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So far, it has been reached the academic consensus that the molecular subtypes are via genomic heterogeneity and immune
infiltration patterns. Considering that oxidative stress (OS) is involved in tumorigenesis and prognosis prediction, we propose
an innovative classification of colorectal cancer- (CRC-) OS subtypes. We obtain three datasets from The Cancer Genome
Atlas Program (TCGA) and Gene Expression Omnibus (GEO) online databases. 1399 OS-related genes were selected from the
GeneCards database. We remove the batch effect before conducting differentially expressed genes (DEGs) analyses between
normal and tumor samples. Nonnegative matrix factorization (NMF) was used to perform an unsupervised cluster. Lasso
regression and Cox regression were used to construct the signature model. DEGs, robust rank aggregation, and protein-protein
interaction networks were used to select hub genes, and then use hub genes to predict OS subtypes by random forest
algorithms. NMF identifies two OS-related subtypes of CRC patients. Eight OS-related gene signatures were built to predict the
outcome of patients, based on the DEGs between two subtypes. A total of 61 DEGs overlap each dataset, and the RRA analysis
shows that 17 genes are important in these three datasets, and 15 genes are shared genes between the two methods. PPI
network suggests that five hub genes are confirmed, they are SPP1, SERPINE1, CAV1, PDGFRB, and PLAU. These five hub
genes could predict the OS-related subtype of CRC accurately with AUC equal to 0.771. In our study, we identify two OS-
related subtypes, which will provide an innovative insight into colorectal cancer.

1. Introduction

Nowadays, with an estimated 1,800,000 new cases and
900,000 deaths annually [1, 2], colorectal cancer (CRC)
become the third most common cancer and the second lead-
ing cause of cancer death [3]. Despite rapid development in
the diagnosis and treatments of CRC, the mortality remains
high, especially in advanced stage at first diagnosis [4].
Therefore, the lack of biomarkers for early screening and
prognosis prediction is still an urgent clinical problem to
improve the treatments efficacy and reduce the cases mortal-
ity of CRC.

With the numerous studies on hallmarks of cancer, the
characteristics of genomic variation in CRC have unique

clonal, stromal, and immune dependencies [5]. So far, a
molecular classification of CRC has been reached the aca-
demic consensus than the four molecular subtype groups
via the current best description of the genomic heterogeneity
[6]. In addition to the transcriptomic subtypes of CRC, the
expression profile analysis of CRC showed that the immune
infiltration patterns with different immune-tolerant micro-
environment resulted in different effects of special immuno-
therapy [7, 8]. However, it is more notable that to maintain
the high proliferation rate tumor cells, it demands high ROS
concentrations, which the regulation of oxidative stress (OS)
includes oxidative metabolism, for example, the conversion
of the glycolytic pathway into the pentose phosphate path-
way [9, 10]. And the prognosis of radiotherapy and
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chemotherapy treatments is influenced through OS modula-
tion indicating that the OS is also highly significant for can-
cer therapy [11–14]. Therefore, we propose an innovative
classification of CRC-OS subtypes, which has never been
studied in-depth.

Machine learning is a computer technology applied arti-
ficial intelligence which has a widespread application in
improving medical research and clinical decision in clinic
such as diagnostics, precision medicine, and clinical trials
of cancer. In our study, we aimed at identifying potential
OS molecular subtypes and predicting CRC outcomes
through the gene expression profile in multiple datasets. By
utilizing the nonnegative matrix factorization (NMF) clus-
tering algorithm, 350 OS-related differentially expressed
genes (DEGs) were distinctly classified into two molecular
subtypes (named C1 and C2) in three CRC cohorts. Among
them, C1 was associated with a better prognosis. Moreover,
based on the intersection of C1 and C2 DEGs, we established
a novel OS-related prognostic signature by multivariate Cox
regression model and validated its significant prognostic
values for CRC patients. Finally, we also explored the hub
genes for predicting OS subtypes in CRC.

