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Background. m6A modification plays a key role in the development of hepatocellular carcinoma (HCC). Angiogenesis-related
genes (ARGs) are increasingly being used to define signatures predicting patient prognosis. The correlations between m6A-
related ARGs (mARGs), clinical outcomes, and the immune and oxidative stress landscape are unclear. Methods. Univariate
Cox regression analysis of 24 mARGs yielded 13 prognostic genes, which were then analyzed for their enriched functions and
pathways. After LASSO regression analysis, a prognostic signature was constructed and its reliability validated. Patients were
grouped by risk using the signature score, and then the clinical prognosis, the immune landscape, and the oxidative stress
landscape between the two groups were analyzed. Drug sensitivity analysis was performed to identify potentially efficient
therapeutic agents. Results. Thirteen prognosis-related mARGs consistently clustered patients with HCC into four groups with
significantly different prognosis. Four mARGs (EGF, ITGA5, ITGAV, and PLG) were used to construct a prognostic signature
and define risk groups. Among them, EGF, ITGA5, and ITGAV, were defined as prognostic risk factors, while PLG was defined
as a prognostic protective factor. Compared to low-risk patients, HCC patients in the high-risk group had a poorer prognosis
and showed significant differences in clinical characteristics, enriched pathways, tumor stemness, and tumor
microenvironment. The drug sensitivity of oxaliplatin and LDK-378 negatively correlated with ITGAV expression. Ten drugs
had lower IC50s in the high-risk group, indicating better antitumor efficacy than in the low-risk group, with epothilone B
having the lowest IC50 value. Conclusions. A prognostic model consisting of mARGs can be used to predict the prognosis of
HCC patients. The risk grouping of our model can be used to reveal differences in the tumor immune microenvironment of
patients with HCC. Further in-depth study may provide new targets for future treatment.

1. Introduction

Primary liver cancer, with approximately 906,000 new cases
and 830,000 deaths in 2020, has become the sixth most com-
mon malignancy in terms of incidence, placing a heavy bur-
den on individuals and healthcare systems worldwide [1].
Hepatocellular carcinoma (HCC) represents 75% of primary
liver cancers [2]. With the growing evolution and ameliora-
tion in therapeutic strategies [3], the survival rate of HCC
patients has improved [4]. However, HCC is prone to metas-

tasis and recurrence, with 40–70% of patients experiencing
recurrence after liver resection [5]. The 5-year survival rate
is less than 20%, which seriously affects the therapeutic out-
come and the quality of life of the survivors [6]. Given the
complex pathogenesis of HCC and the general unpromising
prognosis, it is urgently necessary to build an effective signa-
ture to forecast the prognosis and to discover new potential
therapeutic agents.

N6-methyldosine (m6A) modification occurs in approx-
imately one-fourth of mRNA sequences and is one of the
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most widely used RNA methylation modifications in mam-
mals [7, 8]. m6A modifications can participate in the regula-
tion of RNA metabolism by participating in translational
regulation, noncoding RNA processing, and mRNA decay
[9–11]. m6A regulators can be divided into three categories
according to their functions: writers, erasers, and readers,
which participate in HCC through multiple mechanisms
[12]. ALKBH5-mediated IGF2BP1-dependent m6A demeth-
ylation reduces the stability of LYPD1 mRNA, and aberrant
downregulation of ALKBH5 promotes LYPD1 expression
and induces oncogenic behavior of HCC [13]. METTL14
also promotes the stability of HNF3γ mRNA through
IGF2BPs-dependent m6A modification, resulting in the
upregulation of HNF3γ expression, which has been shown
to play an important role in HCC stem cells differentiation
and in regulating the sensitivity of HCC cells to sorafenib
treatment [14]. Under hypoxic conditions in HCC, upregu-
lated YTHDF1 contributes to the translation of autophagy-
related genes ATG2A and ATG14, thereby promoting
autophagy and autophagy-associated malignancy [15].
WTAP-mediated m6A modification leads to posttranscrip-
tional repression of ETS1, and WTAP can inhibit ETS1
expression by interfering with the binding of HuR protein
to ETS1 mRNA [16]. The m6A modification is also exten-
sively involved in the regulation of noncoding RNAs.
METTL3 increases the stability of Linc00958 transcript and
upregulates its expression. Subsequently, Linc00958 regu-
lated miR-3619-5p/HDGF axis to promote HCC progres-
sion [17]. Similarly, IGF2BP1 and METTL3/14 promote
the stability of circMDK and circRNA-SORE, respectively,
to upregulate their expression and thus play a role in the
development of HCC [18, 19]. Unlike most circular RNAs,
circMAP3K4 was found to have coding potential, and
IGF2BP1 recognizes circMAP3K4 N6-methyladenosine
modification and promotes its translation, thereby protect-
ing HCC cells from cisplatin exposure [20]. Furthermore,
bioinformatics analysis suggests that m6A regulators may
be closely related to the prognosis of HCC patients [21].

