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From the standpoint of the ER (endoplasmic reticulum), we were interested in identifying hub genes that impact clinical prognosis
for HCC (hepatocellular carcinoma) patients and developing an ER-related prognostic model. Using TCGA-LIHC (The Cancer
Genome Atlas-Liver Hepatocellular Carcinoma) and GSE14520 datasets, we conducted a series of analyses, which included
differential gene screening, clinical prognostic analysis, Lasso regression, nomogram prediction, tumour clustering, gene
functional enrichment, and tumour infiltration of immune cells. Following our screening for ER-related genes (n = 1975), we
conducted a Lasso regression model to obtain five hub genes, KPNA2, FMO3, SPP1, KIF2C, and LPCAT1, using TCGA-LIHC
as a training set. According to risk scores, HCC samples within either the TCGG-LIHC or GSE14520 cohort were categorized
into high- and low-risk groups. Compared to the high-risk group of HCC patients, patients in the low-risk group had a better
prognosis of OS (overall survival) or RFS (relapse-free survival). For TCGA-LIHC training set, with the factors of risk score,
stage, age, and sex, we plotted a nomogram for 1-, 3-, and 5-year survival predictions. Our model demonstrated better clinical
validity in both TCGA-LIHC and GSE14520 cohorts. Additionally, events related to biological enzyme activity, biological
metabolic processes, or the cell cycle were associated with the prognostic risk of ER. Furthermore, two HCC prognosis-
associated tumour clusters were identified by ER hub gene-based consensus clustering. Our findings indicated a link between
ER prognostic signature-related high/low risk and tumour infiltration levels of several immune cells, such as “macrophages
M2/M0” and “regulatory T cells (Tregs).” Overall, we developed a novel ER-related clinical prognostic model for HCC patients.

1. Introduction

As the primary type of liver cancer, HCC has an increasing inci-
dence and high mortality rate worldwide [1, 2]. The occurrence
and progression of HCC involve the disruption of multiple
organelle functions within cells, including the undesirable stim-
ulation of the endoplasmic reticulum (ER) and mitochondria
[3]. Various genes may play roles in the pathogenesis of human
diseases, including cancers, by affecting the normal physiologi-

cal functions of specific organelles and maintaining cellular
homeostasis [4, 5]. By utilizing different machine learning
approaches, a series of survival prediction models targeting spe-
cific biological events were developed [6–11]. For instance,
Lasso (least absolute shrinkage and selection operator) regres-
sion was applied to build several prognostic models for HCC
patients targeting ferroptosis [8], reactive oxygen species [9],
amino acid metabolism [11], or the tumour microenvironment
[7]. In this study, we first constructed an HCC prognostic
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model from the perspective of ER using an integratedmodelling
strategy (differentially expressed genes, univariate/multivariate
Cox regression, Lasso regression, and nomogram prediction).
ER-associated gene expression datasets and the detailed clinico-
pathological parameters of HCC patients from two publicly
accessible sources, namely, TCGA-LIHC training cohort and
the GSE14520 validation cohort, were fully considered during
our investigation.

The endoplasmic reticulum provides a location for the
synthesis of intracellular proteins, lipids, and sugars, as well
as for the folding and transport of secretory proteins
[12–15]. ER can be divided into two types based on the pres-
ence or absence of ribosomes attached to its outer mem-
brane, which are known as rough and smooth endoplasmic
reticulum [15, 16]. In hepatocytes, smooth endoplasmic
reticulum removes lipid-soluble waste products and harmful
substances of metabolism [13, 15]. ER stress signalling
induced by adverse environmental stimuli, with the feature
of abnormal aggregation of misfolded/unfolded proteins,
was reported to be linked to modulation of cell fate or the
aetiology of many clinical diseases, including cancer [13,
17, 18]. In the present study, we first utilized machine learn-
ing to build an ER-associated clinical model with high prog-
nostic accuracy for the outcome assessment of HCC
patients. Five ER-related hub genes, KPNA2 (karyopherin
α2), FMO3 (flavin-containing monooxygenase 3), SPP1
(sphingosine-1-phosphate phosphohydrolase-1), KIF2C

(kinesin family member 2C), and LPCAT1 (lysophosphati-
dylcholine acyltransferase 1), were identified. Furthermore,
based on the model, we examined the potential mechanisms
in terms of gene expression, Cox regression, nomogram pre-
diction, gene functional enrichment, tumour clustering, and
tumour-infiltrating status of immune cells.

2. Materials and Methods

2.1. Gene Expression Matrix and Clinical Traits. Based on
the GSEA (gene set enrichment analysis) online website
(http://www.gsea-msigdb.org/gsea/login.jsp), we entered
“endoplasmic reticulum” in the “keywords” section, then
selected the ER-related items, and finally exported the target
genes (n = 1975). A “TCGAbiolinks” R package was used to
download the gene expression matrix with the type of
FPKM-UQ and clinical traits from TCGA-LIHC cohort.
Meanwhile, the expression matrix, clinical traits, and anno-
tation files of GSE14520 within the GEO (Gene Expression
Omnibus) repository cohort were downloaded by using the
“GEOquery” R package. Afterwards, batch correction of
the expression matrix within TCGA-LIHC and GSE14520
was carried using a “sva” R package. The clinical character-
istics of TCGA-LIHC and GSE14520, such as sex, age, and
pathologic stage, are summarized in Supplementary
Tables 1-2, respectively.
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Figure 1: Flow chart of our analysis strategy.
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Figure 2: Continued.
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Figure 2: Continued.
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2.2. Differential Gene Screening.We matched clinical charac-
teristics to the expression matrix and then screened for dif-
ferential genes between normal and HCC tissues with a
“limma” R package, setting log2 FC (fold change) to 1 and
FDR (false discovery rate) to 0.05. Volcano and MA plots
were generated using the “ggplot” R package. Additionally,
heatmaps of all differential genes were created using the
“pheatmap” R package.

