Strain	Transgene	Phenotype
N2	-	Wild type
CB4088	<i>him-5</i> (e1490)	Male worms
CL4176	<i>myo</i> - \mathcal{J}_P ::A β_{1-42} :: + rol-6(su1006)	Rapid paralysis at 23°C [1]
CL2355	$snb-1::A\beta_{1-42} + mtl-2::GFP$	Deficits in chemotaxis, associative learning, and
		thrashing in liquid [2, 3]
CL2122	unc54(vector) + <i>mtl</i> -2::GFP	Phenotype apparently WT. Control strain for
		CL2355 in the study [4]
CL802	<i>smg</i> -1(cc546) + rol-6(su1006)	Control strain for CL4176 [5]
CL2166	<i>gst-4</i> _P ::GFP	Expression of GFP by improve <i>gst-4</i> function [6]
EG1285	<i>unc-47P</i> ::GFP	Expression of GFP in all GABAergic neurons [7]
BL5717	<i>ida-1</i> _P ::GFP	Expression of GFP in 4 motor neurons in ventral
		nerve cord [8]
UA57	dat-1 _P ::GFP+ dat-1 _P ::CAT-2	GFP expression in cephalic (CEP), and
		anterior deirid (ADE) dopaminergic neurons
		[9]
NC571	unc-4 _P ::snb-1::GFP	Punctate GFP expression observed in ventral
		nerve cord, VC4 and VC5 [8]
NUCM0001	$snb-1::A\beta_{1-42} + mtl-2::GFP + unc-$	Expression of GFP in all GABAergic neurons of
	47 _P ::GFP	Aβ-induced AD nematodes in the study
NUCM0002	$snb-1::A\beta_{1-42} + mtl-2::GFP + ida$ -	Expression of GFP in 4 motor neurons in ventral
	1 _P ::GFP	nerve cord, of A β -induced AD nematodes in the
		study
NUCM0003	$snb-1::A\beta_{1-42} + mtl-2::GFP + dat$	GFP expression in CEP, and ADE neurons of A β -
	<i>1_P</i> ::GFP+ <i>dat</i> - <i>1_P</i> ::CAT-2	induced AD nematodes in the study
NUCM0004	$snb-1::A\beta_{1-42} + mtl-2::GFP + unc-$	Punctate GFP expression observed in ventral
	<i>4_P</i> :: <i>snb-1</i> ::GFP	nerve cord,, VC4 and VC5 of A β -induced AD
		nematodes in the study

Note: NUCM0001, NUCM0002, NUCM0003, NUCM0004 are generated by crossing in the study, other strains are obtained from the *Caenorhabditis* Genetics Center (https://cgc.umn.edu/).

References:

[1] Link CD, "Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans," Proc Natl Acad Sci U S A, vol. 92, no. 20, pp. 9368-72, 1995.

[2] Wu Y, Wu Z, Butko P et al, "Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans," J Neurosci, vol. 26, no. 50, pp. 13102-13, 2006.

[3] Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y, "Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta," J Alzheimers Dis, vol. 19, no. 2, pp. 681-90, 2010.

[4] Chen XY, Liao DC, Sun ML, Cui XH, Wang HB, "Essential Oil of Acorus tatarinowii Schott Ameliorates Aβ-Induced Toxicity in Caenorhabditis elegans through an Autophagy Pathway," Oxid Med Cell Longev, vol. 2020, p. 3515609, 2020 Dec 22.

[5] Fonte V, Dostal V, Roberts CM, "A glycine zipper motif mediates the formation of toxic β -amyloid oligomers in vitro and in vivo," Mol Neurodegener, vol. 6, no. 1, pp. 61, 2011.

[6] Wang X, Li H, Liu Y et al, "Velvet antler methanol extracts (MEs) protects against oxidative stress in Caenorhabditis elegans by SKN-1," Biomed Pharmacother, pp. 121:109668, 2020.

[7] Ruan Q, Qiao Y, Zhao Y et al, "Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans," J Ethnopharmacol, vol. 177, pp. 101-10, 2016.

[8] Estevez AO, Mueller CL, Morgan KL et al, "Selenium induces cholinergic motor neuron degeneration in Caenorhabditis elegans," Neurotoxicology, vol 33, no. 5, pp. 1021-32, 2012.

[9] Wang C, Saar V, Leung KL, Chen L, Wong G, "Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans," Neurobiol Dis, vol. 109, no. Pt A, pp. 88-101, 2018.