Angiogenesis, which provides sufficient oxygen and
nutrients for tumors, is the basis for tumor growth. In tumor
tissue, after local degeneration of the basement membrane
around the capillaries, endothelial cells persistently invade
to form three-dimensional scaffolds that connect with other
similar structures to develop new blood vessels [22]. Angio-
genesis in tumor tissue is regulated by several growth factors
and chemokine signals [23]. Specific knockdown of VEGF in
HCC has been reported to inhibit endothelial cell function
and suppress angiogenesis [24]. Furthermore, VEGF can
function as a prognosis, recurrence, and treatment response
predictor for HCC [25]. Since angiogenesis serves important
functions in the development of HCC, abnormal expression
of angiogenesis-related genes (ARGs) may be helpful in
anticipating the prognosis of HCC patients.

In many previous studies, a close link between m6A and
angiogenic processes has been revealed. For example, Qiao
et al. [26] found that the m6A writer, METTL3, was closely
associated with vasculogenic mimicry (VM) in HCC tissues.
They further demonstrated that METTL3 could promote
VM formation and malignant progression by improving

the translation efficiency of YAP1 mRNA. Zhao et al. found
that loss of ALKBH5 promotes postischemic angiogenesis by
regulating the posttranscriptional stabilization of WNT5A in
an m6A-dependent manner [27]. In a variety of diseases,
m6A regulation and angiogenic processes are closely related
to oxidative stress. The regulation of angiogenic processes by
oxidative stress through VEGF-dependent and non-VEGF-
dependent signaling pathways plays an important role in a
variety of chronic diseases and tumors [28, 29]. Many stud-
ies have determined that oxidative stress during cancer may
regulate m6A methylation through the accumulation of reac-
tive oxygen species, while at the same time, the regulation of
m6A can affect the biological function of cancer cells by
influencing the levels of oxidative stress [30, 31]. Numerous
HCC-related prognostic signatures have previously been
constructed [32]. However, studies related to m6A-related
angiogenesis in HCC are lacking, and no relevant prognostic
signature has been developed that effectively predicts patient
prognosis and reveals the landscape of oxidative stress in
patients.

Therefore, our objective was to identify the m6A-related
ARGs (mARGs) in HCC and to construct a validated prog-
nostic signature. The prognostic signature was then applied
to classify HCC patients according to the risk scores. We
performed a signature-related prognosis, gene set enrich-
ment analysis (GSEA), tumor microenvironment (TME),
immune checkpoint gene, and clinical correlation analysis,
and we also evaluated potential oncologic therapies.

2. Materials and Methods

2.1. Data Download and Processing. The mRNA sequencing
information, clinicopathological characteristics data, and
HCC genetic mutations were acquired from the Cancer
Genome Atlas (TCGA) database [33], which consisted of
374 HCC samples and 50 adjacent normal samples. These
424 HCC samples were analyzed for differences in ARGs
and m6A coexpression, of which 364 samples containing
survival information were used for signature construction.
The samples were randomly grouped, with 183 HCC sam-
ples as the training set and the remainder of the cases as
the test set. The DNA copy number variations (CNV) data
from these patients was obtained from the UCSC Xena web-
site [34].

2.2. Identification of mARGs. We first searched the Gene-
Cards Suite website [35] using the keyword “angiogenesis”
to obtain genes encoding protein related to angiogenesis
and obtained the scores calculated by the website for the cor-
relation between genes and angiogenesis. We selected ARGs
with a score>5 for subsequent analysis. We obtained differ-
entially expressed ARGs using the “limma” package, and
the statistical significance was set to |logFC|≥1 and P <
0:05. The differential expression heat map was constructed
using the “pheatmap” package. After obtaining data regard-
ing the expression of m6A regulator genes (including m6A
writers: METTL3, METTL14, METTL16, WTAP, VIRMA,
ZC3H13, RBM15, RBM15B; m6A readers: YTHDC1,
YTHDC2, YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1,
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Figure 1: Continued.
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LRPPRC, HNRNPA2B1, IGF2BP1, IGF2BP2, IGF2BP3,
RBMX; and m6A erasers: FT0 and ALKBH5) through the
package “limma,” we conducted a coexpression analysis of
ARGs and 23 regulator genes of m6A by performing the
“Wilcox test,” and |cor|>0.3 and P < 0:05 values were
defined a correlation between genes. In addition, the coex-
pression network was visualized using “dplyr,” “ggalluvial,”
“ggplot2,” and “igraph.” Protein–protein interaction (PPI)
analysis was performed on the String website [36] to uncover
interactions between mARGs. The screened mARGs were
then used for signature construction.

2.3. Acquisition of Prognosis-Related mARGs and Consensus
Clustering. After obtaining the expression of mARGs and

survival information of the samples, the “survival” package
was used to perform a univariate Cox regression analysis
and obtain the prognosis-related mARGs and their corre-
sponding coefficients. The packages “limma” and “Consen-
susClusterPlus” were used to read gene expression data
and consensus cluster analysis to select the optimal k-value
to divide the sample into several clusters, and the heat map
showed variations in clinical information and gene expres-
sion between these clusters.