2. Materials and Methods

2.1. Data Obtain. We obtain datasets from three individual
datasets, colon adenocarcinoma (COAD) from The Cancer
Genome Atlas Program (TCGA), including 41 normal sam-
ples and 473 tumor samples; GSE39582, including 19 nor-
mal samples and 443 tumor samples; GSE29621, including
65 tumor samples from Gene Expression Omnibus (GEO),
respectively. Gene expression profile and clinic information
of the above samples were downloaded by R package TCGA
biolinks [15]. Oxidative stress- (OS-) related genes were
checked by the GeneCards database (https://www
.genecards.org/) and 1399 OS-related genes were selected
for future analysis.

2.2. Batch Effect Correction. Because the above datasets
resource from different individual databases, we use R pack-
age sva to reduce the batch effect between samples. We
merge these three datasets and calculate the overlap genes,
then use the combat method to remove the batch effect.

2.3. OS-Related Genes’ Different Expressions. We extract
1399 OS-related genes from the above merge expression
matrix which has been removed batch effect and then use
the limma package to conduct differential expression analy-
sis between normal and tumor samples. Absolute value of
LogFC was set to more than 1, and the p value was set to less
than 0.05.

2.4. Nonnegative Matrix Factorization Identify OS-Related
Subtype. Nonnegative matrix factorization (NMF) is an
excellent unsupervised learning algorithm that could iden-
tify the probable subtype between large samples. Here, we
also use this method and aim to identify candidate OS-
related subtypes in CRC samples. We set the rank from 2
to 10 using a method called brunet, and other algorithm
parameters were set as default.

2.5. Subtypes Validate and Survival Analysis. After identify-
ing candidate subtypes, we also use heat map and principal
component analysis (PCA) to validate the results of the typ-
ing results. Survival analysis is also used to compare different
subgroups. The survival difference was calculated by a log-
rank test.

2.6. Different Expression Genes between Subtypes. To explore
the potential mechanisms between subtypes and build a use-
ful prediction model, we use the limma package to conduct
differential expression analysis between groups. Here, we
set the absolute value of LogFC as more than 0.5, and the
p value also was set to less than 0.05.

2.7. Lasso Regression and Cox Regression to Identify Model
Genes. A useful machine learning method, Lasso regression
and Cox regression model were used to dimensionalize the
data. We use the batch univariate Cox regression model to
obtain the prognosis OS-related genes, and then we input
the above results into Lasso regression and calculate the
minimum value of lambda to get the important genes of
the model. Next, the important genes of Lasso regression
results will perform the last step, and multivariate Cox
regression will conduct this procedure to select the candidate
model genes.
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Figure 1: Workflow of the study. Three datasets (COAD, GSE39583, and GSE 28621) were obtained from TCGA and GEO including 1399
OS-related genes selected from the GeneCards database. Before DEGs analyses, the batch effect was removed. And nonnegative matrix
factorization (NMF) was used to perform an unsupervised cluster. Hub genes were selected by Lasso regression and Cox regression to
construct the signature model. DEGs, robust rank aggregation, protein-protein interaction networks were used to select hub genes to
predict OS subtypes by random forest algorithms.

2 Oxidative Medicine and Cellular Longevity

https://www.genecards.org/
https://www.genecards.org/


0−2

−8

−4

8

0

4

2 4 6
UMAP 1

8 10 12 14

U
M

A
P 

2

Dataset
COAD
GSE39582
GSE29621

(a)

−2.0−3.0

−2

4

0

2

−1.0 0.0
UMAP 1

1.0 2.0 3.0

U
M

A
P 

2

Dataset
COAD

GSE39582
GSE29621

(b)

OS related genes

Different expression analysis of OS related genes

DEGs

3501399

(c)

2
0.875

0.900

0.975

NMF rank survey

Cophenetic
NMF rank = 2

0.925

0.950

4 6 8 10

(d)