2.3. Clinical Prognostic Analysis. After integrating TCGA-
LIHC and GSE14520 data matrices with OS and RFS clinical
survival status and time, a univariate Cox regression was per-
formed using a “survival” R package with the filter of p = 0:05
. The corresponding forest plots were created. Furthermore, a
multivariate Cox regression analysis with forest plot visualiza-
tion of the prognostic risk score, sex, age, and pathological stage
was performed. Additionally, based on the prognostic signature
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Figure 2: Lasso regression model analysis. Based on the expression matrix of ER-related genes (n = 1975) in TCGA-LIHC and GSE14520
cohorts, differential gene analyses between normal and HCC tissues were conducted. (a, b) The MA plots and related heatmaps are
presented. (c) Intersection analysis of the ER-related differentially expressed genes and HCC prognosis-related candidate genes of
univariate Cox regression analyses was performed. (d, e) Based on a TCGA-LIHC training set, the Lasso regression modelling analysis
was performed. We provided the (f) gene expression profile, (g) risk profile, (h) survival status map, and (i) survival curve data of the
prognostic model.
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Figure 3: Continued.
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Figure 3: Expression pattern analysis of hub genes. We analysed the expression difference of each hub gene between HCC and normal
tissues for TCGA-LIHC cohort. The (a) heatmap, (b) violin plot, and (c) expression correlation plot are shown. We also analysed the
expression difference of hub genes between the HCC and paracancerous tissues. (d) The dot plots were provided, and a wilcox.test was
conducted. (e) Histochemical results of KPNA2 and LPCAT1 proteins within the HPA database are presented. Bar, 100μm.
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Figure 4: Univariate/multivariate Cox regression analyses of risk score. Targeting the factors of prognostic risk score, sex, age, and stage, we
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genes with a series of factors, including age, sex, pathological
stage, histologic grade, Eastern Cooperative Oncology Group
(ECOG), and vascular tumour cell type, the survival status
was estimated using the “surv” R package, and the Kaplan–
Meier survival curves were generated using “survminer” R.

2.4. Lasso Regression Model Construction. The Venn tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was
used to determine the gene intersections from the univariate
Cox regressions and differential expression analyses. TCGA-
LIHC was adopted as a training dataset. Based on the inter-
secting genes, a Lasso regression model was constructed
using the “glmnet” R package, and the model was visualized
to determine the associated gene coefficients and risk scores.
Using the gene coefficients multiplied by the expression level
of each hub gene, we calculated the risk scores [8, 10, 19].
The median value of the risk score was used to differentiate
high- and low-risk groups. The OS and RFS risk values for
the GSE14520 validation group were then computed by the
model established by TCGA-LIHC. We then plotted the sur-
vival curves for the high- and low-risk groups using the “sur-
vivor” and “survminer” R packages. Additionally, the
survival status and the heatmap containing the risk score,
gene expression, and related clinical features were plotted
using the “pheatmap” R package. An ROC analysis of the
prognostic risk score, sex, age, and stage was performed
using the survivalROC R package, and an AUC (area under
the ROC curve) value was calculated.

2.5. Nomogram Prediction Model. First, targeting TCGA-
LIHC training set, we conducted a modelling analysis using
the “regplot” R package. A nomogram was plotted. The
“ggstatsplot” R package was utilized to plot the calibration
curves for survival rates of 1-, 3-, and 5-year-old HCC patients.
Based on the “survIDINRI”R package, theNRI (net reclassifica-
tion improvement) and IDI (integrated discrimination
improvement) values were calculated to explore whether the

addition of risk score has an impact on the evaluation efficiency
of our model. Finally, we assessed the clinical effectiveness of
TCGA-LIHC-OS, GEO-OS, and GEO-RFS by means of deci-
sion curve analysis (DCA) with the “ggDCA” R package.

2.6. Correlation between Prognostic Gene Expression and
Clinical Traits. We matched the expression matrix and clin-
ical information of the ER-related genes from TCGA-LIHC
dataset by using an R language approach. The expression
differences of hub genes between normal and HCC tissues
were analysed by a wilcox.test () R function. The “pheat-
map” R package was utilized to obtain the relevant heat-
maps, and the “vioplot” R package was used to draw the
violin plots. The expression correlations between genes were
then analysed and plotted using the “corrplot” and “psych”
R packages. Based on the expression data of the target gene
set between HCC and paracancerous tissues, we performed
a wilcox.test for the paired samples using the “ggpubr” R
package. The results were visualized by the ggdotchart () R
package. In addition, the protein expression differences of
these signatures between HCC and normal tissues were ana-
lysed by immunohistochemical images within the HPA
(Human Protein Atlas) database.

