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N6-Methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes, regulating RNA metabolism
(export, stability, translation, and decay) in cells through changes in the activity of writers, erasers, and readers and ultimately
affecting human life or disease processes. Inflammation is a response to infection and injury in various diseases and has
therefore attracted significant attention. Currently, extensive evidence indicates that m6A plays an essential role in
inflammation. In this review, we focus on the mechanisms of m6A in inflammatory autoimmune diseases, metabolic disorder,
cardio-cerebrovascular diseases, cancer, and pathogen-induced inflammation, as well as its possible role as targets for clinical
diagnosis and treatment.

1. Introduction

With the increasing RNA modification mapping technique,
hundreds of modifications have been found in RNA that,
taken together, represent the posttranscriptional regulatory
mechanisms. RNA modifications are responsible for regu-
lating gene translation in a precise and detailed spatiotem-
poral manner. Among them, significant attention has been
focused on methylation modification. N6-Methyladenosine
(m6A) chemical modifications involve addition of an extra
methyl to the adenylate 6-position N atom in a specific
sequence (i.e., RRACH), and they are widely found distrib-
uted in mRNA and ncRNA [1]. m6A is the most abundant
RNA modification in mammalian cells [2–4]. It is esti-
mated that about 0.1%–0.4% of the adenosine in RNA
carries an m6A modification, with each transcript normally
containing one to three m6A-modified sites [4]. Addition-
ally, the nucleotide fragments resulting from degradation
of m6A-modified RNA also have a certain signaling effect
and can activate the immune response [5]. Taken above,
it can be concluded that m6A plays important roles in reg-
ulating all cell biological processes. Furthermore, m6A is

involved in necrosis, apoptosis, and autophagy in cells,
which can eventually lead to the development of inflam-
matory diseases [6].

Inflammation is a double-edged sword that is common
in various diseases [7, 8]; on the one hand, inflammation
fights infection or tissue damage [9, 10], and on the other
hand, it could become excessive and cause autologous
damage [11]. Recent extensive studies on autoimmune dis-
eases, metabolic diseases, cardio-cerebrovascular diseases,
and even cancer have indicated that inflammation contrib-
utes more to these diseases [12–15]. Moreover, m6A has an
essential role in regulating inflammation [16–19]. Recent
studies exploring the relationship between m6A and inflam-
mation have resulted in novel insights. In this review, we
summarize the mechanisms of m6A in several inflammatory
diseases, as well as its possible role in exploring new thera-
pies from the perspective of epigenetics.

2. An Overview of N6-Methyladenosine (m6A)

The participation of methylases (writers), demethylases
(erasers), and reader proteins (readers) is required in m6A
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methylation. Methyl is added or removed by writers or
erasers to regulate RNA methylation. Readers recognize
alterations in methylation and then play regulatory func-
tions in RNA stability, decay, translation, and nuclear output
(Figure 1). Finally, m6A affects the course of cellular life and
influences the occurrence and development of diseases.

2.1. Writers. N6-Methyladenosine methylation in adeno-
sine is modified by highly conserved RNA methyltrans-
ferase complexes, including METTL3, METTL14, WTAP,
RBM15, KIAA1429, METTL16, and ZC3H13. METTL3
and METTL14 contain SAM-binding motifs and form stable
heterodimers [3, 20]. METTL3 acts as a catalytic subunit,
while METTL14 recognizes RNA substrates [21]. At the
same time, WTAP and KIAA1429 are responsible for the
formation of the complex, and RBM15 is involved in the
initial recruitment of the complex to the target site in mRNA
[22]. As intensive research on m6A has been conducted,
more novel methylases have been discovered, such as
ZC3H13 and METTL16. Recent studies have shown that
ZC3H13 bridges the gap between the aptamers RBM15 and
WTAP [23], and METTL16 is an active m6A methyltransfer-
ase in human cells, which mainly methylates snRNA and
intron sites in pre-mRNA [24]. Moreover, two independent
studies discovered that rRNA was also subject to m6A
modification. The METTL5–TRMT112 complex is responsi-
ble for human 18S rRNA m6A modification [25], while
ZCCHC4 is involved in modification of 28S rRNA [26].