2.4. Analysis of Prognosis-Related mARG Enrichment. To
gain added insight into prognosis-related mARGs, the R
software and the “RCircos” package were used to reveal the
CNV of prognosis-related mARGs and to illustrate the
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Figure 1: Acquisition of mARGs acquisition and genetic mutational landscape. (a and b) Heat map and volcano plot show differentially
expressed ARGs. “N” stands for normal samples and “T” stands for HCC tumor samples. Red dots indicate upregulation of gene
expression, green dots indicate downregulation of gene expression, and black dots indicate no significant change in gene expression. (c)
The 24 mARGs screened by coexpression analysis between ARGs and m6A regulator gene. (d) The PPI network among the mARGs. (e)
The network of mARGs correlations. The red line and the blue line indicate positive and negative correlations in gene expression,
respectively. The red and blue dots indicate up- and downregulation of gene expression, respectively (P < 0:0001). (f) Mutation
landscape of mARGs. (g) The CNV gain and loss frequencies among mARGs. (h) Distribution of the mARGs location on chromosomes.
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location of prognosis-related mARGs on the chromosome.
The “maftools” package was used to indicate the mutations
of prognosis-related mARGs in HCC samples. The packages
“clusterProfiler,” “(http://org.Hs.eg/).db,” “ggplot2,”
“enrichplot,” and “GOplot” were used for Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis.

2.5. Construction of the Prognostic Signature and Subsequent
Validation. Several prognostic mARGs were obtained from
univariate Cox analysis, and then the packages “survival,”
“caret,” “glmnet,” “survminer,” and “timeROC” were used
to perform LASSO regression analysis in the training set to
further filter signature genes. Based on the expression and
coefficient values of the signature genes, the risk score of
each sample was obtained using the following formula:

Risk score = 〠
n

i=1
Coefficient ið Þ ∗ Expr ið Þð Þ: ð1Þ

The median risk score of the training set is served as the
cutoff point for the risk subgrouping of the training set, the
test set, and the entire set. The “survival” and “survminer”
packages were used for the survival analysis of training, test,
and entire sets. We separated the samples containing clinical
information into the training set, and the test set only in the
survival analysis, and in other analyses related to the gene
signatures, the whole sample was also evaluated. In addition,
the packages “rms,” “regplot,” “timeROC,” and “survival”
were used to develop a nomogram. Our nomogram perfor-
mance was evaluated using ROC curves.

2.6. Signature-Related Gene Set Enrichment Analysis, Cancer
Stemness Analysis, and Genetic Mutation Status. Gene set
enrichment analysis (GSEA) was performed using GSEA
software (in version 4.0.3) to identify enriched KEGG signal-
ing pathways in high- and low-risk groups based on all gene

expression profiles and the “c2.cp.kegg.v7.5.symbols” gene
set database. The count of permutations was set to 1000. Sig-
nificantly enriched pathways were defined as those with P
< 0:05 or false discovery rates (FDR)<0.25. The packages
“limma,” “ggplot2,” “ggpubr,” and “ggExtra” were used to
perform a correlation analysis between risk scores and
HCC cell stemness. We use the “maftools” package to obtain
mutation waterfall maps for the two risk groups after obtain-
ing the mutation data from the HCC samples.

2.7. Signature-Related Immune Landscape Analyses. To con-
firm the potential of our signature in revealing TME, we
used the “limma” package, the CIBERSORT [37] algorithm,
which can calculate the relative content of 22 cell types by
analyzing the gene expression data of the samples, and the
“vioplot” package to visualize the variation in immune cell
abundance between the two risk groups. Differences in
immune-related pathways between the two risk groups were
analyzed using the packages “limma,” “GSVA,” and “GSEA-
Base.” The immune score, the stromal score, and the esti-
mate score were calculated for each sample using the
package “estimate” [38]. And the packages “reshape2,”
“ggplot2,” “ggpubr,” and “ggExtra” were used to reveal dif-
ferences in the immune score and stromal score between
the high- and low-risk groups and the relationship between
risk score, immune score, and the stromal score. The pack-
ages “limma,” “reshape2,” “ggpubr,” “ggplot2,” and “corr-
plot” were used to show the expression of immune
checkpoint genes in the two risk groups and their correlation
with signature genes.

2.8. Drug Screening and Drug Correlation Analysis. We
downloaded drug experimental data of human cells from
the CellMiner website [39] and used the “limma” and
“impute” packages to perform sensitivity analysis between
signature genes and drugs. In addition, gene expression pro-
files of HCC samples, information on risk grouping, and
“pRRophitic” package [40] were used to predict semi-
inhibitory concentrations (IC50) of drugs based on the drug
list included in the Genomics of Drug Sensitivity in Cancer
(GDSC) database [41]. Lower IC50 meant that the drug is
more effective in treating cancer.