Furthermore, we analysed the expression differences of
these signatures among the different groups of clinical traits,
including pathological grade, age, sex, pathological T/N/M, his-
tologic grade, ECOG, vascular tumour cell type, adjacent
hepatic tissue inflammation, and tumour status. The statistical
correlations between the high/low risk and the continuous var-
iable indices of clinical traits, including height, weight, BMI, cre-
atinine, fetoprotein, albumin, platelets, and prothrombin time,
were also analysed. The kruskal.test () R function was applied
for the statistical analysis of more than two groups, and the wil-
cox.test () R function was applied for two groups. The data were
visualized as a violin plot, box plot, bar plot, or scatter diagram
by using the “ggplot2” or “ggpubr” R packages. Finally, based
on the survival status and time of TCGA-LIHC-OS, GEO-OS,
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Figure 5: Tumour clustering analysis of hub genes. (a) Based on the expression matrix of prognostic genes, HCC patients of TCGA-LIHC
were clustered. (b) PCA was conducted to evaluate the classification effect on tumour clusters. (c) The heatmap of hub gene expression and
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and GEO-RFS, we analysed the correlations between gene
expression and clinical prognosis of signature genes using the
R packages “survival” and “survminer.”

2.7. Tumour Cluster Analysis. Based on the expression
matrix of prognostic genes, HCC patients of TCGA-LIHC
and GSE14520 were clustered by a “ConsensusClusterPlus”
R package [20]. Principal component analysis (PCA) was
performed by a prcomp () function, and the result was visu-
alized by the “ggplot2” R package. We matched the expres-
sion matrices of different tumour clusters and the clinical
traits and then presented the results as a heatmap using
the “pheatmap” R package. The “survival” R package and
plot () were also utilized for cluster-specific prognostic anal-
ysis and data visualization.

2.8. Gene Enrichment Analysis. Based on the median value
of the risk score, TCGA and GEO samples were divided
into high- and low-risk groups, and differentially expressed
genes were identified using the “limma” R package. A vol-
cano plot was obtained by the “ggplot2” R package. The
top ten differentially expressed gene-related heatmaps were
generated by the “pheatmap” R package. Next, we utilized
the “VennDiagram” R package for an intersection analysis
of positively and negatively related gene sets from both
TCGA and GEO. The gene enrichment analyses, including
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of
Genes and Genomes), were then conducted by the R pack-
ages “clusterProfiler,” “org.Hs.e.g.db,” and “pathview,” and
the results were visualized by a barplot (). We further con-
ducted gene set enrichment analysis (GSEA) of high/low
risk using the GESA software (version 4), and the results
were visualized by the R packages “plyr.” “ggplot2,” “grid,”
and “gridExtra.”

2.9. Tumour-Infiltrating Immune Cell Analysis. The CIBER-
SORT algorithm [21] allowed us to assess the infiltration
levels of immune cells in groups with high- and low-risk
TCGA and calculate the percentages of 22 immune cell
populations, such as “T cells CD8,” “NK cells activated,”
“monocytes,” “macrophages M0/1/2,” and “dendritic cells
activated.” Visualizations of the results were created with
the “ggplot2” R package. Using the stat_compare_means
() function, the difference between the high- and low-risk
groups was analysed for the infiltration percentages of
immune cells. Based on the ratios of stromal and immune
cells, the “ESTIMATE” package [22] was used to deter-
mine tumour purity. The results were broken down into
three columns: stromal score, immunoscore, and ESTIMA-
TEScore. Using the “ggpubr” R package, a violin plot was
created.

3. Results

3.1. Analysis Strategy. Our study is aimed at developing an
ER-related prognostic model based on TCGA and GEO data-
sets and at exploring the potential molecular mechanisms.
Figure 1 presents our analysis strategy. In brief, we first
extracted the expression matrices of TCGA-LIHC and
GSE14520 and performed batch correction. Targeting the
ER-related genes, the corresponding ER expression matrix
was extracted. Then, we conducted differential ER-related
gene screening between normal and HCC tissues. In combina-
tion with clinical survival status and time, a series of univariate
Cox regression analyses (including TCGA-OS, GEO-OS, and
GEO-RFS) were also performed to identify prognosis-related
ER genes. Based on the common genes of differential expres-
sion and univariate Cox regression analyses, we conducted a
Lasso regression analysis to build a prognostic model using
TCGA-LIHC as a training cohort. With the clinical
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Figure 6: Nomogram and related assessment analyses. (a) A nomogram was plotted to predict the 1-, 3-, and 5-year survival rates of a given
HCC patient within TCGA-LIHC cohort, ∗∗∗p < 0:001. We also provided the data for (b) the calibration plot curve, (c) assessment of NRI/
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information, nomogram and related calibration curves at 1-,
3-, and 5-year survival times were plotted. We also calculated
the values of the NRI and IRI and conducted decision curve
analysis to evaluate the discrimination and clinical effective-
ness of ER-related prognostic prediction signatures. We also
performed a multivariate Cox regression analysis in combina-
tion with the clinical traits. Subsequent validation based on the
prognostic model was carried out in a validation GSE14520
cohort, and survival curve results were obtained. In addition,
we divided the HCC patients of TCGA-LIHC and GSE14520
into two groups of high/low risk and conducted differential
gene analysis to obtain the intersecting genes, followed by
GO, KEGG, and GSEA. Targeting the high/low risk groups,
tumour-infiltrating immune cell analysis was conducted using
a “CIBERSORT” approach, and tumour purity analysis was
performed using the “ESTIMATE” approach. Next, the gene
sets of the ER-related prognostic model were applied for
HCC clustering analysis. The expression patterns and prog-
nostic features of single hub genes, combined with several clin-
ical traits, were analysed.