0
−10

−5

0

5

10 20
Dim1 (19.3%)

30

D
im

2 
(7

.1
%

)

Cluster
C1
C2

(e)

0

0.00

0.25

0.50

0.75

6 8
Time in years

12

1.00

42 14 1610

O
ve

ra
ll 

su
rv

iv
al

Cluster
C1
C2

Log rank p < 0.01

(f)

Figure 2: NMF cluster samples into two oxidative stress subtypes. Before batch correction, three datasets are scattered (a). After batch
correction, the component data is evenly distributed (b). The OS-related DEGs are selected by OS-related genes and DEGs (c). K = 2 was
best cut off by NMF analysis (d). PCA results show that two subtypes are grouped distinctly (e). Survival analysis demonstrates C2
patients with a poor prognosis, compared with C1 patients (f).
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Figure 3: Continued.
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2.8. A Signature Model Constructs to Predict the Overall
Survival of CRC Patients. The multivariate regression model
has selected candidate genes, which will be constructed as a
signature. This signature was constructed in two steps, first,
each candidate gene coefficient needs extract from multivar-
iate regression results, and second, we calculate the risk score
of each patient according to the following formula. Risk
score = expression × geneA + expression × gene B +
expression × gene C. After calculating all patients’ risk
scores, they will be divided into two groups, according to
the median value. A survival curve will be used to demon-
strate the differences between groups, and receiver operating
characteristic (ROC) was used to evaluate the signature pre-
diction ability.

2.9. DEGs Combine Robust Rank Aggregation to Identify
Important DEGs. We calculate the different genes in each
dataset and merge three DEGs results, then, we also use
robust rank aggregation (RRA) method to select the impor-

tant DEGs, and finally, we combine DEGs overlap results
and RRA results to get the final overlap genes which are con-
sidered as important genes with different expression
between subtypes. To explore the candidate mechanism of
DEGs between subtypes, Kobas (http://kobas.cbi.pku.edu
.cn/) was used to perform the enrichment analysis including
Gene Oncology and KEGG analysis.

2.10. Protein-Protein Interaction Networks Analysis and Hub
Gene Screened. We use the STRING database (https://cn
.string-db.org/), which is an online search for known protein
interactions to conduct protein-protein interaction networks
(PPI) to show the internal interaction in important genes
and use MCODE plugins, which are resources from Cytos-
cape. To identify the hub protein network, genes located in
this network were considered hub genes.

2.11. Hub Gene Predicts OS Subtypes by Random Forest
Algorithms. We perform hub genes to predict the OS

Table 1: Eight OS-related prognostic genes for signature model by multivariate Cox regression model.

Gene Coef HR HR.95L HR.95H p value

CD36 0.070893982 1.073467413 1.008614396 1.142490423 0.025764595

SCARA3 0.061080412 1.062984388 0.992720726 1.138221233 0.080019034

NOX1 -0.007467179 0.992560631 0.987524046 0.997622904 0.004016322

CCNF -0.079307037 0.923756253 0.855402943 0.997571521 0.043181104

PKM 0.005245057 1.005258837 1.002050265 1.008477682 0.001301438

GZMB -0.019493712 0.980695062 0.964974318 0.996671918 0.018065092

RHOD 0.016390642 1.016525706 1.000464261 1.032845001 0.043686726

CXCL1 -0.005312535 0.994701551 0.98998481 0.999440765 0.028478596
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Figure 3: 8-gene signature model to predict CRC patients’ outcome. DEGs between C1 and C2 in total datasets (a), Lasso regression
discover 15 genes that are important (b&c), after multivariate Cox and eight model genes are selected and eight genes signature are built
(d). In this model, patients with low-risk score always mean a better outcome, when compared with high-risk score patients (e), and the
ROC demonstrates that this model has a good predictive ability for patients’ prognosis (f).
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Figure 4: Continued.
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subtype of CRC by random forest (RF) algorithms, which
are included in the caret package. The detailed steps are
listed here. The dataset of standardization, which has
removed the batch effect, will be divided into two random
datasets: one account for 70% as a training set and another
is 30%, as a test set. Then, we use hub genes to predict the
OS subtype of CRC in the training set and validate the pre-
diction ability of these hub genes in the test set. Finally, we
visualize the decision tree of the model. In this step, the most
important is that all input gene expression needs to conduct
min-max normalization, which will transfer gene expression
values from 0 to 1.