2.2. Erasers. N6-Methyladenosine methylation reversal has
been found to be mainly mediated by two demethylases,
FTO and ALKBH5. FTO was originally found to be associ-
ated with obesity and is the first m6A demethylase to be
discovered in vitro, in early 2011 [27]. Mechanistically,
FTO first oxidizes m6A to intermediate N6-hydroxymethyla-
denosine (hm6A), which is then converted to N6-formylade-
nosine (f6A) and, finally, into adenosine [28]. However, it
has been reported that FTO can not only remove m6A
methylation but also reverse m6Am modification with
greater efficiency [29]. Shortly after this role of FTO was
confirmed, the second mammalian m6A demethylase,
ALKBH5, was identified [30]. Unlike FTO, ALKBH5 directly
converts m6A to adenosine in the reverse reaction and
without intermediates [31]. Interestingly, both FTO and
ALKBH5 are Fe2+ and α-ketoglutarate-dependent dioxygen-
ase and belong to the ALKBH family; it has been suggested
that more ALKBH family proteins or other proteins with
similar structures are involved in the demethylation process,
resulting in more diverse means for regulating m6A methyl-
ation. With the development of structural biology, there may
be numerous demethylases still waiting to be discovered.

2.3. Readers. The m6A reader protein is a major player in
molecular functions, which mainly includes members of
the YTH protein family, IGF2BPs, eIF3, hnRNPs, and
Prrc2a. Different reader proteins are distributed in different
locations in cells. Nuclear m6A readers include YTHDC1
and hnRNPs. Cytoplasmic m6A readers include YTHDF1/
2/3, YTHDC2, and IGF2BP1/2/3. YTHDC1 recruits splicing

factors SRSF3 to regulate the splicing of mRNA [32] as well
as affect nuclear output, the decay of specific transcripts
[33], and noncoding RNA-mediated gene silencing [34].
hnRNPA2B1 and hnRNPC are also the major reader proteins
in the nucleus. hnRNPA2B1 regulated pre-mRNA splicing
and promotes primary miRNA processing [35], while
hnRNPC only influences pre-mRNA splicing [36, 37]. More-
over, there is a study which indicated that hnRNPG may also
be the reader protein of m6A [38], which needed to be further
confirmed. YTHDC2 mainly affects the translation efficiency
of mRNA [39]. YTHDF1 improves translation efficiency
by recruiting translation initiation factors in HeLa cells
[21, 32]. However, the binding of YTHDF2 to mRNA
accelerates mRNA degradation [40]. YTHDF3 regulates the
translation or decay of mRNA depending on whether it inter-
acts with YTHDF1 or YTHDF2 [21]. IGF2BPs enhance
mRNA stability and translation [41]. Interestingly, IGF2BPs
are also able to interact with ncRNA [42], but the regulatory
mechanism needs to be further studied [35].

Additionally, eIF3 [43] and Prrc2a [44] are also essential
readers. ELAVL1 [45] and G3BPs [46] have been found to
repel the binding of m6A adenosine to stable mRNA, which
may present more interesting competitive functions in the
m6A reading process.

3. Inflammation

Inflammation is the basis of various physiological and
pathological processes in humans and animals. Usually,
inflammation is an autoadaptive response which is triggered
by infection or tissue damage [47, 48]. Furthermore, new
interdisciplinary disciplines such as “immune metabolism”
have emerged.

3.1. Inflammation Initiation. According to the origin of
inflammation, inflammatory substances can be divided
into two categories: exogenous inducers and endogenous
inducers. Exogenous inducers mainly include biological,
physical, and chemical factors, while endogenous inducers
mainly refer to autoantibodies that induce I–IV autoim-
munity and cause varying degrees of inflammation. This
in turn leads to the activation of inflammatory mediators.

Inflammatory mediators are molecules that play an impor-
tant regulatory role in inflammation, and they are mainly
derived from blood vessels and cells. Cytogenic inflammatory
mediators mainly include vasoactive amines, arachidonic acid
metabolites, leukocyte products, cytokines, and platelet activa-
tor. Plasma-derived inflammatory mediators mainly include
kinin, complement, and the coagulation system.

Generally, inflammation can be classified as acute or
chronic based on the course of the inflammation. The degree
of inflammation varies according to the stage of a disease.
For instance, inflammation is chronic from the beginning
in some diseases such as atherosclerosis [49], obesity [50],
and cancer [51]. However, acute and chronic inflammation
can also coexist, which means that the inflammation is
constantly recurring and recovery is difficult, such as in the
case of rheumatoid arthritis (RA), multiple sclerosis (MS),
and inflammatory bowel disease (IBD). Unfortunately,
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Figure 1: The processes of RNA m6A methylation, demethylation, and regulation. m6A is read by readers and regulates almost all RNA
activities, such as splicing, export, translation, decay, and stabilization.