2.9. Collection of Patient Tissue Specimens and Quantitative
Real-Time Polymerase Chain Reaction (qRT-PCR). Fifteen
pairs of human primary tumor tissue and normal tissue were
obtained from patients who had not undergone radiotherapy
prior to surgical resection. All patients had signed an
informed consent form prior to providing specimens. Our
study was approved by the Human Subjects Committee of
the Xijing Hospital. After excision, fresh tissues were trans-
ferred simultaneously to liquid nitrogen for subsequent
RNA extraction. Total RNA from human tissues was
extracted using TRIzol (Invitrogen). The RNA was then
reverse transcribed into cDNA using the PrimeScript RT
kit (Takara), and qPCR was performed using SYBR Premix
Ex Taq II (Takara) for real-time PCR detection (Bio-Rad).
Supplementary Table 1 lists all primers used in PCR. The

Table 1: Univariate Cox regression analysis screened 13
prognostic-related mARGs.

Gene
Univariate Cox

HR (95% CI) P value

ANGPT1 1.407895 (1.08147-1.832847) 0.011024

ANGPT2 1.171274 (1.022637-1.341514) 0.022416

PLG 0.998565 (0.997166-0.999966) 0.044633

HGF 1.065979 (1.010572-1.124423) 0.01897

TGFB1 1.009251 (1.002462-1.016085) 0.007491

VASH1 1.338667 (1.086052-1.65004) 0.006264

ITGAV 1.017021 (1.004166-1.030041) 0.009308

SRC 1.046818 (1.017093-1.077412) 0.001851

TGFB2 1.041059 (1.007923-1.075286) 0.014764

PTK2 1.07161 (1.016875-1.129291) 0.009722

ITGA5 1.0117 (1.003588-1.019878) 0.004629

SERPINE1 1.001974 (1.000184-1.003768) 0.030664

EGF 1.470273 (1.162034-1.860275) 0.001323
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Figure 2: Continued.
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expression levels of the four signature genes were
normalized to those of GADPH.

2.10. Statistical Analysis. R software (in version 4.0.3) was
used to perform statistical analysis. P values <0.05 indicated
differences were considered statistically significant.

3. Results

3.1. Acquisition and General Landscape of mARGs. The flow
diagram of our study is illustrated in Supplementary
Figure S1. Overall, 108 ARGs encoding proteins with
score>5 were obtained from the GeneCards Suite website.
Of these, 45 ARGs were differentially expressed in HCC
and normal tissues (Figures 1(a) and 1(b), Supplementary
Table 2). Then, 24 mARGs were obtained after
coexpression analysis with m6A regulator gene
(Figure 1(c), Supplementary Table 3). Figure 1(d)
illustrates the PPI analysis results of 24 mARGs through
the STRING website tool to reveal the interactions between
mARGs, and Figure 1(e) illustrates the constructed
network of coexpression relationships. We revealed genetic
mutations in 24 mARGs in HCC (Figure 1(f)). Fifty-four
of the 371 HCC samples (14.56%) showed mutations in
mARG, with HGF being the most mutated gene among the
24 mARG, followed by EGF, SRC, and EFNB2. In addition,
Figures 1(g) and 1(h) show the CNV alterations as well as
the altered loci on the chromosomes of the 24 mARGs. As
the copy number of the 24 mARGs changed significantly,
we assumed that CNV had a regulatory role in the
expression of mARGs.

3.2. Screening and Analyzing Prognosis-Related mARGs in
HCC. We excluded samples without clinical prognostic data
and conducted a univariate Cox analysis of the 24 mARGs
with prognosis, identifying 13 prognostic mARGs
(Table 1). The results of GO analysis are illustrated in
Figures 2(a) and 2(b), and the biological process (BP) analy-

sis revealed the regulation of epithelial cell migration, epithe-
lial cell migration, cell-substrate adhesion, and epithelium
migration. Cellular component (CC) analysis mainly
included the lumen of the platelet alpha granule, the lumen
of the platelet alpha granule, the secretory granule, and the
lumen of the cytoplasmic vesicle lumen. Molecular function
(MF) analysis revealed growth factor activity, receptor ligand
activity, signaling receptor activator activity, and growth fac-
tor receptor binding. Furthermore, the KEGG analysis iden-
tified the signaling pathways involving these genes, including
proteoglycans in cancer, the PI3K-Akt signaling pathway,
focal adhesion, the MAPK signaling pathway, and the
Rap1 signaling pathway (Figures 2(c) and 2(d)).

