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Breast cancer is of the leading causes of cancer-related deaths and the most frequently diagnosed cancer among females
worldwide. Despite advancements in breast cancer therapy, the disease eventually progresses in most patients because of de
novo or secondary resistance. Thus, discovering novel drugs with high effectiveness and low toxicity for systemic therapy is
essential. In this study, we investigated whether a new oleanolic derivative N-((1-(4-fluorophenyl)-1H-1,2,3-triazol-4-
yl)methyl)-2-methylene-3-oxo-olean-12-en-28-amide (ZQL-4c) exhibits potential anticancer effects against breast cancer. We
determined that ZQL-4c strongly inhibited cell proliferation and invasion and induced G2/M phase arrest and apoptosis in
breast cancer cells. We then found that ZQL-4c induced the production of reactive oxygen species (ROS). We then found that
ZQL-4c significantly inhibited Notch-AKT signaling pathways that are related to oxidative stress. Taken together, this study is
the first to show that ZQL-4c can significantly suppress the growth and invasion of breast cancer by blocking Notch-Akt
signaling pathways, which are mainly regulated by ROS-mediated oxidative stress. Thus, ZQL-4c might be considered a novel
and potential anticancer drug for breast cancer treatment.

1. Introduction

Breast cancer is the most frequently diagnosed cancer
among women worldwide, accounting for 31% of total can-
cer cases. Simultaneously, it has also become one of the lead-
ing causes of cancer-related deaths, accounting for 15% of all
cancer-related deaths according to the 2022 global cancer
statistics [1]. Over the past decades, conventional therapies
such as surgery, chemotherapy, radiotherapy, endocrine
therapy, and targeted therapy have significantly reduced
the risk of disease recurrence and death in patients with
breast cancer [2–10]. Although oncological outcomes con-
tinue to improve, patients with the most advanced breast
cancer ultimately die of the disease because of resistance to

therapy [11, 12]. Therefore, discovering effective and safe
drugs is essential to treat breast cancer.

Phytochemicals with antioxidant, anti-inflammatory,
and immunomodulatory activities are commonly used as
alternative or complementary therapies for cancer [13, 14].
Oleanolic acid (OA) is one of the most common phytochem-
icals and is present in nature as a free acid or as an aglycone
of triterpenoid saponins [15]. OA exhibits antitumor activi-
ties against several neoplasms, including hepatocellular can-
cer [16], hematological malignancies [17], lung [18], ovarian
[19], pancreatic [20], skin cancer [21], glioblastoma [22],
and breast cancer [23]. Despite its effectiveness, research
and clinical applications of OA are limited because of its
poor water solubility. The potential mechanism underlying
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the antibreast cancer activity of OA and its derivatives is
unclear.

In our previous study, more than 50 OA derivatives were
synthesized, and their antitumor activities were examined
against cancer cells. One of these OA derivatives, N-((1-(4-
fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-methylene-3-
oxo-olean-12-en-28-amide (ZQL-4c), exhibits anticancer
effect against breast cancer. In the present study, the antican-
cer activity and underlying molecular mechanisms of ZQL-
4c in various types of breast cancer were studied. We found
that ZQL-4c induces apoptosis in human breast cancer cells
by stimulating oxidative stress and suppressing the Notch-
AKT signaling pathway. These results indicated that ZQL-
4c might be considered a promising drug for breast cancer.

2. Materials and Methods

2.1. Synthesis of OA Derivatives. The OA derivative ZQL-4c
was synthesized by Professor Shisheng Wang from the
Dalian University of Technology (Figure 1).

2.2. Chemical Reagents and Antibodies. ZQL-4c was dis-
solved in DMSO (D2650; Sigma, USA). A ZQL-4c stock
solution of 8mM was stored at −80°C. Mouse anti-β-actin
(1 : 5000 dilution), rabbit anti-mTOR (1 : 1000 dilution), rab-
bit anti-p-mTOR (1 : 1000 dilution), rabbit anti-AKT
(1 : 1000 dilution), rabbit anti-p-AKT (1 : 1000 dilution), rab-
bit anti-JAK2 (1 : 1000 dilution), rabbit anti-p-JAK2 (1 : 1000
dilution), rabbit anti-STAT3 (1 : 1000 dilution), rabbit anti-
p-STAT3 (1 : 1000 dilution), rabbit anti-cleaved-caspase3
(1 : 1000 dilution), anti-cleaved-caspase7 (1 : 1000 dilution),
anti-cleaved-caspase9 (1 : 1000 dilution), anti-p53 (1 : 1000
dilution), anti-BAX (1 : 1000 dilution), anti-BCL-2 (1 : 1000
dilution), anti-cyclin B1 (1 : 1000 dilution), anti-cyclin D1
(1 : 1000 dilution), anti-p21 (1 : 1000 dilution), anti-p27
(1 : 1000 dilution), Notch1 (1 : 1000 dilution), and Notch2
(1 : 1000 dilution) were purchased from CST company (Dan-
vers, MA, USA).