3Oxidative Medicine and Cellular Longevity



the mechanisms of these diseases remain unclear [51],
but inflammation promotes their progression. Through
increased research into inflammation, people have attempted
to unravel the molecular mechanisms behind it.

3.2. Typical Inflammation Signaling Pathways. Abnormal
inflammatory responses are being considered as a key factor
in human disease. IL-6 is a pleiotropic proinflammatory cyto-
kine, which is an important modular for the transition from
acute phase to chronic phase of inflammation. Interestingly,
IL-6/IL-6R/gp130 consists of a hexameric complex and acti-
vates three essential signaling pathways including MAPK,
JAK/STAT3, and PI3K [52] (Figure 2). These pathways
are closely associated with cancer, multiple sclerosis, rheu-
matoid arthritis, inflammatory bowel disease, Crohn’s dis-
ease, and Alzheimer’s disease. In route 1, JAK activates
Ras/Raf and subsequently causes hyperphosphorylation of
MAPK. In route 2, JAK induces phosphorylation of itself
and activates STAT3. Route 3 is associated with the PI3K/
PKB/AKT pathway, which contributes to the activation of
NF-κB. Finally, multiple inflammatory factors are synthe-
sized by target cells, such as TNF-α, IL-1β, NO, PGs, IL-
6, IL-8, and PAF [9, 53], causing serious tissue damage.

4. The Role of m6A in Inflammatory Diseases

N6-Methyladenosine regulates the expression of inflammation-
related mRNAs as well as ncRNA, thereby ultimately regulating

inflammatory diseases. Recent studies have shown that m6A is
closely linked with inflammation (Table 1).

4.1. Inflammatory Autoimmune Disease

4.1.1. Multiple Sclerosis. Multiple sclerosis (MS) is a chronic
inflammatory neurological disorder that involves demyelin-
ating and neurodegeneration. Typical pathological changes
in MS involve scattered and distributed demyelinating pla-
ques around the perivenular inflammatory injury, accompa-
nied by glial fibrosis and axonal injury. There is a wide range
of inflammatory infiltrates, mainly including T cells (mainly
MHC class 1 restricted CD8+ T cells) and B cells, and
oligodendrocyte and macrophages surround the core of a
lesion [54].

Recently, studies have shown the modification of m6A
methylation in cerebrospinal fluid that involves the develop-
ment of multiple sclerosis. It has been reported that patients
who suffered from MS usually have higher m6A methylase
expression [55]. In addition, the m6A and expression levels
of inflammation-related mRNA in the patients with relaps-
ing remitting multiple sclerosis (RRMS) are significantly
higher than those in progressive multiple sclerosis (PMS)
[56]. To explore the role of m6A in nerve cells, Xu et al.
[57] found that knocking out METTL14 in oligodendrocytes
leads to hypomethylation of the mRNA of several transcrip-
tion factors, growth factors, and histone modifiers. This
disrupts the normal maturation and differentiation of
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Figure 2: Inflammatory pathways mainly include MAPK pathway, JAK/STAT pathway, and PI3K/AKT pathway.
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oligodendrocytes and led to abnormal splicing of large
amounts of transcripts that are significantly enriched in
several inflammatory signaling pathways, such as the PI3K/
AKT/mTOR, ERK/MAPK, IGF-1, Notch, and WNT signal-
ing pathways [57] (Figure 3(a)).

4.1.2. Inflammatory Bowel Disease. Inflammatory bowel dis-
ease (IBD) is characterized by atopic chronic inflammation
that is often associated with a variety of factors, such as food,
the environment, and heredity [58], and includes ulcerative
colitis (UC) and Crohn’s disease (CD) [59].

Numerous studies have shown an association between
m6A and the mucosal immune microenvironment [16];
therefore, scholars have speculated that m6A also plays
a critical role in IBD. By testing the clinical samples of
CRC, researchers have found that METTL3 promotes cell
proliferation through suppressing SOCS2 [60] and stabi-
lizing CCNE1 in an m6A-dependent manner [61]. Also,
METTL14 is essential for suppressing apoptosis in colonic
epithelial cells through the NF-κB pathway [62]. The lack
of METTL14 in T cells has been shown to induce spon-

taneous colitis in mice and is accompanied by severe
inflammatory cell infiltration [63]. Therefore, abnormal
cell proliferation, chronic inflammation, and antiapoptotic
processes occur in intestinal cells where hypermethylation
is observed, which may further aggravate IBD. Addition-
ally, YTHDF1 promotes the expression of TRAF6 [64],
and YTHDF1 knockout strongly inhibits WNT-driven
regeneration and tumorigenesis [65, 66].