3.3. Consensus Clustering Classified Patients according to
Prognostic mARGs and Relevant Analyses. Based on the sim-
ilarity of expression of prognosis-related mARGs, HCC
patients were classified into different clusters using a consen-
sus clustering method. K = 4 was found to have the best clus-
ter stability for K = 2 to 9 (Figure 3(a)). The patients in these
four clusters differed in prognosis, with cluster 3 showing the
best prognosis and cluster 4, the worst prognosis
(Figure 3(b)). The differential gene expression and clinical
information between these four clusters were shown on the
heat map in Figure 3(c). There were significant differences
between the four clusters with respect to age, sex, grade,
stage, and depth of infiltration. Overall, cluster 3 had a
higher proportion of male, grades 1-2, stages I-II, and T1-2
patients than other clusters; cluster 1 had the highest pro-
portion of patients aged ≤65; and cluster 4 had a lower pro-
portion of males, stages I-II, and T1-2 patients than other
clusters. PLG and SERPINE1 were significantly more
expressed in clusters 3 and 4, respectively, than in other clus-
ters (Figure 3(d)).

3.4. Construction of the Prognostic Signature and Subsequent
Validation. A further LASSO regression analysis was per-
formed using 13 prognostic mARGs, and 4 mARGs (PLG,
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Figure 2: Functional and pathway analyses of prognosis-related mARGs. Bubble plot (a) and circle plot (b) of GO analysis of prognosis-
related mARGs. Bubble plot (c) and circle plot (d) of KEGG analysis of prognosis-related mARGs.
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Figure 3: Continued.
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ITGAV, ITGA5, and EGF) were selected to construct the sig-
nature (Figures 4(a) and 4(b), Supplementary Table 4). For
each sample, the risk score was calculated using the
formula: Risk score = ð0:010992486 ∗ ITGAVÞ + ð
0:010221660 ∗ ITGA5Þ – ð0:000042854 ∗ PLGÞ + ð
0:198147611 ∗ EGFÞ. Figure 4(c) shows the univariate Cox
analysis results for the mARGs in the signature. ITGAV,
ITGA5, and EGF in the signature were risk factors for
HCC patients, and PLG was a protective factor for HCC.
Based on risk grouping and patient survival information,
we performed a Kaplan–Meier survival analysis using
training, test, and entire sets (Figures 4(d)–4(f)). The
results indicated that the prognosis of the high-risk group
was worse. The ROC curves for the training, testing, and
entire sets used 1 year as the endpoint. The AUC was
0.723 for the training set, 0.671 for the test set, and 0.697
for the entire set, and the concordance index of the risk
score was higher than that of other indicators
(Supplementary Figure S2A). In addition, the univariate
Cox analysis and the multivariate Cox analysis revealed a
remarkable association between the risk score and the
prognosis of HCC patients (Supplementary Figure S2B, C).
Taken together, these results indicated that our signature
was more effective in predicting prognosis compared to
other clinical indicators. Subsequently, we developed a
nomogram (Figure 4(g)) for overall survival prediction
using clinical indicators and risk scores. The AUCs of the
nomogram predicting overall survival at 1, 3, and 5 years
were 0.729, 0.696, and 0.848, showing its good
performance (Figure 4(h)). The Sankey diagram
demonstrated the distribution of patients in four clusters,

two risk groups, and clinical outcomes (Supplementary
Figure S2D).

3.5. Signature-Related Gene Set Enrichment Analysis, Cancer
Stemness, Clinical Characteristics, and Genetic Mutation
Analyses. To obtain additional information on the signaling
pathways that differ in the two risk groups, we performed
GSEA analysis and identified the five most enriched func-
tional and signaling pathways in each of the two groups
(Figure 5(a)). The high-risk group was enriched in endocy-
tosis, cancer pathways, regulation of actin cytoskeleton,
and ERBB signaling pathways, and the low-risk group was
enriched primarily in bile acid biosynthesis, drug metabo-
lism cytochrome P450, fatty acid metabolism, retinol metab-
olism, and metabolism of xenobiotics by cytochrome P450.

We also evaluated the potential relationship between sig-
nature and HCC stemness and between signature and oxida-
tive stress. Overall, HCC stemness was negatively related to
the risk score (R = −0:19, P = 4e − 04) (Figure 5(b)), indicat-
ing that patients with HCC with a lower risk score had more
significant stem cell characteristics and lower levels of cell
differentiation. In terms of oxidative stress levels, the expres-
sion of genes related to oxidative stress-related genes (i.e.,
NFE2L2, NMOX1, TP53, NOS2, and NOS3) were signifi-
cantly higher in the high-risk group than in the low-risk
group (Supplementary Figure S3).