2.3. Cell Culture. The human breast cancer MCF-7, MDA-
MB-231, and SK-BR-3 cell lines were purchased from ATCC
(ATCC; Rockville, MD). MCF-7 cells were cultured in MEM
(L110KJ; Basal Media, China) with 10% fetal bovine serum
(FBS; 10439024; Thermo Fisher Scientific, Inc.), 1% nones-
sential amino acids (11140050; Thermo Fisher Scientific,
Inc.), and 1mM sodium pyruvate (11360070; Thermo Fisher
Scientific, Inc.) at 37°C with 5% CO2. MDA-MB-231 and
SK-BR-3 cells were cultivated in DMEM (12800–058;
Thermo Fisher Scientific, Inc.) with 10% FBS.

2.4. Cell Viability Assay. We evaluated cell viability using a
Cell Counting Kit-8 (CCK8) assay kit (CK04; Dojindo Lab-
oratories; Japan). MCF-7, MDA-MB-231, and SK-BR-3 cells
(5 × 103 cells/well) were seeded in 96-well plates and incu-
bated with ZQL-4c (0, 0.4, 0.8, 1.0, 2.0, 4.0, and 8.0μmol/
L) for 24 h and 48h. DMSO at the same concentration was
used as the control. After treatment, CCK8 was added to
each well (10μL of CCK8 substrate and 90μL of medium)
and incubated at 37°C for 2 h. The optical density (OD)
was measured using a microplate reader at 450 nm (Multis-

kan MK3; Pioneer Co-operative UK Ltd.). The cell viability
after ZQL-4c treatment was calculated using IBM SPSS Sta-
tistics 19 as follows: ðODexperiment −ODbackgroundÞ/ð
ODnegative −ODbackgroundÞ × 100.

2.5. Apoptosis Analysis. We detected apoptosis by Annexin-
V FITC/PI staining. MCF-7, MDA-MB-231, and SK-BR-3
cells were seeded in 6-well plates (5 × 105 cells/well) and
treated with ZQL-4c (0, 0.4, 0.8, and 1.6μmol/L) for 24 h.
After incubation, the cells were collected and incubated at
room temperature with 5μL of Annexin-V/FITC (C1052;
Beyotime Institute of Biotechnology, China) in the binding
buffer in the dark for 20min. PI solution was then added
and incubated for 10min. The cells were analyzed by
fluorescence-activated cell sorting (FACS) using a flow cyt-
ometer (BD FACSAria II; BD Co.).

2.6. Cell Cycle Analysis. MCF-7, MDA-MB-231, and SK-BR-
3 cells cultured in 6-well plates (5 × 105 cells/well) were syn-
chronized by serum starvation overnight and treated with
ZQL-4c (0, 0.4, 0.8, and 1.6μmol/L) for 24 h. After incuba-
tion, the cells were fixed with 70% ethanol at 4°C overnight
and resuspended in ice-cold phosphate-buffered saline
(PBS). Subsequently, the cell cycle solution (C1052; Beyo-
time Institute of Biotechnology) containing 50μg/mL PI
and 20μg/mL RNase A was added to cells, followed by incu-
bation in the dark for 30min. A flow cytometer (BD FAC-
SAria II; BD Co.) was used to determine the cell cycle
distribution of the cells.

2.7. Wound Healing Assay. MCF-7, MDA-MB-231, and SK-
BR-3 cells were harvested and seeded in 6-well plates
(5 × 105 cells/well). The cells were then treated with ZQL-
4c (0, 0.4, 0.8, and 1.6μmol/L) for 24 h. Thereafter, we used
a sterile 10μL pipette tip to produce a scratch and removed
the drifting cells by washing with PBS three times. After
washing, we observed the scratches using an inverted
phase-contrast microscope (LV-150N; Nikon Corporation).
The wound surface area was quantified by Image J software.