3.2. Lasso Regression Model. Based on the expression matrix
of ER-related genes (n = 1975) in TCGA-LIHC and
GSE14520 cohorts, we conducted differential gene analysis
between normal and HCC tissues. As shown in
Figure 2(a), compared with normal tissues, we identified
102 ER-related genes highly expressed in the tumour tissues

and 38 poorly expressed genes from TCGA-LIHC dataset. In
addition, there were a total of 112 ER-related differential
genes from the GSE14520 dataset (Figure 2(b)). The related
heatmaps are presented in Figures 2(a) and 2(b). We then
combined the information of survival status and time to
conduct a series of univariate Cox regression analyses to
identify a set of HCC prognosis-related candidate genes
(Supplementary Figure 1, TCGA-OS, n = 496; GEO-OS, n
= 313; and GEO-RFS, n = 199). Subsequently, we
performed an intersection analysis of these genes with the
ER-related differentially expressed genes to obtain eighteen
common genes (Figure 2(c)). Using TCGA-LIHC as a
training set, the Lasso regression modelling analysis
(Figures 2(d) and 2(e)) was then conducted to obtain five
hub genes with correlation coefficients (Coef), namely,
KPNA2 (0.213), FMO3 (-0.019), SPP1 (0.0348), KIF2C
(0.112), and LPCAT1 (0.172). The risk scores of each
sample within the TCGG-LIHC and GSE14520 cohorts
were calculated by the following formula: KPNA2
expression × 0:213 − FMO3 expression × 0:019 + SPP1
expression × 0:0348 + KIF2C expression × 0:112 + LPCAT1
expression × 0:172.

We classified the HCC samples into low- and high-risk
groups based on the risk scores and then generated heatmaps
for the gene expression profiles of the prognostic model of
TCAG-LIHC and GSE14520 (Figure 2(f), Supplementary
Figure 2(a)), risk profiles (Figure 2(g), Supplementary
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Figure 7: Prognostic risk-related differential gene analysis. We conducted differential gene identification between the high- and low-risk
groups and visualized the data as a volcano plot and a heatmap of the top ten differential genes in both (a) TCGA-LIHC and (b)
GSE14250. (c) Then, an intersection analysis of positively and negatively related gene sets of both TCGA and GSE14250 was conducted
to identify the common genes. Gene enrichment analyses of (d) KEGG, (e) GO, and (f) GSEA were performed.
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Figure 2(b)), survival status maps (Figure 2(h), Supplementary
Figure 2(c)), survival curves (Figure 2(i), Supplementary
Figure 2(d)-2(e)), and heatmaps combining clinical traits
(Supplementary Figure 3-4). We observed a higher mortality
rate in HCC cases with higher risk values (Figure 2(h),
Supplementary Figure 2(c)). After analysing the differences in
height, weight, BMI, creatinine, fetoprotein, albumin, platelets,
and prothrombin time for TCGA-LIHC cases between the
high- and low-risk groups (Supplementary Figure 5(a)-5(h)),
we observed a slightly higher level of fetoprotein
(Supplementary Figure 5(e), p = 0:019) but a slightly lower

level of albumin (Supplementary Figure 5(f), p = 0:041) in the
high-risk group, than in the low-risk group. HCC patients with
a high-risk profile had a worse prognosis for survival than
those with a low-risk profile (Figure 2(i), p = 4:822e − 09 for
TCGA-OS; Supplementary Figure 2(d), p = 4:331e − 03 for
GEO-OS; Supplementary Figure 2(e), p = 4:492e − 03 for
GEO-RFS).

3.3. Expression Patterns of Hub Genes. We matched the
expression matrix and the corresponding clinical traits for
the expression pattern analysis for each hub gene of our
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Figure 8: Tumour-infiltrating immune cell analysis. Based on a “CIBERSORT” approach, the tumour infiltration levels of 22 immune cell
populations in the high- and low-risk groups were calculated. The results were visualized as (a) a stacking percentage histogram and (b) a
boxplot. We also evaluated the tumour purity using an “ESTIMATE” approach. (c) Violin plots of the stromal score, immune score, and
ESTIMATEScore are shown.
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model. As shown in Figures 3(a) and 3(b), there were high
expression levels of KPNA2, KIF2C, SPP1, and LPCAT1 genes
(p < 0:001) but a low expression level of FMO3 (p < 0:001) in
HCC tissues compared with normal tissues within TCGA-
LIHC cohort. Further expression correlation analysis
(Figure 3(c)) suggested that FMO3 showed negative correla-
tions (r < 0, all p < 0:001) of gene expression with KPNA2,
KIF2C, SPP1, and LPCAT1. In addition, we observed positive
correlations among KPNA2, KIF2C, SPP1, and LPCAT1
genes (Figure 3(c), r > 0, all p < 0:001). Of them, there was
the greatest significant difference for the correlation between
KPNA2 expression and KIF2C expression (Figure 3(c), r =
0:85, p = 5:09e − 120).

