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Background. Bone nonunion is a serious complication of fracture. This study explored the differentially expressed lncRNAs
(DELs) and mRNAs (DEGs) and identified potential lncRNA-mRNA interactions in bone nonunion. Methods. We extracted
total RNA from three bone nonunion and three bone union patient tissue samples. RNA sequencing was performed to detect
DELs and DEGs between bone nonunion and union tissue samples. The lncRNAs and genes with absolute log2-fold change
ðlog 2FCÞ > 1 and adjusted p value < 0.05 were further chosen for gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis. lncRNA and targeted mRNA interaction networks were constructed. Results. We
observed 179 DELs and 415 DEGs between the bone nonunion and union tissue samples. GO analysis indicated that DELs
and DEGs were mainly enriched in the chondroitin sulfate proteoglycan biosynthetic process. DELs and DEGs were enriched
in “ECM-receptor interaction” and “Staphylococcus aureus infection” KEGG pathways. Several potential lncRNA-mRNA
interactions were also predicted. Conclusions. This study identified bone nonunion-associated lncRNAs and mRNAs using
deep sequencing that may be useful as potential biomarkers for bone nonunion.

1. Introduction

Bone nonunion, a serious complication of fracture, occurs in
approximately 5–10% of patients with bone fractures [1–7].
Infected bone nonunion is caused by many factors, includ-
ing fractures and accidents. Bone nonunion may lead to
delayed union and amputation, which further contributes
to functional limitation, disability, and poor quality of life
[1, 2]. The most common causes of bone nonunion include
infection, insufficient local blood supply, separation of frac-
ture ends, and insufficient fracture stabilization [8, 9]. The
use of antibiotics has improved the treatment of bone infec-
tions, but bone nonunion remains an obstacle in the repair
of damaged bone [3, 4].

Currently, nonunion is a serious challenge in the treat-
ment of bone loss associated with bone infections. The

process of bone remodeling includes the breakdown and
resorption of bone and the formation of new bone. Osteo-
clasts are responsible for bone breakdown and resorption,
whereas osteoblasts are responsible for new bone formation.
Osteoclasts attach to the older bone area, secrete acidic sub-
stances to dissolve minerals, secrete protease to digest the
bone matrix, and form bone resorption lacuna. Subse-
quently, osteoblasts migrate to the resorbed site and secrete
the bone matrix that is then mineralized to form new bone.
The balance between osteoclastic and osteogenic processes is
substantial in maintaining the normal bone mass. However,
this balance is compromised because resorption replaces
formation in case of bone infection, resulting in bone loss
or bone nonunion [10]. A previous study indicated that dif-
ferentially expressed miRNAs might be a potential diagnos-
tic and therapeutic biomarker for infected tibial nonunion
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[11]. Additionally, the data from the GEO dataset indicated
that ADAMTS18 and TGFBR3 genes were differentially
expressed in nonunion skeletal fracture [12]. Moreover, the
coinjection of BMP and DCN into the bone nonunion area
could improve the induction of bone formation [13, 14].
However, the exact molecular mechanisms underlying bone
nonunion remain unclear at present. Therefore, it is critical
to explore the etiological mechanism of bone nonunion
and to develop new targets for the diagnosis and treatment
of infected bone nonunion.

Long noncoding RNAs (lncRNAs) are a class of RNAs
longer than 200 nucleotides. Previous studies have indicated
that lncRNAs can act as master regulators, affecting target
gene expression levels [15]. Growing evidence suggests that
lncRNAs are involved in the epigenetic regulation of gene
expression, transcription, cell death, and other important
biological processes [16, 17]. Previous reports showed that
many lncRNAs are related to osteoclast and osteoblast cell
functions. For instance, lncGHET1, lncRhno1, lncTUG1,
and lncUCA1 are identified to be involved with osteoblast
proliferation and differentiation [18–21], whereas lncXIST
[22], lncNeat1 [23], and lncCRNDE [24] are reported to be
associated with osteoclast differentiation. However, at pres-
ent, there is insufficient information on specific lncRNAs
involved in bone nonunion.

In this study, we obtained bone nonunion and union
tissue samples from patient fracture sites. We performed
transcriptome sequencing of these tissues to determine the
differentially expressed lncRNAs (DELs) and differentially
expressed mRNAs (DEGs) and identify potential lncRNA-
mRNA interactions. Our findings may provide new insights
to further elucidate the pathogenesis of, and develop bio-
markers for, bone nonunion.