We created a heat map and box diagrams to reveal the
relationship among signature genes, clinical characteristics,
and risk groups. As illustrated in the heat map
(Figure 5(c)), in the high-risk group, ITGAV, ITGA5, and
EGF were highly expressed, while PLG was lowly expressed.
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Figure 3: Consensus clustering for prognosis-related mARGs and related analyses. (a) Based on the consensus clustering matrix, patients
with HCC were classified into four clusters. (b) Kaplan-Meier survival curves showed differences in prognosis between the four clusters.
(c) Heat map and clinicopathologic characteristics among the four clusters. (d) Box plot of differential expression of prognostic-related
mARGs in the four clusters. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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There were significant differences in sex and tumor grade
between the two risk groups, with the ratio of female patients
and the patient ratio of grades 3-4 significantly higher in the
high-risk group. Risk scores were prominently different
among the 4 clusters (Figure 5(d)), with the lowest risk score
in cluster 3 and the highest risk score in cluster 4, which is
consistent with the results of survival analysis of different
clusters described above. When the patients were grouped
by sex and grade, female and grades 3-4 patients had mark-
edly higher risk scores (Figures 5(e) and 5(f)). Regarding the
relationship between signature genes and clinical character-
istics, PLG expression was significantly upregulated in male
patients, aged over 65 years of age, T1-2, and grades 1-2;
ITGA5 expression was significantly upregulated in female
patients and grades 3-4; and EGF expression was signifi-
cantly upregulated in grades 3-4 patients (Supplementary
Figure S4A–D).

We then analyzed differences in somatic mutation char-
acteristics between the two risk groups in HCC samples
(Figures 5(g) and 5(h)). The mutation rates for TTN, TP53,
CTNNB1,MUC16, and PCLO were greater than 10% in both
groups. The mutation rates of CTNNB1, TTN, and PCLO
were higher in the low-risk group, while TP53 mutations
were more common in the high-risk group.

3.6. Signature-Related Immune Infiltration and Functions,
TME, and Immune Checkpoint Gene Analyses. Figure 6(a)
reveals the abundance of 22 types of immune cells in the
two risk groups, of which the abundance of plasma cells,
CD8+ T cells, γδT cells, and monocytes in the high-risk
group appeared considerably lower, while the abundance of
resting memory CD4+ T cells and M0 macrophages in the
high-risk group was significantly higher. The risk score was
positively associated with the abundance of activated den-
dritic cells, M0 macrophages, and neutrophils and negatively

associated with the abundance of γδT cells, plasma cells, and
CD8+ T cells (Supplementary Figure S5A–F). Analysis of
differences in scores for the 13 immune functions based on
ssGSEA indicated that CCR, check point, MHC class I, and
parainflammation scores were higher in the high-risk
group, and the cytolytic activity score was higher in the
low-risk group (Figure 6(b)). Figure 6(c) shows the
correlation of each signature gene with 22 immune cells:
EGF expression was negatively related to naive B cell
abundance; ITGA5 expression was positively related to M0
macrophage and neutrophil abundance and negatively
related to monocyte, plasma cell, and γδT cell abundance;
ITGAV expression was positively correlated with activated
dendritic cell, M0 macrophage, and resting NK cell
abundance and negatively correlated with plasma cell,
CD8+ T cell, T cells follicular helper, and γδT cell
abundance; and PLG expression was positively correlated
with naive B cell abundance, while M1 macrophage
abundance was positively correlated with memory B cell,
activated dendritic cell, and M0 macrophage abundance.
Furthermore, the stromal score and the estimate score in
the high-risk group were markedly higher, indicating that
the patients had lower tumor purity. Furthermore, the risk
score was positively associated with the stromal score and
the immune score (Figures 6(d)–6(f)).

We also examined the expression of the immune check-
point gene expression. As shown in Supplementary
Figure S5G, most immune checkpoint-related genes were
expressed at higher levels in the high-risk group, leading to
the hypothesis that patients in the high-risk group may
experience more benefit from immune checkpoint
inhibitors (ICIs). We analyzed the relationship between 3
immune checkpoint genes (PD-1, PD-L1, and CTLA4) and
signature genes (Figure 6(g)). PLG was negatively related
to all three immune checkpoint genes, ITGA5 was
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Figure 4: The mARG-signature construction and subsequent validation. (a and b) Four signature genes screened by LASSO regression
analysis. (c) Forest plot of the LASSO regression analysis of the four signature genes. (d–f) Kaplan–Meier survival curves, ROC curves,
and distribution of survival status and risk score of the training set, the test set, and the entire set. (g) Nomogram for forecasting the 1-,
3-, and 5-year overall survival of HCC patients. (h) The ROC curves of the nomogram indicate its good performance.
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positively related, EGF was positively related to PD-L1, and
ITGAV was positively related to CTLA4 and PD-L1.

These results revealed correlations between signature
scores and the TME, immune-related pathways, and
immune checkpoint genes.

3.7. Drug Correlation Analysis and Drug Screening. CellMi-
ner was employed to identify drugs associated with signa-
ture genes. We found that the drug sensitivity of
oxaliplatin and LDK-378 was negatively correlated with
ITGAV expression (Figures 7(a) and 7(b)), suggesting that
they may exert better antitumor effects in patients with

lower ITGAV expression. Furthermore, Figures 7(c)–7(l)
illustrated that embelin, bleomycin, epothilone B, midos-
taurin, CGP.082996, doxorubicin, MK.2206, GSK269962A,
PF.562271, and gemcitabine had remarkably lower IC50 in
the high-risk group, indicating that they were more effec-
tive at lower concentrations in the high-risk group. Fur-
thermore, epothilone B may have the most potent
antitumor efficacy in the high-risk group among the 10
drugs, as its IC50 was the lowest.