We also investigated the expression features of these five
genes in paired HCC and paracancerous tissues from the
GSE1520 cohort. As shown in Figure 3(d), there were higher
expression levels of LPCAT1 (p = 3:46e − 39), SPP1
(p = 1:84e − 22), KPNA2 (p = 1:18e − 72), and KIF2C
(p = 2:33e − 51) and a lower expression level of FMO3
(p = 1:63e − 29) in HCC tissues than in the matched paraneo-
plastic tissues. The immunohistochemical analysis data of the
HPA database further indicated higher KPNA2 and LPCAT1
protein staining signals in HCC tissues than in normal tissues
(Figure 3(e)). Histochemical data of LPCAT1, SPP1, and
FMO3 were temporarily unavailable in the HPA database.

Next, we analysed the statistical correlations between
hub gene expression and clinical traits (Supplementary
Figure 6-9) within TCGA-LIHC cohort. Briefly, the
expression patterns of KPNA2, FMO3, SPP1, KIF2C, and
LPCAT1 were statistically correlated with the clinical stage
(Supplementary Figure 6(a), p < 0:001), especially the
pathological T stage (Supplementary Figure 7, p < 0:05). A
similar result was detected for histologic grade
(Supplementary Figure 8(a), p < 0:01). Our findings also
revealed significant correlations between KPNA2, LPCAT1,
KIF2C, and SPP2 expression and three clinical traits,
including ECOG (Supplementary Figure 8(b), p < 0:01),
vascular tumour cell type (Supplementary Figure 9(a), p <
0:05), and tumour status (Supplementary Figure 9(c), p <
0:05). Additionally, there were correlations between SPP1
expression and age (Supplementary Figure 6(b), p < 0:05),
FMO3 expression and sex (Supplementary Figure 6(c), p <
0:001), and SPP1 expression and adjacent hepatic tissue
inflammation (Supplementary Figure 9(b), p < 0:05). For
the GSE14520 cohort, we observed statistical correlations
of stage with the expression levels of KPNA2, FMO3,
SPP1, and LPCAT1 (Supplementary Figure 6(d), p < 0:01).
In addition, the age factor was correlated with the
expression of KIF2C and LPCAT1 (Supplementary
Figure 6(e), p < 0:01), while the sex factor was linked to the
expression of SPP1 (Supplementary Figure 6(f), p < 0:01).

3.4. Prognostic Analysis of Hub Genes. We also conducted
prognostic analyses of TCGA-OS, GEO-OS, and GEO-RFS
for each hub gene of our model. As presented in Supplemen-
tary Figure 10, HCC patients with high expression levels of
KPNA2, KIF2C, SPP1, and LPCAT1 and low expression of
FMO3 exhibited a poor clinical prognosis of OS and RFS.
Statistically significant differences were observed in all

groups (Supplementary Figure 10(a)-10(c), p < 0:05), except
for KPNA2 in GSE14520 (Supplementary Figure 10(c), p =
1:496e − 01). When we combined the risk score and the
factors of age (Supplementary Figure 11(a)-11(b)), sex
(Supplementary Figure 11(c)-11(d)), pathological stage
(Supplementary Figure 12(a)), histologic grade
(Supplementary Figure 12(b)), ECOG (Supplementary
Figure 12(c)), and vascular tumour cell type (Supplementary
Figure 12(d)), we still obtained positive conclusions (all p <
0:05). Based on the risk score of each case and the
corresponding clinical traits (sex, age, and stage), univariate/
multivariate Cox regression analyses were performed as well.
The results in Figures 4(a)–4(f) show that both the stage and
risk score were statistically correlated with the clinical
prognosis of HCC patients. The higher the stage level and
risk score, the worse the prognosis of OS and RFS in the
HCC cases of both TCGA-LIHC and GSE14520 cohorts (all
HR > 1, p < 0:05). Subsequent ROC results indicated that the
stage and risk score factors had good performance in
predicting 1-, 3-, and 5-year survival rates (Supplementary
Figure 13(a)-13(c), AUC > 0:6).

3.5. Tumour Clustering Analysis. TCGA-LIHC samples were
analysed using hub genes to identify two tumour clusters
(Figure 5(a)). Subsequently, we separated these two clusters
of tumours using a PCA approach (Figure 5(b)). Combined
with clinical characteristics, we presented heatmaps of hub
gene expression for different tumour clusters and observed a
significant difference between the two tumour clusters and
stages (Figure 5(c), p = 2:326e − 04). Compared to Cluster 1,
the Cluster 2 group showed high expression levels of FPNA2,
KIF2C, SPP1, and LPCAT1 and a low expression level of
FMO3 (Figure 5(c)). In addition, HCC patients in the Cluster
2 group had a poorer prognosis of OS than those in the Cluster
1 group (Figure 5(d), p = 5:766e − 06). We also conducted
tumour clustering analysis of the GSE14520 cohort and
obtained two similar tumour clusters (Figure 5(e)), which
could also be classified by a PCA approach (Figure 5(f)). The
two clusters were associated with the clinical stage factor
(Figure 5(g), p = 2:74e − 05). Compared with Cluster 1, HCC
patients in Cluster 2 had a worse prognosis for OS and RFS
(Figure 5(h), p = 0:02 for OS; p = 1:575e − 04 for RFS).