Recently, a comprehensive analysis of m6A in IBD was
carried out. IGF2BP2, HNRNPA2B1, ZCCHC4, and EIF3I
showed significantly different expression patterns in colon
biopsy samples of patients with IBD [67]. Sebastian-
delaCruz et al. [68] predicted that m6A also regulates genes
associated with IBD, such as UBE2L3 and SLC22A4 in
Crohn’s disease and TCF19, C6orf47, and SNAPC4 in ulcer-
ative colitis. High expression of m6A-related phenotype
genes, such as H2AFZ, is often accompanied by higher
abundances of M1 macrophages, M0 macrophages, and
naive B cells in IBD patients. This research has guided drug
selection in the direction of m6A and provided ideas for
improving responses to anti-TNF treatment [16]. However,
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experiments that confirm the diagnostic significance or ther-
apeutic value of the m6A regulatory gene in IBD are lacking,
and further research is still needed (Figure 3(b)).

4.1.3. Systemic Lupus Erythematosus. Systemic lupus
erythematosus (SLE) is a typical multisystem inflammatory
autoimmune disease [69]. Normally, lupus nephritis (LN)
is one of the most common severe organ manifestations of
SLE, which is related to high mortality [70]. Neuropsychiat-
ric lupus (NPSLE) occurs in 40–90% of SLE patients, and
the damage of microglia may be the major damaged cell
[71–73]. Actually, NPSLE is a major source of morbidity
in the SLE population, and its mortality is second only
to that of LN.

Single-cell transcriptomics analysis has shown that
microglia in mice exhibit upregulation of multiple inflam-
matory genes, for which m6A plays an important role [74].
To explore the m6A mechanism of cell injury in SLE,
researchers have found that METTL3 is an important writer
that promotes LPS-induced microglia inflammation through
the TRAF6/NF-κB pathway [75]. Moreover, METTL3 has
been found to regulate the repair of corneal cell damage
[76], while METTL14 exacerbates the progression of renal
epithelial cell damage by downregulating Sirt1 [77]. m6A is
supposed to be the protective factor in SLE. Other studies
also confirmed that the expression levels of METTL3,
METTL14, WTAP, FTO, ALKBH5, and YTHDF3 in
patients with SLE are significantly downregulated [78, 79].
Downregulation of ALKBH5 in peripheral blood may be
related to the pathogenesis of SLE, and scientists have
observed a strong correlation between ALKBH5 expression
and patient autoantibody levels as well as clinical features [78].

Studies have shown that YTHDF1 regulates KCNH6 in
an m6A-dependent manner and affects the transition from
lung fibroblasts to myofibroblasts [80]. YTHDF2 regulates
the CircGARS–miR-19a–TNFAIP3 axis through a sponge
mechanism, which mediates immune activation of NF-κB
and ultimately promotes SLE progression [81]. IGFBP3 is
an important biological marker of SLE disease, and it may
indirectly inhibit the immune response by reducing the
regulation of T cell and B cell activities, thus achieving ther-
apeutic effects [82]. Interestingly, these studies may provide
preliminary evidence for taking an epigenetic perspective
in SLE targeted therapies, but there is still an urgent need
for more detailed reports with clear evidence supporting tar-
geting of m6A in SLE therapy (Figure 3(c)).

4.1.4. Rheumatoid Arthritis. Rheumatoid arthritis (RA) is a
systemic disease primarily dominated by synovial inflamma-
tion that results in synovitis, synovial hypertrophy, and car-
tilage/bone destruction [83]. Eventual disease progression
leads to multiorgan inflammatory damage, affecting the skin,
lungs, heart, and/or eyes [83–85] with the development of
the course of disease. However, the mechanism of RA is still
unclear, and most researchers believe that this autoimmune
disease is the result of a combination of epigenetic and
genetic factors recently.