2. Methods

2.1. Sample Collection. The samples used in this study were
obtained from three patients with normal fracture healing
and three patients with bone nonunion (Table 1). The spec-
imens were collected from the normal healing fracture site
and scar tissue approximately 3mm in size at the bone non-
union site. The diagnosis of bone nonunion was based on
the definition given by the Food and Drug Administration.
First, the fractures went unhealed for six months and there
was no further healing trend within three months. Clinical
X-ray examination was performed to confirm bone non-
union, and surgery further confirmed the formation of a
small amount of scar tissue and callus at the fracture end
or with only a small amount of scar tissue. None of the
patients included in the study had infections, tumors, auto-
immune diseases, bone nonunion caused by pathological
fractures, history of hormone use, and history of smoking.

2.2. Total RNA Extraction. We extracted total RNA using
TRIzol reagent following the manufacturer’s protocol. The
absorbance ratio at 260/280 nm (A260/A280) was measured
using SmartSpec Plus to determine the concentration and
purity of the isolated RNA. The integrity of the extracted
RNA was confirmed using electrophoresis (1.5% agarose

gel). The RNA was then transcribed into first-strand cDNA
using the First-Strand cDNA Synthesis Kit (TaKaRa) for
performing gene expression analysis.

2.3. lncRNA and mRNA Sequencing. We used 3μg RNA per
sample for sample preparation. Following ribosomal RNA
(rRNA) depletion, the RNA was fragmented and a cDNA
library was constructed using the VAHTS Total RNA-seq
(HMR) Library Prep Kit. Libraries were sequenced on an
Illumina HiSeq 2500 platform according to the manufactur-
er’s instructions, and 125 bp paired-end reads were pro-
duced (Table S1 & S2). DELs and DEGs between samples
were identified using the Cuffdiff program in the Cufflinks
package. As cutoff criteria, p values < 0.05 and jlog 2FCj
> 1 were used.

2.4. Analysis of DELs and DEGs. Gene Ontology (GO)
Enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis for these DEGs and predicted
target genes for DELs were conducted using the clusterPro-
filer R package. We obtained all the gene sets used in these
functional annotations from the DAVID database. p values
were adjusted by Benjamini & Hochberg methods, and
FDR < 0:05 was defined as significantly enriched.

2.5. Prediction of Cis- and Trans-Regulated Target Genes of
DELs. lncRNAs directly regulate adjacent target genes in
the genome and this is termed cis-acting regulation. Accord-
ing to the taxonomic annotation information of lncRNA,
neighboring known genes are predicted to be potential cis-
regulated target genes. lncRNAs that are located far from
their target genes play an indirect regulatory role through
sequence complementarity, which is referred to as trans-
acting regulation. We used RepeatMasker to search the
Alu repeat structure of lncRNAs and 3′-UTRs. We used
BLASTN sequence alignment to search for complementary
sequence regions of lncRNAs and 3′-UTRs. The thermo-
dynamic stability and binding ability of complexes formed
by lncRNAs and 3′-UTRs were predicted by RNAplex and
RIsearch, with an aim to predict trans-regulated target
genes of lncRNAs.

3. Results

3.1. Boxplot and Principal Component Analysis (PCA)
Diagram. Boxplots describe data using five statistics,

Table 1: Basic characteristics of enrolled patients.

Sample Sex Age (years) Location Healing status

No. 1 Male 41 Left humerus Union

No. 2 Male 45 Right tibia Union

No. 3 Male 24 Right femur Union

No. 4 Male 47 Right humerus Nonunion

No. 5 Male 46 Left tibia Nonunion

No. 6 Male 25 Left femur Nonunion
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including the minimum, first quartile (25%), median (50%),
third quartile (75%), and maximum. Through boxplots, we
can gauge the symmetry of the data and the degree of disper-
sion of the distribution. As shown in Figure 1(a), we
observed that the gene expression level of samples 1–5 was
stable, while sample N6 was different, which may have been
caused by a more serious fracture in patient 6.

It is possible to observe the similarity between samples
through PCA plots. The closer the distance between samples
on the PCA diagram, the closer the expression trend of sam-
ple genes is. As shown in Figure 1(b), the PCA diagram
revealed that the expression features of samples 1–5 were
similar, while sample N6 was different, which may be caused
by a more serious fracture in patient 6.