3.6. Nomogram and Related Assessments. First, using TCGA-
LIHC training set, we developed a nomogram for predicting the
1-, 3-, and 5-year survival rates of a given case of HCC accord-
ing to the combined factors of risk score, stage, age, and sex. As
shown in Figure 6(a), combining the risk score, stage, age, and
sex information of the selected patients, we were able to predict
the survival rates for 1, 3, and 5 years, which were 0.525, 0.359,
and 0.152, respectively. A high degree of overlap is evident in
the calibration plot curve of Figure 6(b). The values of NRI
and IDI indicated that the prediction effects of the model for
1-, 3-, and 5-year survival time improved after adding the risk
score factor (Figure 6(c), all IDI > 0, NRI > 0, and p < 0:05).
Our DCA data of TCGA-LIHC (Figure 6(d)) and GSE14520
(Supplementary Figures 14(a)-14(b)) further exhibited better
clinical validity in the “age + sex + stage + risk score” group
than in the other groups.
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3.7. Prognostic Risk-Related Differential Gene Analysis. We
used the “limma” R package to identify differentially expressed
genes using high/low-risk grouping in TCGA-LIHC and
GSE14520 (Figures 7(a) and 7(b)). Based on an intersection
analysis, 74 genes negatively associated with high risk and 56
positively associated genes were identified (Figure 7(c)). Using
these differentially expressed genes, we carried out the GO
and KEGG enrichment analyses (Figures 7(d) and 7(e)). These
genes were associated with biological enzyme activity, biological
metabolic processes, or the cell cycle, e.g., “small molecule cata-
bolic process,” “CH-OH group of donors, NAD or NADP as
acceptor,” “glycolysis/gluconeogenesis,” “carbon metabolism,”
“microtubule cytoskeleton organization involved in mitosis,”
“spindle,” or “mitotic spindle.” Additionally, GSEA results
revealed a series of genes related to G1/S, G2/M checkpoints,
and E2F targets (Figure 7(f)).

3.8. Tumour-Infiltrating Immune Cell Analysis. Finally, we uti-
lized a “CIBERSORT” algorithm to obtain the proportions of
22 immune cell populations of each HCC patient, such as “T
cells CD8,” “NK cells activated,” “monocytes,” “macrophages
M0/1/2,” and “dendritic cells activated,” in the high- and
low-risk groups of TCGA-LIHC cohort (Figure 8(a)). Com-
pared with the low-risk group, the proportions of “T cells
CD4 resting” and “mast cells resting” were relatively low in
the high-risk group (Figure 8(b), p < 0:001), while “plasma
cells,” “regulatory T cells (Tregs),” “macrophages M0,” “mac-
rophages M2,” and “neutrophils” were relatively high
(Figure 8(b), p < 0:05). Additionally, we utilized the “Esti-
mate” algorithm to estimate the tumour purity. Even though
we did not observe significant differences in the overall
tumour purity (Figure 8(c), ESTIMATEScore, p = 0:6) and
stromal cell (p = 0:062) ratios between the high- and low-
risk groups, there was a relatively high percentage of immune
cells in the high-risk group compared with the low-risk group
(p = 0:016). Collectively, these results indicated a correlation
between ER prognostic model gene-related high/low risk and
tumour infiltration of immune cells.

4. Discussion

Growing evidence indicates the functional links between
endoplasmic reticulum-related events and the occurrence,
development, and even clinical immunotherapy of cancers
[23–26]. In 2021, Liu et al. published an ER stress- (ERS-)
related HCC prognostic model based on TCGA-LIHC and
ICGC (International Cancer Genome Consortium) datasets
[27]. Five genetic variables, including HDGF, EIF2S1, SRPRB,
PPP2R5B, and DDX11, were narrowed down from 88 ERS
genes by means of a univariate/multivariate Cox regression
approach [27]. In the current study, we focused on the ER
rather than the ERS. For our ER-related prognostic model,
we enrolled the different datasets from the HCC cohorts of
TCGA-LIHC and GSE14520 and mainly utilized the model-
ling strategy approach of Lasso regression and the model effec-
tiveness assessment methods, including ROC, calibration
curves, NRI, IDI, and DCA. Finally, five prognostic gene sig-
natures, SPP1, KIF2C, LPCAT1, KPNA2, and FMO3, were
identified from a total of 1975 ER-related genes, and a high

assessment power was detected for the combined panel. Fur-
thermore, we first identified two tumour clusters by consensus
clustering that were closely correlated with the survival prog-
nosis of HCC patients and provided evidence regarding the
correlation between our ER-related models and a set of events,
including biological enzyme activity, biological metabolic pro-
cesses, cell cycle, and tumour infiltration of immune cells.