Based on single-cell sequencing and machine learning
methods, some researchers have identified neuropeptide-

related molecules with key regulatory activities in RA, and
they have suggested that METTL3 downregulation and
IGF2BP2 upregulation aggravate RA through GHR and
NPR2 [19]. METTL3 knockdown decreased the percentage of
apoptosis and, through the NF-κB pathway, the expression of
inflammatory factors in chondrocytes that had been induced
by IL-1β [86]. Furthermore, recent studies have shown that
reductions in ALKBH5, FTO, and YTHDF2 may be key risk
factors for patients who suffer from RA [87]. Moreover, m6A-
modified noncoding RNA can also regulate the inflammatory
response of chondrocytes, for instance, lncRNA_AC008 accel-
erates the exacerbation of inflammatory damage in chondro-
cytes through the miR-328-3p-AQP1/ANKH axis under the
regulation of FTO [88]. Another important gene, BCL2, reg-
ulates chondrocyte’ apoptosis and autophagy in an
YTHDF1-dependent manner [89].

Interestingly, Sarsasapogenin, as a representative anti-
inflammatory traditional medicine, acts on the m6A
methylation-modified gene TGM2 in the immune microen-
vironment of synovial tissue, regulating the cell cycle and
reducing apoptosis, which can effectively alleviate the
development of RA diseases [90]. However, as a global
autoimmune disease, there is still no clear explanation of
the actual mechanism of RA. It is hoped that studies on
m6A could provide us with new directions for studying this
disease (Figure 3(d)).

4.2. Inflammatory Metabolic Disorder

4.2.1. Nonalcoholic Fatty Liver Disease. Nonalcoholic fatty
liver disease (NAFLD) is one of the most common causes
of chronic liver disease, with a global prevalence of about
25% [91]. Mechanically, NAFLD is usually accompanied by
inflammation and liver fibrosis [92], which progresses to
hepatocellular carcinoma in severe cases.

METTL3 regulates hepatocyte ploidy, and METTL3
knockout results in global hypomethylation, which leads
to a series of pathological features associated with
NAFLD (e.g., hepatocyte ballooning, microsteatosis, poly-
morphic nucleus, and DNA damage) [93]. Knocking out
METTL3 can effectively inhibit the mTOR and NF-κB
signaling pathways, alleviating NAFLD and inflammation
in mice [94]. Moreover, METTL3 and METTL14 have
been shown to affect triglyceride and cholesterol produc-
tion and lipid droplet accumulation through ACLY and
SCD1 in vitro [95].

Since NAFLD and lipid metabolism are inextricably
linked, FTO has also attracted attention in the study of
NAFLD, where it reduces mitochondrial abundance and
promotes hepatic fat accumulation in hepatocytes, which
are hypomethylated [96]. Recent research has explored
FTO-regulated hepatic lipid production through FASN.
Knockdown of FTO decreased the expression of FASN,
which inhibited de novo lipogenesis, thereby resulting in
deficient lipid accumulation and induction of cellular apo-
ptosis [97]. Hypermethylated rubicon mRNA is expressed
and bound by YTHDF1, which increases its stability, with
autophagy in the liver being ultimately inhibited, which
leads to accumulation of lipid droplets [98]. YTHDF2 binds
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to PPARα, leading to alterations in the circadian rhythm,
and mRNA stability is mediated to regulate lipid metabolism
[99] (Figure 3(e)).

4.2.2. Obesity. Maintenance of homeostasis is essential to the
proper operation of the body’s life activities, and extensive
inflammation and stress occur when the body’s metabolism
is disturbed. In obesity, excess adipose tissue can secrete
more adipokines, such as leptin and interleukin. Excess
interleukin promotes adipose tissue infiltration of immune
cells, which leads to chronic low-grade inflammation and
promotes insulin resistance [100, 101].

In a recent study, the demethylation activity of FTO was
shown to be necessary for preadipocyte differentiation [102]
and fat metabolism [103], and FTO was identified as an
important bridge between obesity and m6A. FTO reduces
apoptosis of fat cells by activating the JAK2/STAT3 signaling
pathway [104]. Zfp217 activates FTO through interaction
with YTHDF2 and preserves adipose differentiation [105].
Another study indicated that white-to-beige fat transition
is promoted by HIF1A with hypermethylation mediated by
FTO [106]. However, some researchers have reported that
m6Am, instead of m6A, was the substrate of FTO. As FTO
expression increased, the fatty acid-binding proteins FABP2
and FABP5 lost their m6Am modification, and their expres-
sion was downregulated [107]. Above all, characterizing the
role of the FTO gene has greatly contributed to clarifying the
mechanism of m6A in obesity.