3. Results

3.1. OS-Related Different Expressions of Genes. This study
workflow is shown in Figure 1, and a total of 1041 samples
were enrolled in our study, including 60 normal samples
and 981 tumor samples, respectively. 1399 OS-related genes
are selected from GeneCards, and we performed the remove
batch effect before extracted this OS-related gene from 981
tumor samples. Before batch removal, we could find that
samples are distributed in three different spaces
(Figure 2(a)), and after removing the batch effect, all samples
are distributed on average (Figure 2(b)).

3.2. Two OS-Related Subtypes of CRC Patients and DEGs.
Some OS-related genes were expressed differently between
normal and tumor tissues in CRC patients, so we conduct
DEGs analysis to filter the above genes. These results show
that 350 DEGs are selected, including 204 upregulated genes
and 146 downregulated genes, respectively (Figure 2(c)).

NMF conducts unsupervised clustering by these 350 DEGs.
When rank = 2, the clustering result is best, and samples will
be divided into two groups (Figure 2(d) and Supplement
Figure 1). The PCA results also demonstrate the above
conclusion (Figure 2(e)). Survival analysis results show that
when compared with cluster 1, cluster 2 patients will
obtain a poor prognosis (log-rank p < 0:01) (Figure 2(f)).

3.3. Eight OS-Related Gene Signatures Predict the Outcome of
Patients. DEGs between two subtypes are selected and input
into batch univariate Cox regression to screen prognosis
genes. To identify more accurate prognosis-related genes,
we use strict criteria as a p value less than 0.01. Finally, we
obtain 27 prognosis-related genes (Supplement Table 1).
These 27 genes for future study to continue to perform
dimensionality reduction by Lasso regression (LR). The LR
analysis results suggest that when lambda obtains the
minimum value, 15 important genes are screened
(Figures 3(b) and 3(c)). Next step, multivariate Cox
regression will analyze these important genes and confirm
the final model genes, then, we use the multivariate Cox
coefficient and gene expression value to build the final 8
OS-related gene signatures to predict the survival status of
CRC patients (Table 1). Each patient will obtain one risk
score after inputting 8 genes expression into the model,
and the risk curve and genes expression heat map is shown
in Figure 3(d). Patients with a risk score of more than the
median value will be defined as high-risk groups while
others will become low-risk groups. Survival analysis
results show that the low-risk group always means a better
outcome, while the high-risk group with a poor overall
survival rate (log-rank p < 0:001) (Figure 3(e)).
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Figure 4: DEGs and RRA analysis to select important genes. The workflow of hub genes to predict subtypes (a), and different expression
genes in each datasets (b–d) merge different DEGs (e) and use RRA to select hub genes (f).
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Furthermore, The ROC results, AUC = 0:707, demonstrate
that these 8 OS-related gene signatures also have better
predictive performance (Figure 3(f)).

3.4. Different Expressions of Genes between Two Subtypes in
each Dataset. The workflow of how to select candidate hub
genes, which will be performed to predict OS-related sub-
types of CRC patients, is shown in Figure 3(a). In this work-
flow, we could find that DEGs analysis is the main idea to
select hub genes (Figure 4(a)). So, in the next step, we con-
duct this process, and the different expressions analysis
between C1 and C2 in each dataset show that a total of 77
DEGs in GSE29621, including 55 upregulated DEGs and
22 downregulated DEGs; while 205 DEGs in GSE39582,
including 111 upregulated DEGs and 94 downregulated
DEGs; 169 DEGs in COAD, including 90 upregulated DEGs
and 79 downregulated DEGs, respectively (Figures 4(b)–
4(d)). In addition, Kobas results show that these DEGs are
enrichment in cellular response to oxidative stress, positive
regulation of inflammatory response, HIF-1 signaling path-
way, and metabolic pathways (Supplement Table 2 and 3).