3.2. Differential Expression of mRNAs and lncRNAs. As
shown in Figure 2, a volcano plot of DELs between normal
fracture healing and bone nonunion tissue samples indicated
167 upregulated lncRNAs and 12 downregulated lncRNAs
(Figures 2(a) and 2(b)). Additionally, 195 DEGs were upreg-
ulated and 220 DEGs were downregulated (Figures 3(a) and
3(b)). Figures 2(c) and 3(c) are cluster heatmaps of DELs
and DEGs, respectively, indicating a large difference in the
expression between normal fracture healing and bone
nonunion tissue samples. The top 10 DELs and DEGs were
indicated in Tables 2 and 3, respectively. Additionally, we

annotated and classified the studied lncRNAs and they were
mainly divided into intergenic lncRNAs, sense lncRNAs,
intronic lncRNAs, antisense lncRNAs, sRNA host lncRNAs,
enhancer lncRNAs, and bidirectional lncRNAs, accounting
for 75.1%, 15.3%, 3.4%, 2.8%, 1.7%, and 0.6%, respectively
(Figure S1).

3.3. Function and Pathway Predictive Analysis of DELs and
DEGs. The biological processes (BP), cellular components
(CC), and molecular functions (MF) of DEGs and DELs
were analyzed using the DAVID database. GO analysis of
DELs in terms of MF showed carbohydrate derivative trans-
porter activity and Se-containing compound transmem-
brane transporter activity as most enriched. GO analysis of
DELs in terms of CC was enriched in the CD95 death-
inducing signaling complex in cellular components and
smooth muscle contractile fiber. GO analysis of DELs in
terms of BP was predominantly enriched in the regulation
of peptidase activity and dermatan sulfate proteoglycan met-
abolic process (Figure 4).

GO analysis of DEGs for MF was primarily enriched in
MHC class II receptor activity and chemokine activity, CC
showed enrichment in cell surface and plasma membrane
components, and BPs showed developmental processes and
cell migration (Figure 5).
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Figure 1: Transcript expression abundance and PCA plot of samples. (a) Boxplot of known transcript expression abundance; (b) PCA plot
of the sample.
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The KEGG analyses for DELs (Figure 6) and DEGs
(Figure 7) were also performed. The significant KEGG func-
tional enrichment of DELs was ECM-receptor interaction
(Figure 8), viral carcinogenesis (Figure 9), drug metabolism,

cytochrome P450, p53 signaling pathway, nucleotide-
binding oligomerization domain- (NOD-) like receptor sig-
naling pathway, viral myocarditis, peroxisome proliferator-
activated receptor (PPAR) signaling pathway, metabolism of
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Figure 2: Differential expression of lncRNAs (DELs) between bone nonunion and union tissues. (a) Volcano plot showing DELs; (b) 179
DELs between bone nonunion and union group comprising 12 downregulated lncRNAs and 167 upregulated lncRNAs; (c) heatmap of
DELs. T1, T2, and T3: bone union group; T4, T5, and T6: bone nonunion group.
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xenobiotics by cytochrome P450, and riboflavin metabolism.
The significant KEGG functional enrichment of DEGs was
valine, leucine and isoleucine biosynthesis, Staphylococcus
aureus infection (Figure 10), prion diseases, riboflavin
metabolism, viral myocarditis, malaria, rheumatoid arthritis
(Figure 11), complement and coagulation cascades, asthma,
legionellosis, intestinal immune network for IgA production,
allograft rejection, graft-versus-host disease, tumor necrosis

factor (TNF) signaling pathway, legionellosis, epithelial cell
signaling inHelicobacter pylori infection, type I diabetes melli-
tus, systemic lupus erythematosus, pertussis, and autoimmune
thyroid disease.

3.4. lncRNA Cis- and Trans-Regulated Genes. Differential
expression of lncRNA cis- and trans-regulated genes was
predicted. As shown in Figure 6, lncRNA ENST0000
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Figure 3: Differential expression of genes (DEGs) between bone nonunion and union tissues. (a) Volcano plot showing DEGs; (b) 415 DELs
between bone nonunion and union group comprising 220 downregulated genes and 195 upregulated genes; (c) heatmap of DEGs. T1, T2,
and T3: bone union group; T4, T5, and T6: bone nonunion group.
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Table 2: Top 10 differentially expressed lncRNAs.