2.8. ROS Detection Assay. The detection of intracellular ROS
levels was performed by 2′-7′dichlorofluorescin diacetate
(DCFH-DA). MCF-7, MDA-MB-231, and SK-BR-3 cells
were seeded in 6-well plates (3 × 105 cells/well) and then
treated with ZQL-4c (0, 0.4, 0.8, and 1.6μmol/L) for 24 h.
Thereafter, the cells were washed with PBS twice and then
incubated with DCFH-DA (10 uM) for 20min at 37°C in
the dark. We then assessed ROS levels using fluorescence
microscopy (Leica, Wetzlar, Germany) and flow cytometry
(BD FACSAria II; BD Co.).

2.9. Western Blotting. MCF-7, MDA-MB-231, and SK-BR-3
cells were cultured in 6-well plates (1 × 106 cells/well) and
incubated with ZQL-4c (0, 0.4, 0.8, and 1.6μmol/L) for
24 h. We used protein extraction kits (78835; Thermo Fisher
Scientific, Inc.) to collect proteins from the cells and BCA
protein assay kits to determine protein concentrations.
Thereafter, cytoplasmic protein extracts were reconstituted
in loading buffer and boiled for 5min. Proteins (20–50μg/
sample) were separated by electrophoresis in 8–12% sodium
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dodecyl sulfate–polyacrylamide gel electrophoresis and
transferred onto polyvinylidene difluoride membranes. The
membranes were incubated in 5% (w/v) nonfat milk for
1 h at room temperature and then incubated overnight at

4°C on a shaker with specific primary antibodies. Subse-
quently, we incubated the membranes with secondary anti-
bodies for 2 h at room temperature. The blots were
developed by chemiluminescence and detected using an
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Figure 1: Synthesis of the OA derivative N-((1-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-methylene-3-oxo-olean-12-en-28-amide
(ZQL-4c.
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Figure 2: ZQL-4c significantly inhibited the growth of breast cancer cells. (a)–(c) MCF-7, MDA-MB-231, and SK-BR-3 cells were treated
with various concentrations of ZQL-4c for increasing times. Line graphs showed the percentage of viable MCF-7, MDA-MB-231, and SK-
BR-3 cells after treatment with 0, 0.4, 0.8, 1.0, 2.0, 4.0, and 8.0μmol/L ZQL-4c for 24 and 48 h, as determined by the CCK8 assay. Data are
expressed as the mean ± standard error of themean of three independent experiments performed in triplicate (n = 3; ∗P < 0:05). (d)
Histogram showing the IC50 values (24 h and 48 h) of ZQL-4c in MCF-7, MDA-MB-231, and SK-BR-3 cells.
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Figure 3: ZQL-4c induces G2/M phase arrest in breast cancer cells. MCF-7, MDA-MB-231, and SK-BR-3 cells were treated with 0, 0.4, 0.8,
and 1.6 μmol/L ZQL-4c for 24 h. (a) Cells were fixed and stained with PI and analyzed by flow cytometry. (b) The percentage of cells in the
G2/M phase is shown in the histogram. Data are expressed as the mean ± standard error of themean of three independent experiments
performed in triplicate (n = 3; ∗P < 0:05). (c) The protein levels of cyclin B1, cyclin D1, p21, and p27 were detected by western blotting.
Actin was used as a loading control.
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Figure 4: Continued.
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ImageQuant Analyzer (ImageQuant LAS 4000, GE
Healthcare).

2.10. Statistical Analysis. Data are expressed as the mean ±
standard error of themean of at least three independent
experiments. One-way analysis of variance was used as the
statistical analysis method, and Student’s t-test was used to
compare two groups. SPSS 19.0 for Windows and GraphPad
Prism version 8.02 were used to perform all statistical anal-
yses. A P value of < 0.05 was considered statistically
significant.