With more in-depth research on obesity, more relation-
ships between m6A and obesity have been discovered.
METTL3 was also found to be an essential regulatory pro-
tein in obesity [108]. A recent study found that METTL3
inhibits adipocyte differentiation through the JAK1/
STAT5/C/EBPβ pathway [109]. Additionally, WTAP and
METTL14 have also been found to affect the differentiation
of adipocytes [110]. Moreover, two SNPs in METTL3 were
found to be associated with body mass index (BMI), and two
SNPs in YTHDF3 are associated with gene expression [17].
Clinical studies have explored that curcumin promotes TRAF4
m6A methylation and its expression levels under the mediation
of YTHDF1, which finally promotes PPARγ degradation
through the ubiquitin proteasome pathway, thereby inhibiting
lipogenesis [111]. However, details of the complex
mechanisms by which m6A regulates obesity remain unclear
(Figure 3(f)).

4.3. Inflammatory Cardio-Cerebrovascular Diseases

4.3.1. Ischemic Stroke. Ischemic stroke (IS) is one of the most
harmful cardio-cerebrovascular diseases. Due to acute
ischemia of brain tissue, nerve cells are hypoperfused,
leading to local depletion of oxygen and glucose [112].
The infarction area undergoes the death of nerve cells,
during which apoptosis and autophagy are the main path-
ological features [113–115].

Ischemia was first thought to be the only factor to cause
tissue damage. However, through extensive review of cases
of ischemic diseases, such as stroke and renal ischemic renal
failure, scientists gradually discovered that ischemic reperfu-

sion damage leads to more serious damage to tissues. The
source of damage is mainly from free radicals and inflam-
mation. Venous recombinant tissue plasminogen activators
(rt-PA) are currently proven treatments for stroke, but
they are only effective within three hours of a limited
onset [116]. Therefore, there is an urgent need to explore
new directions for treating IS. In an m6A transcriptome-
wide map of an MCAO mouse model, 17 lncRNAs and
22 mRNAs with hypermethylation and 5 mRNAs and 3
lncRNAs with hypomethylation were found. The function
of these altered m6A transcripts was found to be mainly
enriched in inflammation, apoptosis, and brain damage
[117]. They found that the expression of inflammatory
cytokines (IL-1β, IL-6, TNF-α, and IL-18) and inflammatory
enzymes (TRAF6 and NF-κB) is upregulated as the expres-
sion of METTL3 increases in microglia inflammation. Also,
overexpression of METTL3 promotes activation of the
TRAF6-NF-κB pathway in an m6A-dependent manner, and
it inhibits inflammation [75]. Another study showed that in
the I/R model, the overall m6A methylation level was upreg-
ulated, and there were significant differences in METTL3,
FTO, and ALKBH5 [118, 119]. In a recent study, an oxygen
glucose deprivation/reoxygenation (OGD/R) model was
established successfully by inducing nerve cell injury, and
the expression of Lnc-D63785 with hypermethylation
decreased in a METTL3-dependent manner, which led to
the accumulation of miR-422a and resulted in cell apoptosis
in primary murine neurons [120]. Another study also
showed that knocking down ALKBH5 can aggravate neuro-
nal damage and demethylases ALKBH5/FTO coregulate
m6A demethylation, resulting in neuronal apoptosis
mediated by BCL-2 [118]. Therefore, it is speculated that
demethylase also has a protective role in I/R damage and in
preventing reperfusion damage [117]. This lays the founda-
tion for the clinical application of m6A modification. miR-
421-3p specifically targets YTHDF1 and inhibits translation
of p65, suggesting a possible role for m6A in IS [121]. There
is a complex regulatory network precisely regulating our
circulatory system based on the extensive role of m6A meth-
ylation (Figure 3(g)).

4.3.2. Atherosclerosis. Atherosclerosis (AS) occurs due to the
accumulation of cholesterol in vessel walls, and recent
research has suggested that chronic inflammation may be
the real cause of AS [122]. Arteries are divided into three
layers, of which the innermost intima mainly consists of
collagen fibers, elastin fibers, and a small number of smooth
muscle cells. Under homeostatic conditions, endothelial
monolayers do not attract the aggregation of leukocytes
and lead to immune activation. When inflammatory cyto-
kines or other cardiovascular risk factors are present, endo-
thelial cells promote the adhesion of immune cells and
induce inflammation [123].

HSP60 and LDL act as antigens in the development of
the disease, causing cellular immunity and humoral immu-
nity [124], while CD4+ T cells handle these antigens [125].
Study revealed that METTL14 targets mir-19a and facilitated
the treatment of mature miR-19a, thus promoting the prolif-
eration and invasion of atherosclerotic vascular endothelial
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cells [126]. Hypermethylation may be a risk factor for aggra-
vating the inflammation of AS.