Gene ID Gene Locus log2 (fold change) p value

Upregulated lncRNAs

ENST00000485567 FN1 2:216225162-216300895 30.494 0.0017

ENST00000605228 RP1 1:182403027-182403596 5.023756571 0.00845

ENST00000603389 WI2 2:16330518-16330662 4.381871684 0.044

ENST00000452690 RP11 X:40122130-40146973 3.95783 0.01945

ENST00000420417 RP11 8:99973655-99980512 3.94771 0.0366

ENST00000366224 RP11 X:47157250-47158120 3.9219 0.02685

ENST00000331301 AP002387.1 11:71093646-71134469 3.90025 0.02675

ENST00000550756 OLA1P3 12:56263831-56266386 3.88772 0.0173

ENST00000475135 DPPA4 3:109044987-109056419 3.79153 0.0377

ENST00000603371 RP11 X:35882974-35887748 3.78534 0.0057

Down-regulated lncRNAs

ENST00000463060 COL6A1 21:47401650-47424964 −33.8802 0.00215

ENST00000546357 EMP1 12:13349649-13369708 −11.3747 0.0211

ENST00000577048 AF001548.6 16:15005407-16444465 −3.90021 0.0262

ENST00000563492 CDH11 16:64977655-65160015 −3.54485 0.04475

ENST00000522659 FABP4 8:82351670-82445510 −3.4878 0.0273

ENST00000573866 SNORD3D 17:19015312-19015949 −2.80835 0.01495

ENST00000550557 NR4A1 12:52416615-52453291 −2.6977 0.04875

ENST00000497048 KLF4 9:110247132-110252763 −2.3589 0.01295

ENST00000566457 CTD 8:22532053-22541522 −1.9616 0.0247

ENST00000569449 RP11 4:156655599-156658214 −1.05101 0.0372

Table 3: Top 10 differentially expressed genes.

Gene ID Gene Locus log2 (fold change) p value

Upregulated genes

ENST00000457143 ATP5J 21:26931715-27589700 45.5374 0.04015

ENST00000539409 FAM60A 12:31433517-31479992 11.9547 0.03395

ENST00000401325 AC009695.1 8:21351538-21351627 11.40504571 0.044

ENST00000582836 AC003035.1 X:14093909-14094010 10.67193906 0.044

ENST00000365209 Y_RNA 1:247458136-247458243 9.618411199 0.044

ENST00000363299 RNU5D-1 1:45196726-45196842 8.430795412 0.03395

ENST00000435777 COL22A1 8:139600477-139926249 5.3695 0.0358

ENST00000226284 IBSP 4:88720732-88733074 4.97665 5:00E − 05
ENST00000324559 ANO5 11:22214721-22304903 4.81686 0.0002

ENST00000361131 PPP1R14C 6:150464211-150571493 4.57736 0.00285

Down-regulated genes

ENST00000505243 RPS3A 4:152020724-152246795 −142.886 0.0414

ENST00000502527 VCAN 5:82767283-82878122 −17.498 0.015

ENST00000455022 UTRN 6:144606290-145174170 −13.8992 0.0163

ENST00000390603 IGHV3-15 14:105992939-107283280 −5.23362 0.00945

ENST00000512158 CXCL14 5:134895266-134970564 −5.00246 0.02945

ENST00000326245 ITLN1 1:160846328-160854960 −4.95648 0.0061

ENST00000390600 IGHV3-9 14:105992939-107283280 −4.88897 0.01665

ENST00000492446 IGKV1D-16 2:90139077-90139580 −4.76505 0.01705

ENST00000390598 IGHV3-7 14:105992939-107283280 −4.73485 0.0062

ENST00000343267 APOD 3:195295572-195311076 −4.44718 5:00E − 05
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classification; green, red, and blue indicated molecular function (MF), cell component (CC), and biological process (BP), respectively.
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0453060 cis-regulates COL6A1, lncRNA ENST00000577048
cis-regulates MYH11, lncRNA ENST00000606343 cis-
regulates BCAN, etc. (Figure 12). Additionally, several
lncRNA trans-regulated genes were reported, including
lncRNA UCSC_TCONS_00017121 trans-regulating RBP1,
MLPL44, MTFMT, and TIPIN (Figure 13).

4. Discussion

With the development of sequencing technology, tran-
scriptome sequencing has been used to understand a variety
of diseases [25, 26]. Wei et al. used an miRNA expression
profile of bone nonunion and union tissues to find nine
upregulated and nine downregulated miRNAs [27]. Long
et al. reported 557 differentially expressed miRNAs in bone
nonunion tissues and further explored that miR-381 can
modulate human bone mesenchymal stromal cell osteogen-
esis [28]. The results obtained in different transcriptome
sequencing studies may vary greatly, which may be related
to different sequencing technologies, samples, and sequenc-
ing methods. Previous studies indicated that lncRNAs
achieve their functions in tumors through a wide range of
mechanisms [29–31]. However, lncRNAs have been rarely
studied in orthopedics, especially with respect to bone non-
union [32], thus limiting the detection and treatment of
bone nonunion to a certain extent.