3. Results

3.1. ZQL-4c Significantly Inhibits the Growth of Breast
Cancer Cells. To investigate the cytotoxic effects of ZQL-4c,
we treated human breast cancer cells (MCF-7, MDA-MB-
231, and SK-BR-3) with different concentrations of ZQL-
4c (0, 0.4, 0.8, 1.0, 2.0, 4.0, and 8.0μmol/L) for increasing
times (24 h and 48 h) and analyzed them by performing
the CCK8 assay. The analysis showed that ZQL-4c exhibited
cytotoxic activity against MCF-7, MDA-MB-231, and SK-
BR-3 cells in a dose- and time-dependent manner. In con-
trast, the inhibitory effects of the DMSO control group were
slight (Figures 2(a)–2(c)). The IC50 values were 2.96μmol/L

and 1.06μmol/L for MCF-7 cells, 0.80μmol/L and
0.67μmol/L for MDA-MB-231 cells, and 1.21μmol/L and
0.79μmol/L for SK-BR-3 cells after 24 h and 48 h of ZQL-
4c treatment, respectively (Figure 2(d)). Altogether, ZQL-
4c significantly inhibited the proliferation and growth of
breast cancer cells.

3.2. ZQL-4c Induces G2/M Phase Arrest in Breast Cancer
Cells. To evaluate whether ZQL-4c induces cell cycle arrest
in breast cancer cells, we performed cell cycle analysis by
flow cytometry and found that the G2/M phase was
enhanced in three breast cancer cells after ZQL-4c treatment
in a dose-dependent manner. As shown in Figures 3(a) and
3(b), the G2/M population of MCF-7 cells treated with 0,
0.4, 0.8, and 1.6μmol/L of ZQL-4c for 24 h was 9.1%,
24.8%, 28.0%, and 35.4%, respectively; the G2/M population
of MDA-MB-231 cells was 19.4%, 23.4%, 29%, and 31.6%,
respectively; the G2/M population of SK-BR-3 cells was
16.3%, 18.6%, 27.1%, and 33.5%, respectively. Furthermore,
the proteins cyclinD1, cyclinB1, p21, and p27 that regulate
the G2/M phase were assessed by western blotting. As shown
in Figure 3(c), ZQL-4c treatment decreased the protein
levels of cyclinD1 and B1, whereas increased the protein
levels of p21 and p27 in a dose-dependent manner in
MCF-7, MDA-MB-231, and SK-BR-3 cells. These results
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Figure 4: ZQL-4c induces apoptosis in breast cancer cells. MCF-7, MDA-MB-231, and SK-BR-3 cells were treated with 0, 0.4, 0.8, and
1.6 μmol/L ZQL-4c for 24 h. (a) Light microscopy showed apoptosis-related changes induced by ZQL-4c. (b) Cells were stained with
annexin V/PI and analyzed by flow cytometry. (c) The percentage of apoptotic cells is shown in the histogram. Data are expressed as the
mean ± standardmean of the error of three independent experiments performed in triplicate (n = 3; ∗P < 0:05). (d) The protein levels of
cleaved caspase-3,-7,-9, p53, Bax, and Bcl-2 were detected by western blotting. Actin was used as a loading control.
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showed that breast cancer cells are capable of being induced
by ZQL-4c and stalled in the G2/M phase.

3.3. ZQL-4c Induces Apoptosis in Breast Cancer Cells. To
assess whether apoptosis contributed to the inhibition of
breast cancer cell growth induced by ZQL-4c, we performed
annexin V/PI staining assays. The results showed that the
apoptotic cell death rate increased as the ZQL-4c concentra-
tion increased. As shown in Figures 4(b) and 4(c), the total
apoptotic cell rates of MCF-7 cells treated with ZQL-4c (0,
0.4, 0.8, and 1.6μmol/L) were 5.0%, 6.0%, 6.1%, and 17.6%,
respectively; the total apoptotic cell rates of MDA-MB-231
cells were 3.4%, 9.6%, 32.97%, and 36.56%, respectively;
the total apoptotic cell rates of SK-BR-3 cells were 5.7%,
5.7%, 8.0%, and 10.4%, respectively. In addition, we used
light electron microscopy to observe ZQL-4c-dependent
changes in cell morphology. As shown in Figure 4(a), we
found that the cells shrank round and floated after ZQL-4c
treatment. These results indicated that ZQL-4c induced apo-
ptosis in breast cancer cells.

