgent to reduce the risk of
dementia. Understanding how diabetes affects cognition
through which targets, and taking early interventions to
delay its progression, is of great help to current research.

This time, our GEO-based research discovered 62 DEGs
overlapping in the dataset of GSE122063 (AD) and
GSE161355 (T2DM) by integrated bioinformatics. The
resulting GO enrichments indicated that these genes were
closely related to the synaptic function. Synapses are impor-
tant mediators for maintaining connections between neu-
rons, and their function and structure can change with the
activity of neurons, that is, synaptic plasticity [47]. The loss
of neurons and the destruction of synaptic plasticity in the
brain are the key to cognitive defects. Studies have reported
that the volume of the hippocampal CA1 region was signif-
icantly reduced in the streptozotocin-induced diabetic rats
[48], accompanied by a decrease in the number of spinophi-
lin-/neurabin II-positive cells; in addition, ultrastructural
observations revealed widening of the synaptic cleft and

reduction of vesicles, along with atrophy, cristae rupture,
and ruffling of mitochondrial chromatin and nuclei [49].
Therefore, targeted regulation of synaptic plasticity may be
an important mechanism of diabetes-related cognitive
impairment [50].

As we all know, insulin can enter the CNS through the
blood-cerebrospinal fluid barrier, regulating brain glucose
metabolism and the brain structural plasticity to improve
memory [51]. To exert this function, insulin mainly activates
the mitogen-activated protein kinase (MAPK) [52] and phos-
phatidylinositol 3-kinase (PI3-K)/Akt [53] signaling path-
ways. In our pathway enrichment analysis, MAPK signaling
(hsa04010) ranked at the top. MAPKs are a group of serine-
threonine protein kinases that can be activated by diverse
extracellular stimuli. Insulin resistance (IR) can cause strong
MAPK immunoreactivity, leading to tau hyperphosphoryla-
tion, and a positive correlation between the number of
MAPKs and tau protein accumulations was found in trans-
genic mice accompanied by hyperphosphorylated tau [54].
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Figure 12: Analysis of immune landscape associated with AD (GSE122063) (a) violin plot: 14 types of immune cells were differently
distributed between healthy control and AD (b) heatmap; (c) the relationship between 3 genes (CARTPT, EPHA5, and SERPINA3) and
immune cell infiltration.
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All this evidence points to the unique role of MAPK signaling
in diabetes-related cognitive impairment, and the involved
genes are equally worthy of our attention.

Among the overlapping 62 dysregulated genes, we finally
identified 3 targets by the machine learning algorithm; they
are CARTPT, EPHA5, and SERPINA3. To be specific, we
found that CARTPT (logFC: -2.84) and EPHA5 (logFC:
-1.18) were significantly downregulated in AD
(GSE122063), and they had a good performance as a marker
of the disease (GSE122063; the AUC of CARTPT was 0.969;
the AUC of EPHA5 was 0.739). On the other side, the
expression of SERPINA3 (logFC: 1.82) in samples from
AD individuals was higher than that of controls
(GSE122063). Likewise, its ROC curve performed well (the
AUC of SERPINA3 was 0.886). After further calculation of
the AD validation set (GSE5281), we spotted the same trend
in the expression of these genes. Similarly, CARTPT (logFC:
-1.09) and EPHA5 (logFC: -1.02) were downregulated in
T2DM (GSE161355); the AUC of them was 1.00 and
0.933, respectively. As for SERPINA3, the expression of it
(logFC: 2.76; GSE161355) in T2DM samples was also higher
than the controls (the AUC of its ROC curve was 0.967). We
further successfully constructed diabetic and AD animal
models, after which brain tissue samples were collected and
RT-qPCR was performed to verify our bioinformatics-
based predictions. The experimental results (the mRNA level
of CARTPT and EPHA5 was significantly decreased, while
SERPINA3 increased; P < 0:05) were consistent with the
previous analyses. Therefore, we concluded that CARTPT,
EPHA5, and SERPINA3 might constitute a molecular bridge
between T2DM and AD.

According to the ROC curve of the three genes (Figure 7), it
is not difficult to recognize that CARTPT has the highest diag-
nostic efficacy, whether in diabetes or AD (the AUC of
CARTPT was 0.969 and 1.00, respectively, in GSE122063 and
GSE161355). More than this, CARTPT is also the core gene
of the constructed PPI network (Figures 4(b) and 4(c)). We
speculate that the role of the CARTPT in the transformation
of diseases may be relatively more significant. Also as a meta-
bolic disorder, middle-aged obesity may increase the risk of
AD, and CARTPTwas now identified as a target for antiobesity
drugs, having a high value in connecting obesity and AD [55].
This provides a reference for us to study the relationship
between diabetes and AD. CARTPT is capable of encoding
the CART protein [56]. CART, fully known as the cocaine-
and amphetamine-regulated transcript, is an endogenous neu-
ropeptide, broadly expressed in the CNS [57]. It has also been
documented that the expression of CART is decreased in the
CSF of AD patients, and the treatment of exogenous CART
can partially ameliorate the deficits of learning and memory
in mice [58] by improving the synaptic ultrastructure [59]. This
evidence fits well with our enrichment analysis and experimen-
tal results. Therefore, we believe that CARTPT has the potential
to be a target for metabolic-related neurodegenerative changes.

Eph family proteins include Eph receptors with ephrin
ligands and are mainly expressed in the CNS [60]. They bidi-
rectionally regulate synaptic signal transmission with neuro-
nal morphogenesis and participate in neural functions such
as learning and memory [61]. EphA5 is mainly involved in

the formation of dendritic spines, and EphA5 knockout mice
exhibit abnormal dendritic spine morphology and neuronal
aggregation in the cerebral cortex [62]. The experiments
found that the use of EphA5 receptor agonists was able to
improve spatial memory in mice [63]. As an acute phase
response protein, SERPINA is thought to be a major compo-
nent of neuritic plaques in the brain, which promotes the
assembly of amyloid and its deposition, affecting individual
cognition [64]. Their phenotype in the cognitive impairment
is consistent with our findings. Nevertheless, the specific
relationship between the 2 specific genes and glucose metab-
olism is also not clear so far. Therefore, EPHA5 and SER-
PINA3 were equally valuable in subsequent studies.

The relatively small sample size used for bioinformatics
analysis and experimental validation in this study may limit
our final conclusions to a certain extent. Consequently, the
potential mechanisms for glucose metabolism in AD etiol-
ogy deserve future investigation.

5. Conclusion

Gene expression data involving AD and type 2 diabetes were
downloaded from the public GEO database platform and
subjected to a comprehensive bioinformatics analysis with
machine learning algorithms in our study, presenting us
with the DEGs linking AD and T2DM. The subsequent
enrichment and network analysis about these genes con-
veyed us their biological functions. Through external dataset
validation, as well as construction of animal models, collec-
tion of brain tissues, and further verification by RT-qPCR,
we located and captured the crucial targets among the DEGs.
They are, respectively, CARTPT, EPHA5, and SERPINA3,
which are perhaps of great value in studying the molecular
regulatory mechanisms shared by type 2 diabetes and Alz-
heimer’s disease. The key factors regulating them, such as
miRNA and drugs, as well as the clinical prediction and
diagnostic value in type 2 diabetes and Alzheimer’s disease,
were further analyzed. Our finding may shed new light on
the treatment of Alzheimer’s disease or diabetic cognitive
impairment, but follow-up studies still need to be unfolded.
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