In this study, transcriptome sequencing was performed
on bone tissue samples collected from long bones (tibia,
femur, and humerus) of patients with bone nonunion and
normal bone union. We detected and analyzed 179 DELs
and 415 DEGs. GO analysis showed that DELs were primar-
ily enriched in carbohydrate derivative transporter activity
in MF, CD95 death-inducing signaling complex in CC, and
regulation of peptidase activity in BP. The DEGs were
mainly involved in MHC class II receptor activity for MF,
cell surface, and developmental processes for CC and
BP. The KEGG pathway enrichment of the DELs showed
the ECM-receptor interaction pathway and viral carcino-
genesis pathway. The KEGG pathway enrichment in
DEGs showed the S. aureus infection pathway and rheu-
matoid arthritis pathway. The ECM-receptor interaction
pathway primarily functions through three ECM proteins,
including collagen, fibronectin, and laminin. Laminin is
involved in osteogenesis and promotion of bone defect
repair [33, 34]. Studies have suggested that collagen type
XV may be involved in ECM organization early in the
osteogenesis process, a prerequisite for promoting subse-
quent mineral matrix deposition [35]. Immunohistochem-
ical and transcriptomic studies have shown the expression
and dynamic regulation of fibronectin in several stages of
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fracture healing [35, 36]. Single-cell RNA sequencing of
the injury site revealed an early increase in mesenchymal
progenitor cell (MPC) genes associated with cell adhesion
pathways and ECM receptor interactions. The ECM cre-
ates a microenvironment with a MPC differentiation bias
closer to a specific stiffness role in tissues [37–40]. For
example, a rigid environment that mimics the natural
bone favors differentiation into osteoblasts [41], whereas
a softer matrix promotes the development of adipocyte
fate [42, 43].

lncRNAs can cis-regulate the transcription of adjacent
protein-coding genes, thereby regulating the expression of
such genes and participating in developmental and other
biological processes associated with them. Cis-regulation
refers to the transcriptional activation and expression
regulation of noncoding RNAs to adjacent mRNAs. In this
study, we found that lncRNA ENST00000453060 may cis-
regulate COL6A1. Previous studies have indicated that
genetic deletion of COL6A1 impairs osteoblast connections
and communication [44]. COL6A1 plays a substantial role

Figure 8: KEGG pathway of ECM-receptor interaction. Red indicated significantly different expression genes in the bone nonunion group
compared with bone union group. Organism-specific genes or pathways were colored green.

Figure 9: KEGG pathway of viral carcinogenesis. Red indicated significantly different expression genes in the bone nonunion group
compared with the bone union group. Organism-specific genes or pathways were colored green.
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Figure 10: KEGG pathway of staphylococcus aureus infection. Red indicated significantly different expression genes in the bone nonunion
group compared with the bone union group. Organism-specific genes or pathways were colored green.

Figure 11: KEGG pathway of rheumatoid arthritis. Red indicated significantly different expression genes in the bone nonunion group
compared with the bone union group. Organism-specific genes or pathways were colored green.
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in osteoblasts, and lncRNA ENST00000453060 may
regulate osteoblasts via cis-regulation of COL6A1.
Additionally, our previous study confirmed that lncRNA
ENST00000563492 could promote the osteogenesis-
angiogenesis coupling process in bone marrow stromal
cells [45].

lncRNA trans-regulation is the regulation of distal
mRNA transcription. lncRNAs can regulate the expression
of distant genes by binding to enhancers and promoters.
lncRNAs regulate the activity of bound proteins or RNAs
in the cytoplasm or nucleus in a dose-dependent manner.
The lncRNA UCSC_TCONS_00017121 trans-regulates
RBP1. Previous studies have shown that RBP1 promotes
differentiation of osteoblasts [46]. The lncRNA UCSC_

TCONS_00017121 may also regulate osteoblasts via cis-
regulating COL6A1.

There were certain limitations in the present study. First,
no validation assays, including qPCR and histological analy-
sis, were performed to confirm the differential expression,
thereby demanding the need for further experimental stud-
ies. Second, patient matching, including differences in ages
of enrolled patients and differences involving sites of sample
collection from bone nonunion tissues, was not well han-
dled. Third, only 6 patients were enrolled in this study, the
results from which need to be confirmed in a further study
with greater numbers of samples. Fourth, the sample size
of this study was relatively small and the results need to be
interpreted with caution.
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Figure 12: The cis-regulated target gene network diagram of differentially expressed lncRNAs. Red represented lncRNA and blue
represented the target gene.
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5. Conclusions

A total of 179 DELs and 415 DEGs were identified between
bone nonunion and bone union tissue samples. All of these
lncRNAs and mRNAs may be related to the occurrence
and development of bone nonunion. GO, KEGG, and regu-
latory analysis for these lncRNAs and mRNAs were per-
formed to detect their potential functions. This study
identified potential biomarkers for bone nonunion, but a
validation cohort is still essential to confirm the applicability
of these biomarkers.
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