AS is the most extensive cardiovascular disease currently
known, and surveys have shown that patients with other
chronic inflammation disorders have a higher probability
of developing AS [127]. Recently, a study showed that the
expression of ZFAS1 with hypermethylation increases under
the regulation of METTL14 [128], which activates the
downstream ADAM10/RAB22A pathway in an epigenetic
modification manner, and ultimately participates in the
inflammatory process of vascular endothelial cells in AS
[129]. In fact, numerous reports have revealed that AS is
regulated by m6A modification, mainly based on inflamma-
tory models of endothelial cells [126, 130], macrophages
[131, 132], and smooth muscle cells [133, 134]. Although
these studies aim to simulate what happens to patients with
AS, they cannot truly reflect the conditions of AS patients.
More clinical research is needed to explain the epigenetic
mechanisms of AS pathogenesis (Figure 3(h)).

5. The Role of m6A in Inflammatory
Cancer Microenvironments

Cancer has always been a difficult problem in the medical
community. Extensive studies have showed that inflamma-
tory microenvironments are associated with cancer progres-
sion or inhibition [135–139], and m6A provides new ideas
for clinical diagnosis and treatment. Globally, liver cancer
is the most frequent fatal malignancy [140]. Lung cancer is
one of the most common malignant tumors and is the most
frequently diagnosed fatal tumor type in China [141].

In human liver cancer, the expression of USP48 is down-
regulated, reducing the stability of SIRT6, which induces the
occurrence of liver cancer. Recent studies have shown that
METTL14 is involved in the stabilization of USP48, thereby
hindering the occurrence of liver cancer tumors [142].
YTHDF2, as an important reading protein, is significantly
downregulated in liver cancer cells and leads to severe
inflammation, vascular reconstruction, and cancer metasta-
sis. The deletion of YTHDF2 causes mRNA decay of IL-1β
and HIF-2α. After using an HIF-2α inhibitor, the authors
found that liver cancer was suppressed [143]. Additionally,
FTO can also inhibit tumor growth by reducing TED2
mRNA stability [144] (Figure 4(a)).

Recently, researchers again confirmed that IL-6 can
effectively construct the inflammatory microenvironment
of lung adenocarcinoma liver metastasis in vitro, increasing
the proliferation, metastasis, and EMT of lung adenocarci-
noma cells [145–149]. Moreover, the authors found global
RNA methylation increases and METTL3 activates the
YAP1/TEAD signaling pathway. Another study showed that
high expression of YTHDF2 and SUMO1 often suggests a
poor prognosis for lung adenocarcinoma. Sumoylation of
YTHDF2 can increase its ability to bind to m6A-modified
mRNA to downregulate target gene expression, ultimately
inducing cancer [150] (Figure 4(b)).

The relationship between cancer and inflammation is
not a new idea, and as early as 1863, Verchow proposed
the hypothesis that cancer may originate from inflammation

[6]. Studies have documented that in the inflammatory
microenvironment (Figure 4(c)), where inflammatory fac-
tors such as IL-1β and IL-6 are enriched (Figure 4(d)),
tumor cells are more likely to proliferate, metastasize, and
perform EMT [151]. The use of aspirin and nonsteroidal
anti-inflammatory drugs (NSAIDs) can effectively reduce
the risk of several types of cancer by 40–50%, such as colon
cancer, which demonstrates the important impact of inflam-
mation in the cancer process. Immunotherapy against the
tumor inflammatory microenvironment has a significant
curative effect on tumors with activation of inflammatory
pathways, infiltration of active immune cells, and lack of
matrix components [152]. Researchers have found that
writers and erasers regulate malignant tumors in a reading
protein-dependent manner, and they are mainly concen-
trated in inflammatory pathways [152, 153]. This provides
new ideas for personalized treatment of tumors. For
instance, IFITM3, as an important innate immune protein,
may be associated with the microbiota and m6A. At the same
time, IFITM3 is positively correlated with immunomodula-
tors, tumor-infiltrating immune cells (TIIC), and cancer
immune cycles [154].

In clinic, chemotherapy is a common cancer treatment
(Figure 4(e)). Aseptic inflammation caused by chemother-
apy is a serious negative effect, while ALKBH5 affects the
progression of aseptic inflammation through epidermal
modifications [155]. Above all, m6A plays an important role
in not only the development of cancer but also in controlling
the negative effects of chemotherapy. m6A may be a crucial
mechanism in cancer, and further epigenetics research into
cancer could lead to further breakthroughs in cancer treat-
ments. Moreover, numerous preclinical studies indicated
that m6A targeting therapy synchronizing with anti-PD1
therapy has shown tremendous potential.