3.8. Detection and Validation of Signature Genes in Tissues.
Furthermore, we detected the expression levels of four
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Figure 5: Signature-related functional enrichment, clinical characteristics, and gene mutation analysis. (a) The GSEA analysis result of the
five most abundant KEGG pathways enriched in the high- and low-risk groups. (b) Analysis of the correlation between cancer cell stemness
and risk scores. (c) Heat map of clinical characteristics between the two risk groups. Box plots of the differences in the risk score between (d)
different groups, (e) different sexes, and (f) different grades. (g and h) Waterfall plot demonstrating the top 20 most mutated genes and
mutation types in the two risk groups. ∗∗P < 0:01 and ∗∗∗P < 0:001.
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Figure 6: Signature-related immune landscape. (a) Violin plots show differences in the abundance of immune cells between the two risk
groups. (b) Differences in immune-related functions between the two risk groups based on ssGSEA. (c) Correlation of 4 signature genes
with immune cells. (d) Differences in the TME score between the two risk groups. (e) The relationship between the immune score and
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Figure 7: Antitumor drugs screening. (a) Correlation analysis of ITGAV expression and oxaliplatin drug sensitivity. (b) Correlation analysis
of ITGAV expression and LDK-378 drug sensitivity. (c–l) 10 drugs with a lower IC50 in the high-risk group according to the GDSC
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signature genes in HCC and normal tissues by qRT-PCR.
The qRT-PCR data from 15 patients showed a statistically
significant increase in the expression of EGF, ITGA5, and
ITGAV and a decrease in the expression of PLG in HCC tis-
sues (Figures 8(a)–8(d)). Examining the signature genes at
the tissue expression level verified the precision of our bioin-
formatic analysis.

4. Discussion

Angiogenesis is a vital aspect in cancer progression, as it pro-
vides the nutrients necessary for tumor growth. In HCC
angiogenesis, many abnormally expressed genes participate
in the regulation of this process. Increased secretion of
VEGFA directly promotes angiogenesis [42]. Furthermore,
the expression of HIF-1α is significantly upregulated in
HCC, which in turn can transcriptionally upregulate the
expression of VEGFA, TGFB, and EPO genes to stimulate
angiogenesis [43]. The m6A modification, one of the most
widespread RNA modifications, has been reported to regu-
late gene expression related to angiogenesis. In gastric can-
cer, IGF2BP3, an m6A reader, positively regulates HIF-1α
gene and promotes angiogenesis through m6A regulation
[44] and can also regulate the VEGF gene to facilitate angio-
genesis in colon cancer [45]. Furthermore, METTL3 could

regulate the expression of the TEK and VEGFA genes to pro-
mote angiogenesis and exacerbate bladder cancer progres-
sion [46]. More importantly, previous studies have shown
that angiogenic factors can interact with a variety of immune
cells, such as tumor-associated macrophages, implying that
angiogenesis is closely linked to tumor immunity [47].
Although the critical contribution of angiogenesis in HCC
progression is evident and angiogenesis-related genes are
widely modified by m6A in a variety of diseases, most exist-
ing studies have only investigated the mechanisms of regula-
tion of ARG by a specific m6A regulator [27]. However,
there is a lack of studies on mARGs as signature genes to
predict prognosis, reveal TME characteristics, and screen
for drugs in patients with HCC.

In this study, after differential expression analysis, coex-
pression analysis, and univariate Cox regression analysis, we
obtained 13 prognostic mARGs, and then GO and KEGG
analyses were performed. HCC patients were classified into
four clusters according to the expression pattern of prognos-
tic mARGs using an unsupervised consensus clustering
approach. There were significant differences in clinical char-
acteristics and prognosis between the 4 clusters, with cluster
4 having the worst prognosis and cluster 3 having a relatively
good prognosis. Then, using LASSO regression analysis, we
constructed a 4-gene signature that included PLG, ITGAV,
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Figure 8: Expression of four signature genes in HCC and normal tissues (n = 15). (a) EGF. (b) ITGA5. (c) ITGAV. (d) PLG. ∗∗P < 0:01 and
∗∗∗P < 0:001.
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ITGA5, and EGF. PLG was downregulated in HCC and was a
protective factor for prognosis, while ITGAV, ITGA5, and
EGF were upregulated in HCC and were considered risk
factors for prognosis. In particular, previous studies revealed
that some of these genes were strongly involved in HCC.
EGF was reported to be highly expressed in HCC and
enhanced the metastatic ability of HCC cells through the
regulation of fibronectin [48]. ITGAV regulates the invasive
ability of HCC cells [49], and ITGA5 facilitated HCC pro-
gression and was related to worse OS [50].