Several publications have reported the relationships
between these five ER-related genes (SPP1, KIF2C,
LPCAT1, KPNA2, and FMO3) and cancers. SPP1, located
in the ER, is an enzyme responsible for the dephosphory-
lation of intracellular S1P (sphingosine-1-phosphate) [28,
29]. SPP1 is related to the upregulation of autophagy
and apoptosis upon ER stress [28–30]. High expression
of SPP1 could promote the proliferation of HCC cells
[31]. KIF2C increased the proliferation or migration ability
of HCC cell lines and aggravated HCC progression, indi-
cating a potential therapeutic biomarker for clinical HCC
treatment [32–34]. LPCAT1, as an ER-resident protein,
could participate in the conversion of lysophosphatidyl-
choline into phosphatidylcholine [35]. Highly expressed
LPCAT1 was observed in several types of cancer tissues
compared with normal tissues [35–37]. It was reported
that LPCAT1 affected the phospholipid composition of
HCC cells and modulated the progression of HCC [36,
37]. KPNA2 is involved in the nucleoplasm shuttle process
of various oncoproteins, and highly expressed KPNA2 is
linked to poor prognosis in patients with some kinds of
cancer [38–40]. FMO3 was implicated in the modulation
of cholesterol metabolism [41] and radical production in
the endoplasmic reticulum [42]. It was reported that
FMO3 could participate in the regulation of glucose
metabolism in the liver by reducing lipid-induced ER
stress [43]. Herein, we observed high expression levels of
KPNA2, KIF2C, SPP1, and LPCAT1 genes but low expres-
sion levels of FMO3 in HCC tissues. The KPNA2,
LPCAT1, KIF2C, and SPP2 genes were statistically corre-
lated with pathological stage, histologic grade, ECOG, vas-
cular tumour cell type, and tumour status.

In our study, we evaluated the expression patterns and
potential prognostic significance of five hub genes in HCC
patients within TCGA-LIHC and GSE14520 cohorts. FMO3
presented the opposite result compared to other proteins.
Briefly, HCC patients with high KPNA2, KIF2C, SPP1, and
LPCAT1 expression but low FMO3 expression showed a poor
survival prognosis. By combining the expression features of
the five genes, we observed an improved prognostic value for
OS or RFS for the 1-, 3-, and 5-year survival periods. Positive
conclusions were obtained when adding the factors age, sex,
and pathological stage. In addition, we obtained two clusters
by consensus clustering of ER-related genes for HCC patients
in TCGA-LIHC and GSE14520 cohorts. HCC patients in
Cluster 2 with high KPNA2, KIF2C, SPP1, and LPCAT1
expression and low FMO3 expression showed a worse survival
prognosis than HCC patients in Cluster 1.

To stratify HCC risk, a five-gene-based prognostic signa-
ture model was established by TCGA-LIHC training dataset
and verified by the GSE14520 testing dataset. Good clinical
prognostic competence and survival prediction accuracy were
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observed for ourmodel. Furthermore, themodel-based nomo-
gram is of potential clinical application significance to predict
the survival prognosis of HCC patients. In addition, we per-
formed a series of functional enrichments based on the differ-
entially expressed genes between the high- and low-risk
groups. Due to the links of all five hub genes for risk classifica-
tion and the endoplasmic reticulum, we enriched the terms of
biological enzyme activity or metabolic processes as expected.
KPNA2 may have an impact on the biological behaviours of
HCC by regulating DNA replication and the cell cycle [40].
We observed several enrichments in cell cycle markers, includ-
ing the G1/S and G2/M checkpoints.

Growing evidence supports the point that the tumour
immune microenvironment is essential for the pathological
process of HCC [44–46]. A set of immune cell infiltration-
associated genes reportedly showed a prognostic effect for
HCC patients [33, 47]. KPNA2 expression was also positively
correlated with the immune infiltration levels of B cells in
HCC tissues [48]. In the present study, we investigated the
microenvironmental infiltration feature for the ER model-
based high/low risk groups of HCC cases through two algo-
rithms, namely, “ESTIMATE” and “CIBERSORT.” The
immune cells and stroma are the two main kinds of nontumor
components within the tumour microenvironment [22]. Our
finding of “ESTIMATE” indicated a relatively high infiltration
proportion of immune cells in the high-risk group compared to
the low-risk group. Specifically, we observed a relatively high
fraction of “plasma cells” in the high-risk group compared with
the low-risk group. A single-cell RNA sequencing study
reported that there was a higher infiltration level of “plasma
cells” in tumours of HCC with cirrhosis compared with the
normal controls [49]. There was a poor survival prognosis for
TCGA HCC cases with a high infiltration level of plasma cells
[49]. Similarly, the HCC cases in the high-risk group exhibited
a worse OS or RFS prognosis than those in the low-risk group.

Furthermore, we detected higher infiltration levels of
“macrophages M2/M0” and “regulatory T cells (Tregs)” in
the high-risk group than in the low-risk group. Macrophages
with alternatively activated (M2) phenotypes are implicated
in promoting HCC tumorigenesis [50]. In addition to “macro-
phages M2,” HCC patients in the cluster with enriched “mac-
rophages M0” also exhibited a poor clinical prognosis [51]. A
previous meta-analysis reported the relationship between a
high infiltration status of Tregs and shorter survival time for
HCC patients [52]. These findings may partly explain the
poorer OS prognosis status of HCC cases in the high-risk
group. Our proposed ER-related prognostic signature may
be involved in the immunotherapeutic strategies of HCC.