3.5. Fifteen Important DEGs in Different DEGs Expression
Profile. We merge the above results of different expressions
of genes in each dataset, and the results show that 61 genes
overlap these three datasets (Figure 4(e)), and the RRA anal-
ysis shows that 17 genes are important genes in these three
datasets (Figure 4(f)). Merge 61 genes and RRA results, we
could find that 15 genes are shared genes (Figure 5(a)).

3.6. Five Hub Genes Identify. We input fifteen important
DEGs into the string database to construct the PPI network,
and this network shows that excluding GPX3, AOC3, DES,
and TPM1, the other 11 proteins interact closely
(Figure 5(b)). In addition, we further apply MCODE plugins

in these 11 proteins, and the hub protein network was
extracted. The five hub genes that construct this hub net-
work also were identified. They are SPP1, SERPINE1,
CAV1, PDGFRB, and PLAU (Figure 5(c)).

3.7. Prediction Model of OS-Related Subtype of CRC. Five
hub genes are used to build a prediction model of OS-
related subtype of CRC by random forest, and the best mtry
value is 2 while the number of trees is 200 in the training set
when the model obtains robust predictability (Figure 5(d)).
Figure 5(e) shows the importance of five hub genes. In addi-
tion, the high effective ability of the prediction model is also
demonstrated by test data. The model has a high AUC value,
0.771, in the test group (Figure 5(f)). We also show the deci-
sion tree of the model (Figure 6). According to this decision
tree, clinic physicians could evaluate patients’ OS-related
subtypes by judging five hub genes expression, step by step.

4. Discussion

The regulation of OS is an important factor in tumor devel-
opment. OS not only induces the formation of tumors by
abnormal cell proliferation [16] but also promotes further
tumor development by altering the metabolism of tumors
[17, 18]. Studies have also shown that targeting the antioxi-
dant capacity of tumor cells can have a positive impact on
cancer therapy [19]. OS is associated with colorectal carcino-
genesis and has been identified as an important risk factor
for colorectal adenoma in several studies [20–23]. So, focus-
ing on the role of OS-related genes in CRC is necessary to
promote diagnostic gene screening and therapeutic strate-
gies for CRC. Moreover, the small size of the dataset will
reduce the accuracy of the predictions and the robustness
of the subtypes. Given these, we utilized 3 datasets from
the TCGA and GEO databases to identify robust subtypes
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Figure 6: Decision tree of five hub genes prediction model. The decision tree of predict procedure, when we input patients genes expression
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clinical decision.
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of CRC for better understanding the underlying molecular
pathogenesis of CRC. NMF algorithm has been widely
applied to reveal various cancer subtypes through clustering
tumor samples [24]. In our study, based on OS-related
DEGs, we successfully classified the CRC sample into two
subtypes (C1 and C2) by using the NMF algorithm. The
results of the PCA analysis revealed that our classification
was robust. Then, survival analysis results indicated that
C1 subtype had a better prognosis compared to C2 subtype.

It is well known that the prognosis of cancer affects clin-
ical decision-making. Recent clinical guidelines have empha-
sized the importance of using multigene tests to select
patients who should receive adjuvant therapy [25]. Multiple
genes of the tests are called cancer signatures, which are cru-
cial for cancer prognosis. Considering the impact of OS and
OS subtypes on clinical outcomes in CRC patients, therefore,
univariate Cox regression, Lasso Cox regression, and multi-
variate Cox regression analyses were conducted to construct
the optimal OS-related prognostic signature based on DEGs
between C1 and C2 subtypes. In this 8-gene prognostic
model, as expected, patients in the low-risk group had a bet-
ter overall survival rate. At the same time, our results showed
that this signature had good predictive accuracy in predict-
ing the overall survival of CRC patients. Overall, the prog-
nostic model we constructed may be useful for clinical
treatment and decision-making in CRC.