6. The Role of m6A in
Pathogen-Induced Inflammation

Extensive studies have shown that m6A plays a wide
range of roles in pathogen-induced inflammation. METTL3
has attracted considerable attention. Overexpression of
METTL3 can significantly reduce LPS-induced inflammation
in macrophage [156]. METTL3 depletion inhibits YTHDF1-
and YTHDF2-mediated degradation of NOD1 and RIPK2,
which subsequently promotes LPS-induced inflammatory
responses [157]. Another research demonstrated that LPS
stimulation leads to upregulation of YTHDF2, and knock-
down of YTHDF2 improves the stability of MAP2K4 and
MAP4K4 and activates the MAPK and NF-κB signaling
pathways [131].

In Salmonella typhimurium infection, YTHDF2 deple-
tion promoted H3K27me3 demethylation of multiple
inflammatory cytokines in the MAPK and NF-κB signaling
pathways, such as IL-6 and IL-12B, and subsequently
enhanced its transcription [158]. Moreover, cell injury
induced by E. coli and S. aureus has also been proved to
be associated with m6A modification, and differentially
expressed genes are mainly enriched in inflammation, apo-
ptosis, and autophagy [47, 159].
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The role of m6A modification has also been found in
fungi-induced inflammation. Fusarium solani-induced kera-
titis increased global m6A level and the expression of
METTL3 in corneal stromal cell and mice, which ultimately
activated the NF-κB signaling pathway [160].

Recently, researchers showed that METTL3 depletion in
host cells simultaneously reduced m6A levels in both the
host and SARS-CoV-2. The global hypomethylation in
SARS-CoV-2 increased RIG-I and enhanced the expression
of innate immune signaling pathways and inflammatory
genes relatedly [161]. This may indicate that SARS-CoV-2
undergoes m6A modification through host m6A machinery
and regulates its own activities [162].

Totally, it is widely acknowledged that m6A modi-
fication plays important roles in pathogen-induced
inflammation.

7. Clinical Therapy Potential

Taken together, m6A has clinical therapeutic potential for
the treatment of inflammatory disease. Recently, studies
have discovered highly effective compounds that target
m6A modification [163–165]. For instance, meclofenamic

acid (MA) was directly identified as a specific inhibitor of
FTO through screening [166]. The natural compound
radicicol was proved to be a potent FTO inhibitor [167].
STM2457 is a highly potent and selective first-in-class cata-
lytic inhibitor of METTL3, which can reduce acute myeloid
leukemia (AML) growth [164]. Moreover, traditional medi-
cines have also been found to be important m6A modulators
[168–171]. Resveratrol and curcumin are natural phenolic
compounds that increase YTHDF2 levels to maintain
intestinal mucosal integrity, which has potential for IBD
treatment [111, 172, 173]. Epigallocatechin gallate is a tea
flavonoid, and it exerts a strong anti-inflammatory effect
mainly by inhibiting FTO expression and enhancing
YTHDF2 expression [174]. Saikosaponin, an extract of
Bupleuri, also has anti-inflammatory activity, inhibiting
FTO expression [175]. With the development of modern
medicine, photoactivated compounds have been creatively
constructed, such as a caged molecule activator of
METTL3/14, photocaging substituent-linked MPCH [176].
This drug can be rapidly released by exogenous light and
functions in vivo, and it is considered a breakthrough in
m6A-targeted drugs, though its side effects still need to be
strictly monitored.
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8. Future Prospects

Recently, many studies have shown that m6A is closely
related to inflammation and can thus be considered a target
for treatment. As an epigenetic modification found in vari-
ous RNAs, m6A in ncRNA can represent a more precise
target than those used in traditional medicine. With the
development of high-throughput sequencing technology
and MeRIP-seq, used in combination with GWAS and
SNP analyses, it may be possible to gain more biological
information about m6A modifications. Comprehensive
studies of m6A have been beneficial for enhancing our
understanding of inflammation.

Moreover, it is more efficient to develop m6A agonists or
inhibitors for treating inflammation by characterizing the
m6A profiles in different diseases, which could replace some
traditional drugs that have extensive side effects, such as
corticosteroids. In summary, m6A has the potential to
become a prospective target in treatments for inflammation,
but further confirmation is still needed.
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