Even though our ER-related risk model showed a high pre-
diction performance for HCC prognosis, there were still some
limitations. For instance, due to the lack of enough clinical drug
treatment of HCC patients, especially for the GSE14520 cohort,
we cannot adjust the effects of these clinical management fac-
tors. Our five signature-based risk model was developed by
the retrospective investigation of two available sources, which
still merits further validation of multicentre external datasets.
Additionally, more experimental evidence is needed to confirm
the potential functional links between our model and biological
events, especially tumour immunity.

5. Conclusion

Taken together, we integrated the expression matrix of ER-
related genes and clinical traits within both TCGA-LIHC
and GSE14520 cohorts to develop and validate a novel ER-
associated clinical prognostic model of HCC patients, which
contains the combined panel of five hub genes (KPNA2,
FMO3, SPP1, KIF2C, and LPCAT1). Additionally, we plotted
a nomogram with a better clinical survival prediction perfor-
mance, which may serve as a prognostic predictor to help cli-
nicians assess the clinical survival outcomes of HCC patients.
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Supplementary Materials

Supplementary 1. Supplementary Figure 1: univariate Cox
regression analyses of TCGA-LIHC and GSE14520. We con-
ducted univariate Cox regression analyses to identify a set of
HCC prognosis-related candidate genes for TCGA-LIHC OS
(a), GSE14520 OS (b), and RFS (c). Supplementary Figure 2:
validation analysis of the Lasso regression model. Based on
the risk scores of the Lasso regression model, we divided the
HCC patients of GSE14520 into high- and low-risk groups.
The corresponding heatmaps (a), risk profiles (b), survival sta-
tus maps (c), survival curves of OS (d), and RFS (e) are shown.
Supplementary Figure 3: heatmap for the hub gene expression
and clinical traits of HCC patients within TCGA-LIHC
cohort. Supplementary Figure 4: heatmap for the hub gene
expression and clinical traits of HCC patients within the
GSE14520 cohort. Supplementary Figure 5: correlations
between the continuous variable index of clinical traits and
high/low risk. The differences in the continuous variable index
for TCGA cohorts between the high and low groups were ana-
lysed by the wilcox.test: height (a), weight (b), BMI (c), creat-
inine (d), fetoprotein (e), albumin (f), platelet count (g), and
prothrombin time (h). Supplementary Figure 6: correlation
analysis between hub gene expression and the factors of path-
ological stage and age or sex. We combined the expression
matrix and clinical information of five hub genes from
TCGA-LIHC and GSE14520 cohorts and analysed the expres-
sion characteristics for the different pathological stages (a, d)
and age (b, e), or sex (c, f), using kruskal.test or wilcox.test. ∗

p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. Supplementary Figure 7:
correlation analysis between hub gene expression and patho-
logical T/N/M. The expression differences in the five hub
genes in the different pathological T/N/M groups were ana-
lysed by the kruskal.test, followed by the wilcox.test for TCGA
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cohort. (a) FMO3; (b) KIF2C; (c) KPNA2; (d) LPCAT1; (e)
SPP1. Supplementary Figure 8: correlation analysis between
hub gene expression and factors of histologic grade and
ECOG. The expression differences of five hub genes in the dif-
ferent histologic grade (a) or ECOG (b) groups were analysed
by the kruskal.test followed by the wilcox.test for TCGA
cohort. Supplementary Figure 9: correlation analysis between
hub gene expression and three factors. The expression differ-
ences of five hub genes in the different groups of vascular
tumour cell type (a), adjacent hepatic tissue inflammation
(b), and tumour status (c) were analysed by the kruskal.test
and wilcox.test for TCGA cohort. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p
< 0:001. Supplementary Figure 10: prognostic analyses of
hub genes. The survival status of LPCAT1, KPNA2, SPP1,
KIF2C, and FMO3 was analysed, and the corresponding
Kaplan–Meier survival curves were plotted for TCGA-LICH
OS (a), GSE14520 OS (b), and GSE14520 RFS (c). Supplemen-
tary Figure 11: prognostic analysis of high/low risk combined
with age and sex. The survival status of high/low risk com-
bined with the factors of age and sex was estimated, and the
corresponding Kaplan–Meier survival curves were plotted.
TCGA-LICH age (a), GSE14520 age (b), TCGA-LICH sex
(c), and GSE14520 sex (d). Supplementary Figure 12: prognos-
tic analysis of high/low risk combined with the other four fac-
tors. The survival status of high/low risk combined with the
factors of pathological stage (a), histologic grade (b), ECOG
(c), and vascular tumour cell type (d) were estimated, and
the corresponding Kaplan–Meier survival curves were plotted
for TCGA-LICH. Supplementary Figure 13: ROC analysis of
the risk score. Targeting the factors of prognostic risk score,
sex, age, and stage, we conducted ROC analyses for the prog-
nosis of TCGA-LICH OS (a), GSE14520 OS (b), and
GSE14520 RFS (c) for the 1-, 3-, and 5-year survival times.
Supplementary Figure 14: decision curve analyses for
GEO14520. We conducted DCA of GSE14520 OS (a) and
RFS (b) using the three groups of “age + sex,” “age + sex +
stage,” and “age + sex + stage + risk score” for the 1-, 3-, and
5-year survival times, respectively.

Supplementary 2. Table S1: clinical characteristics of HCC
cases for TCGA-LIHC. Table S2: clinical characteristics of
HCC cases for GSE14520.
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