3.4. ZQL-4c Activates Caspase-Dependent Apoptotic
Signaling Pathways. To identify the apoptotic signaling path-
ways of breast cancer cells, we performed western blotting
and detected the levels of proteins associated with apoptosis

after ZQL-4c treatment in MCF-7, MDA-MB-231, and SK-
BR-3 cells. As shown in Figure 4(d), after treatment with 0,
0.4, 0.8, and 1.6μmol/L of ZQL-4c for 24 h, we observed
an enhanced level of cleaved caspase -3, -7, -9, and p53.
The apoptotic pathway that involves Bcl-2 family members
can activate the caspase cascade. Therefore, Bax and Bcl-2
were investigated in this study. As shown in Figure 4(d),
the Bax level was increased, and the Bcl-2 level was
decreased after ZQL-4c treatment. These results suggested
ZQL-4c treatment-induced apoptosis via intrinsic pathways
in breast cancer cells.

3.5. ZQL-4c Inhibits Cell Migration and Invasion in Breast
Cancer Cells. To determine the effect of ZQL-4c on the
migration of breast cancer cells, we performed a wound
assay. To generate wounds, we scratched the cells using
pipette tips and measured the width of the scratches after
incubation with 0, 0.4, 0.8, and 1.6μmol/L of ZQL-4c in
MCF-7, MDA-MB-231, and SK-BR-3 cells for 12 and 24 h.
We also used cell lines that were not treated with ZQL-4c
as negative controls. As shown in Figure 5, the relative
scratch widths were significantly greater than that of the
negative control after 24 h of ZQL-4c treatment in a dose-
dependent manner. These results suggested that ZQL-4c
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Figure 5: ZQL-4c inhibits cell migration and invasion in breast cancer cells. MCF-7, MDA-MB-231, and SK-BR-3 cells were treated with 0,
0.4, 0.8, and 1.6 μmol/L ZQL-4c for 24 h. (a) A pipette tip was used to scratch the cultured cells and the width of the scratch was measured.
Untreated cancer cultures of each cell line were used as negative controls. (b) The wound surface area was quantified by Image J software.
Data are expressed as the mean ± standard error of themean of three independent experiments performed in triplicate (n = 3; ∗P < 0:05).
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treatment inhibited cell migration and invasion in breast
cancer cells.

3.6. ZQL-4c Induces ROS Production in Breast Cancer Cells.
To investigate whether oxidative stress played a pivotal role
in ZQL-4c activity in breast cancer cells, we performed a
DCFH-DA assay. As shown in Figures 6(a) and 6(b), we
observed an increase in ROS production in a dose-
dependent manner after ZQL-4c treatment by fluorescence
microscopy and flow cytometry, indicating that ZQL-4c
induced ROS-mediated oxidative stress in breast cancer
cells.

3.7. ZQL-4c Suppresses the Notch and Akt Signaling
Pathways in Breast Cancer Cells. Notch and Akt pathways

play pivotal roles in cancer cell proliferation and ROS pro-
duction. To elucidate the mechanism of ZQL-4c effect on
cell growth and ROS production, we investigated whether
Notch and AKT pathways were regulated by ZQL-4c. As
shown in Figures 7(a)–7(c), western blotting showed that
ZQL-4c significantly reduced the expression of Notch1,
Notch2, phospho-AKT, phospho-mTOR, phospho-STAT3,
and phospho-JAK2 in a dose-dependent manner, with no
marked change in AKT, mTOR, STAT3, and JAK2 levels.
Thus, ZQL-4c inhibited Notch-AKT signaling pathways.

4. Discussion

OA, also known as 3β-hydroxyolean-12-en-28-oic acid,
which belongs to the Oleaceae family, is a bioactive
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Figure 6: ZQL-4c induces reactive oxygen species production in breast cancer cells. MCF-7, MDA-MB-231, and SK-BR-3 cells were treated
with 0, 0.4, 0.8, and 1.6 μmol/L ZQL-4c for 24 h. Cells were loaded with 10 μmol/L DCFH-DA for 20min. The nuclei were stained with
Hoechst 33342. The level of ROS production was detected by fluorescence microscopy (a) and flow cytometry (b).
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pentacyclic triterpenoid and can be isolated from >1,600
plant species [24–26]. OA exhibits antitumor activity against
several neoplasms, including hepatocellular cancer, hemato-
logical malignancies, lung cancer, ovarian cancer, pancreatic
cancer, skin cancer, glioblastoma, and breast cancer. Several