As shown by the results of the ROC curves, the C-
index, and the Cox regression analysis, our model was able
to independently predict the prognosis of HCC patients,
and its efficacy was superior to other conventional predic-
tion methods. Based on the expression of the signature
genes, the risk scores were calculated and used for the risk
groups. In general, prognosis was significantly worse in the
high-risk group, with a higher proportion of female and
poorly classified patients. The GSEA results showed that
the high-risk group was more enriched in cancer-related
pathways, while the low-risk group was more enriched in
metabolic synthesis-related pathways, which could partially
explain the different prognosis of patients between the two
groups.

The signature is also tightly related to oxidative stress
and the immune landscape. In the high-risk group, the
expression of genes associated with oxidative stress was
significantly higher than in the low-risk group, suggesting
that patients in the high-risk group may have higher over-
all levels of oxidative stress, which may be closely related
to their poorer prognosis. In terms of immune infiltration,
the high-risk group had more abundant resting memory
CD4+ T cells and M0 macrophages, while the high-risk
group had fewer plasma cells, CD8+ T cells, γδT cells,
and monocytes than the low-risk group. Among those
immune cells with significantly changed content, plasma
cells have been shown to have a positive or neutral effect
on the prognosis of most cancers [51], and high expres-
sion of plasma cell signature genes in nonsmall cell lung
cancer immunotherapy is associated with better prognosis
[52]. A higher abundance of CD8+ T cells is associated
with a better prognosis [53, 54], and therefore reduced
levels of CD8+ T cells may promote tumor progression.
γδT cells can suppress tumors in direct or indirect ways
[55]; for instance, IFN-γ and TNF-α, which inhibit tumor
growth, are sourced from γδT cells [56, 57]. Regarding
immune functions, cytolytic activity and type II IFN
enrichment decreased significantly in the high-risk group,
while MHC class I and parainflammation enrichment
increased significantly. Cytolytic activity is positively rele-
vant to the prognosis in melanoma and HCC [58, 59],
and IFN-γ, the sole member of the type II INF family
[60], performs pivotal antitumor functions [61–63].
Phagocytosis of macrophages is crucially regulated by
MHC class I, and tumors with high expression of MHC
class I are more resistant to anti-CD47 antibody therapy
[64]. Furthermore, the stromal score and the estimate
score were higher in the high-risk group than in the
low-risk group, and the risk score was positively correlated

with the stromal score and the immune score, indicating
that the high-risk group had a higher TME score and
lower tumor purity. Collectively, the variation in the con-
tent of these immune cells and immune functions between
the two groups suggests a connection between the risk
score and the TME.

ICIs have been used increasingly in cancer treatment
and have improved prognosis [65, 66]. The high expres-
sion of immune checkpoint genes means that targeted
therapy with immune checkpoint may be beneficial. The
prognosis for patients in the high-risk group is worse,
but the expression of its immune checkpoint gene was
higher. The therapeutic efficacy of existing PD-1 and/or
CTLA4 inhibitors was not different between the two
groups; however, numerous emerging clinical trials evalu-
ating ICIs in HCC are underway (e.g., targeting TIGIT,
CD80, and LAG-3) [67], painting a brighter prospect for
the treatment of patients in high-risk groups. Furthermore,
to suggest potential new strategies for the treatment of
HCC, we conducted a drug correlation analysis between
signature genes and drugs and then found that the drug
sensitivity of oxaliplatin and LDK-378 was negatively cor-
related with ITGAV expression. Oxaliplatin is a standard
treatment option for HCC [41], and LDK-378, a prospec-
tive inhibitor of anaplastic lymphoma kinase [68], was
shown to promote apoptosis and suppress the proliferation
of HCC cells [69]. The 10 anti-HCC drugs screened in the
GDSC database, including embelin, bleomycin, epothilone
B, midostaurin, CGP.082996, doxorubicin, MK.2206,
GSK269962A, PF.562271, and gemcitabine, had lower
IC50 in the high-risk group, demonstrating their potential
superior performance against cancer in the high-risk group
and offering the possibility of reducing the risk of progres-
sion in patients with HCC. Of these, epothilone B had the
lowest IC50 value.

This study presented some limitations. Our data was
obtained from a public database whose sample selection bias
may affect the accuracy and generalizability of our prognos-
tic signature. Therefore, further extensive validation may be
desired to confirm the robustness of the signature. In future,
retrospective studies of public data should be combined with
prospective studies.

5. Conclusions

We investigated the interaction and prognostic value of
mARGs in HCC and the association of these genes with
the tumor microenvironment. Our results suggest that the
signature constructed here is a promising instrument for
forecasting the prognosis of HCC patients and has a unique
role in revealing the tumor immune microenvironment and
thus possibly providing prospective therapeutic targets for
improving the effectiveness of immunotherapy in HCC.
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