Through machine learning algorithms and the PPI net-
work, we successfully identified five OS-related hub genes,
including SPP1, PDGFRB, SERPINE1, CAV1, and PLAU.
All five hub genes play a significant role in tumor progres-
sion, invasion, and metastasis. Among these genes, secreted
phosphoprotein 1 (SPP1, also known as osteopontin) is a
secreted glycophosphoprotein, which can be secreted by a
variety of cells, including macrophages and endothelial cells
[26]. Previous works have demonstrated that SPP1 is overex-
pressed in various cancers (such as nonsmall cell lung cancer
[27] and ovarian cancer [28]) and involved in the progres-
sion and metastasis of cancer. In colorectal cancer, SPP1
expression was significantly upregulated, and it promoted
CRC metastasis by activating the epithelial-mesenchymal-
transition pathway [29]. Platelet-derived growth factor
receptor type β (PDGFRB, also called PDGFRβ) has been
identified as a causal gene for idiopathic basal ganglia calci-
fication [30]. Meanwhile, it is also correlated with CRC inva-
sion and metastasis, for example, excessive PDGFRβ
signaling leads to oversecretion of THBS4 and proliferative
colorectal tumor development [31]. As for the serpin pepti-
dase inhibitor, clade E, member 1 (SERPINE1, also called),
it is expressed in many cancer cell and regulates cancer
growth, invasion, and angiogenesis [32]. In the CRC cell line,
the study has demonstrated that SERPINE1 expression is
increased and related to tumor invasiveness and aggressive-
ness [33]. And, PAI-1 is regarded as a biomarker of poor
prognosis in various human cancers and a possible thera-
peutic target for some cancers [34]. Caveolin-1 (CAV1), an
oncogenic membrane protein related to endocytosis, extra-
cellular matrix organization, cholesterol distribution, cell
migration, and signaling has been linked to several cancers
[35, 36]. For instance, Yang et al. [37] have reported that

overexpression of CAV1 markedly inhibits the proliferation,
migration, and invasive potential of CRC cells, possibly by
reducing phosphorylation of epidermal growth factor recep-
tor activation. Lastly, plasminogen activator (PLAU) is also
associated with the complex phenotype of human cancer,
and its upregulation promotes metastatic cancers [38]. In a
CRC study, downregulation of PLAU expression inhibits
CRC cell proliferation and progression [39].

Although we have stratified OS molecular subtypes, built
OS-related prognostic model and identified hub genes in
CRC for the first time, there are some shortcomings in the
current study. First, since we used different platform data
and multiple CRC tissue samples, the effect of batch correc-
tion may not be completely eliminated. Second, the OS-
related prognostic signature constructed from public data-
sets of the TCGA and GEO databases should be validated
for their prognostic value through large-scale prospective
studies. Finally, the function of hub genes and their mecha-
nisms affecting CRC development also need to be further
elucidated.

5. Conclusion

Our study successfully utilizes multiple datasets to stratify
CRC samples into two novel OS subtypes, which can provide
new insights into the molecular features of CRC. The OS-
related prognostic gene signatures can serve as a powerful
tool for overall survival prediction and treatment guidance
in CRC patients. Additionally, we identified five key genes
(SPP1, PDGFRB, SERPINE1, CAV1, and PLAU) as poten-
tial biomarkers for predicting the OS subtype and diagnosis
of CRC. In general, these findings might enhance our under-
standing of the molecular pathogenesis of CRC and contrib-
ute to identifying new candidate biomarkers for CRC.
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