studies have confirmed that OA exhibits a relatively weak
antitumor activity against breast cancer because of poor
water solubility [27]. Therefore, structural modifications
may be a feasible strategy to improve the anticancer activity
of OA by enhancing water solubility. In our previous study,
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Figure 7: ZQL-4c suppresses Notch-Akt signaling pathways in breast cancer cells. MCF-7, MDA-MB-231, and SK-BR-3 cells were treated
with 0, 0.4, 0.8, and 1.6 μmol/L ZQL-4c for 24 h. (a)–(c) The protein levels of Notch1, Notch2, mTOR, phospho-mTOR, AKT, phospho-
AKT, JAK2, phospho-JAK2, STAT3, and phospho-STAT3 were detected by western blotting. Actin was used as a loading control.
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more than 50 OA derivatives were synthesized and their
anticancer activities were examined in various cancer cells.
ZQL-4c is one of these OA derivatives with the chemical
modification of A ring/C 28 and exhibits an anticancer effect
on breast cancer. In this study, ZQL-4c significantly inhib-
ited the proliferation and growth of breast cancer cells in a
dose- and time-dependent manner. The IC50 values of
ZQL-4c were about 0.7-3μmol/L, which were higher than
those of OA. Among the three types of breast cancer cells,
ZQL-4c exhibited the highest inhibitory effect on MDA-
MB-231 cells (IC50: 0.80μmol/L for 24h, 0.67μmol/L for
48 h), indicating that ZQL-4c was slightly selective against
triple-negative breast cancer.

Apoptosis and cell cycle arrests play important roles in
the destruction of undesired cells that are under the circum-
stance of pathology or aging [28]. In this study, various apo-
ptotic assays were performed to identify the apoptotic effects
of ZQL-4c on breast cancer cells. Morphology and flow
cytometry data indicated that ZQL-4c inhibited the growth
of breast cancer cells effectively via apoptosis. For elucidat-
ing the mechanism of apoptosis, western blotting showed
that ZQL-4c stimulated caspase-3,-7, and-9 in three types
of breast cancer cells, which are the key initiators of caspase
cascades in apoptotic cells. The apoptotic pathway, which
involves Bcl-2 family members, can activate the caspase cas-
cade. Our results showed that the Bax level was increased,
whereas the Bcl-2 level was decreased after ZQL-4c treat-
ment, indicating that ZQL-4c treatment-induced apoptosis
via intrinsic pathways. Meanwhile, the results of cell cycle
analysis showed that G2/M cell cycle arrest was induced in

breast cancer cells as ZQL-4c concentration increased, and
the low levels of cell cycle proteins D1 and B1 and high levels
of p21 and p27 were also observed.

ROS are potent stimulators of apoptosis and can activate
the intrinsic mitochondrial pathway, the extrinsic death
receptor pathway, and the endoplasmic reticulum stress
pathway [29]. ROS stimulate events that lead to the loss of
inner mitochondrial membrane permeability and control
of the mitochondrial permeability transition pore complex,
thus, disrupting membrane potential, releasing cytochrome
c, and activating caspase-3, -7, and -9 [30, 31]. We observed
that ZQL-4c induced ROS production in a dose-dependent
manner, thus, inducing apoptosis with the upregulation of
cleaved caspase-3, -7, and -9 in all types of breast cancer
cells. These results suggested that ROS markedly contributed
to the anticancer effect of ZQL-4c in breast cancer cells.

Notch signaling is involved in many aspects of cancer
biology, such as angiogenesis, tumor immunity, the mainte-
nance of cancer stem-like cells, and oxidative stress [32, 33].
In addition, studies have reported an important role of
Notch in regulating AKT signaling [34]. In this study, to
investigate the mechanism of ROS upregulation after ZQL-
4c treatment, we detected Notch-AKT signaling pathways.
Our results showed that ZQL-4c significantly reduced the
expression of Notch1 and Notch2. Moreover, ZQL-4c signif-
icantly decreased the expression of phospho-AKT and
phospho-mTOR. Besides, ZQL-4c significantly inhibited
the expression of phospho-STAT3 and phospho-JAK2 in
three types of cancer cells. Thus, ZQL-4c induces ROS-
mediated oxidative stress by inhibiting Notch-Akt signaling
pathways (Figure 8).
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Figure 8: Proposed model for ZQL-4c-induced cell death in breast cancer cells.
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Altogether, ZQL-4c can significantly suppress the
growth and invasion of breast cancer by blocking Notch-
Akt signaling pathways that are mainly regulated by ROS-
mediated oxidative stress. Our findings showed that ZQL-
4c can be developed as a novel and potential anticancer drug
for breast cancer treatment.
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